1
|
Tamtaji OR, Ostadian A, Homayoonfal M, Nejati M, Mahjoubin-Tehran M, Nabavizadeh F, Ghelichi E, Mohammadzadeh B, Karimi M, Rahimian N, Mirzaei H. Cerium(IV) oxide:silver/graphene oxide (CeO2:Ag/GO) nanoparticles modulate gene expression and inhibit colorectal cancer cell growth: a pathway-centric therapeutic approach. Cancer Nanotechnol 2024; 15:62. [DOI: 10.1186/s12645-024-00300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 01/06/2025] Open
|
2
|
ISHIKAWA K, CHAMBERS JK, UCHIDA K. Activation of the Wnt/β-catenin signaling pathway and CTNNB1 mutations in canine intestinal epithelial proliferative lesions. J Vet Med Sci 2024; 86:748-755. [PMID: 38811188 PMCID: PMC11251820 DOI: 10.1292/jvms.24-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Nuclear expression of β-catenin has been reported in canine intestinal epithelial tumors (IETs) and colorectal inflammatory polyps (CIPs) with dysplastic epithelia. However, the role of the Wnt/β-catenin signaling pathway in these lesions remains unclear. To investigate the association between the nuclear β-catenin expression and the activation of the Wnt/β-catenin signaling pathway, immunohistochemistry and mutation analyses were conducted on 64 IETs and 20 CIPs. IETs and CIPs with β-catenin nuclear and/or cytoplasm immunolabeling were classified as β-catenin (+). The immunostaining scores of c-Myc and Cyclin D1 and Ki-67 index were significantly higher in β-catenin (+) cases than in β-catenin (-) cases. Identical APC mutations (p.E154D and p.K155X) were detected in 6/41 β-catenin (+) IETs; all 6 of IETs with APC mutations were Jack Russell Terriers. CTNNB1 mutations were detected in 29/42 β-catenin (+) IETs, 3/11 β-catenin (+) CIPs, and 2/22 β-catenin (-) IETs, most of which were hotspots associated with human colorectal carcinoma. In one Miniature Dachshund diagnosed with a CIP that subsequently developed into an IET, the same CTNNB1 mutation was detected in both lesions. The immunohistochemical results suggest that cell proliferative activity in β-catenin (+) cases may be associated with activation of the Wnt/β-catenin signaling pathway. The mutation analysis results suggest that CTNNB1 mutations may be associated with cytoplasmic β-catenin accumulation in IET and CIP. Furthermore, the dysplastic epithelium in CIP may progress to IET through the activation of the Wnt/β-catenin signaling pathway by the CTNNB1 mutation.
Collapse
Affiliation(s)
- Kento ISHIKAWA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Chen X, Song Y. Integrating network pharmacology and Mendelian randomization to explore potential targets of matrine against ovarian cancer. Technol Health Care 2024; 32:3889-3902. [PMID: 38968061 PMCID: PMC11613084 DOI: 10.3233/thc-231051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/15/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Matrine has been reported inhibitory effects on ovarian cancer (OC) cell progression, development, and apoptosis. However, the molecular targets of matrine against OC and the underlying mechanisms of action remain elusive. OBJECTIVE This study endeavors to unveil the potential targets of matrine against OC and to explore the intricate relationships between these targets and the pathogenesis of OC. METHODS The effects of matrine on the OC cells (A2780 and AKOV3) viability, apoptosis, migration, and invasion was investigated through CCK-8, flow cytometry, wound healing, and Transwell analyses, respectively. Next, Matrine-related targets, OC-related genes, and ribonucleic acid (RNA) sequence data were harnessed from publicly available databases. Differentially expressed analyses, protein-protein interaction (PPI) network, and Venn diagram were involved to unravel the core targets of matrine against OC. Leveraging the GEPIA database, we further validated the expression levels of these core targets between OC cases and controls. Mendelian randomization (MR) study was implemented to delve into potential causal associations between core targets and OC. The AutoDock software was used for molecular docking, and its results were further validated using RT-qPCR in OC cell lines. RESULTS Matrine reduced the cell viability, migration, invasion and increased the cell apoptosis of A2780 and AKOV3 cells (P< 0.01). A PPI network with 578 interactions among 105 candidate targets was developed. Finally, six core targets (TP53, CCND1, STAT3, LI1B, VEGFA, and CCL2) were derived, among which five core targets (TP53, CCND1, LI1B, VEGFA, and CCL2) differential expressed in OC and control samples were further picked for MR analysis. The results revealed that CCND1 and TP53 were risk factors for OC. Molecular docking analysis demonstrated that matrine had good potential to bind to TP53, CCND1, and IL1B. Moreover, matrine reduced the expression of CCND1 and IL1B while elevating P53 expression in OC cell lines. CONCLUSIONS We identified six matrine-related targets against OC, offering novel insights into the molecular mechanisms underlying the therapeutic effects of matrine against OC. These findings provide valuable guidance for developing more efficient and targeted therapeutic approaches for treating OC.
Collapse
Affiliation(s)
- Xiaoqun Chen
- Department of Ultrasound, Affiliated Hospital of Shaoxing University (The Shaoxing Municipal Hospital), Shaoxing, Zhejiang, China
| | - Yingliang Song
- Department of Gynaecology and Obstetrics, Xinchang County People’s Hospital, Xinchang, Zhejiang, China
| |
Collapse
|
4
|
Dadgar-Zankbar L, Shariati A, Bostanghadiri N, Elahi Z, Mirkalantari S, Razavi S, Kamali F, Darban-Sarokhalil D. Evaluation of enterotoxigenic Bacteroides fragilis correlation with the expression of cellular signaling pathway genes in Iranian patients with colorectal cancer. Infect Agent Cancer 2023; 18:48. [PMID: 37644520 PMCID: PMC10463534 DOI: 10.1186/s13027-023-00523-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers all over the world, and dysbiosis in the gut microbiota may play a role in colorectal carcinogenesis. Bacteroides fragilis can lead to tumorigenesis by changing signaling pathways, including the WNT/β-catenin pathway. Therefore, in the present study, we investigated the correlation between the enterotoxigenic B. fragilis amount and the expression of signaling pathway genes involved in CRC. MATERIALS AND METHODS B. fragilis was determined in 30 tumors and adjacent healthy tissues by the qPCR method. Next, the relationship between enterotoxigenic B. fragilis and the expression of signaling pathway genes, including CCND1, TP53, BCL2, BAX, WNT, TCF, AXIN, APC, and CTNNB1 was investigated. Additionally, possible correlations between clinicopathological features of the tumor samples and the abundance of B. fragilis were analyzed. RESULTS The results showed that B. fragilis was detected in 100% of tumor samples and 86% of healthy tissues. Additionally, enterotoxigenic B. fragilis colonized 47% of all samples, and bft-1 toxin was the most frequently found isotype among the samples. The analysis showed that the high level of B. fragilis has a significant relationship with the high expression of AXIN, CTNNB1, and BCL2 genes. On the other hand, our results did not show any possible correlation between this bacterium and the clinicopathological features of the tumor sample. CONCLUSION B. fragilis had a higher abundance in the tumor samples than in healthy tissues, and this bacterium may lead to CRC by making changes in cellular signaling pathways and genes. Therefore, to better understand the physiological effects of B. fragilis on the inflammatory response and CRC, future research should focus on dissecting the molecular mechanisms by which this bacterium regulates cellular signaling pathways.
Collapse
Affiliation(s)
- Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kamali
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Mosaad H, Ahmed MM, Elaidy MM, Elfarargy OM, Abdelwahab MM, Abdelnour HM. Down-regulated MiRNA 29-b as a diagnostic marker in colorectal cancer and its correlation with ETV4 and Cyclin D1 immunohistochemical expression. Cancer Biomark 2023; 37:179-189. [PMID: 37248886 DOI: 10.3233/cbm-220349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common malignant tumor of the gastrointestinal tract with unfavorable prognosis. Therefore, novel biomarkers that may be used for new diagnostic strategies and drug-targeting therapy should be developed. OBJECTIVES To investigate the expression of miR-29b in CRC and its association with ETV4 and cyclin D1 expression. Moreover, the current work aims to investigate the association between them and the clinicopathological features of CRC. METHODS The expression of miR-29b and ETV4 (by qRT-PCR) and ETV4 and cyclin D1 (immunohistochemistry) was investigated in 65 cases of colon cancer and surrounding healthy tissues. RESULTS MiR-29b down-regulated and ETV4 and Cyclin D1 up-regulated significantly in colon cancer tissues compared to normal nearby colonic tissues. In addition, significant associations between ETV4 and cyclin D1 expressions and progressive stage and lymph node (LN) metastasis (P< 0.001 for each) were found. Furthermore, there was a negative correlation between miR-29b gene expression and ETV4 gene expression (r=-0.298, P<0.016). CONCLUSION Down-regulation of miR-29b and over-expression of ETV4 and cyclin D1 may be utilized as early diagnostic marker for development of colon cancer. ETV4 and cyclin D1 correlate with poor prognostic indicators and considered as a possible target for therapy in colon cancer.
Collapse
Affiliation(s)
- Hala Mosaad
- Department of Biochemistry, Faculty of Medicine Zagazig University, Egypt
| | | | - Mostafa M Elaidy
- Department of General Surgery, Faculty of Medicine Zagazig University, Egypt
| | - Ola M Elfarargy
- Department of Medical Oncology, Faculty of Medicine Zagazig University, Egypt
| | | | - Hanim M Abdelnour
- Department of Biochemistry, Faculty of Medicine Zagazig University, Egypt
| |
Collapse
|
6
|
Lu Y, Shao Y, Xie Y, Qu H, Qi D, Dong Y, Jin Q, Wang L, Wei J, Quan C. CLDN6 inhibits breast cancer cell malignant behavior by suppressing ERK signaling. Cell Signal 2022; 97:110393. [PMID: 35752352 DOI: 10.1016/j.cellsig.2022.110393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 11/03/2022]
Abstract
Claudin 6 (CLDN6) is an important component of tight junctions. Through the PDZ binding motif, CLDN6 binds to a variety of signaling proteins that contain the PDZ domain to regulate different signaling pathways, and plays an important role in the occurrence and development of tumors. Our previous work showed that CLDN6 was expressed at low levels in breast cancer cells, and overexpression of CLDN6 inhibited breast cancer cell proliferation, migration and invasion. However, the mechanism of how CLDN6 works remains unclear. In this study, we aimed to explore the mechanism by which CLDN6 inhibits breast cancer cell malignant behavior. As a result, overexpression of CLDN6 inhibited the proliferation of breast cancer cells along with the downregulation of cyclin D1, which plays an important role in regulating cell proliferation. After overexpression of Sp1 in CLDN6-overexpressing cells, the expression of cyclin D1 was upregulated. On the other hand, CLDN6 inhibited breast cancer cell migration and invasion along with the downregulation of IL-8, CXCR2 and FAK. When treated with IL-8, the migration and invasion ability were promoted along with the upregulation of CXCR2 and p-FAK, and the cytoskeleton was rearranged in CLDN6-overexpressing cells. Furthermore, when treated with the ERK signaling activator PMA, the proliferation, migration and invasion abilities were promoted along with the upregulation of Sp1, cyclin D1 and IL-8 in CLDN6-overexpressin cells. In conclusion, CLDN6 suppressed ERK/Sp1/cyclin D1 and ERK/IL-8 signaling to inhibit proliferation, migration and invasion in breast cancer cells. The mechanism may provide experimental evidence for the treatment of breast cancer targeting CLDN6.
Collapse
Affiliation(s)
- Yan Lu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, People's Republic of China
| | - Yijia Shao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, People's Republic of China
| | - Yinping Xie
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, People's Republic of China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, People's Republic of China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, People's Republic of China
| | - Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, People's Republic of China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, People's Republic of China
| | - Liping Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, People's Republic of China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, People's Republic of China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, Jilin 130021, People's Republic of China.
| |
Collapse
|
7
|
Hromakova I, Sorochan P, Prokhach N, Hromakova I. Interleukin-6 and colorectal cancer development. УКРАЇНСЬКИЙ РАДІОЛОГІЧНИЙ ТА ОНКОЛОГІЧНИЙ ЖУРНАЛ 2021; 29:89-107. [DOI: 10.46879/ukroj.4.2021.89-107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Background. Colorectal cancer (CRC) is one of the most common malignancies in the world. It ranks third in the structure of cancer morbidity and second in the structure of mortality. One of the important factors leading to CRC is chronic inflammation of the intestine, in which pro-inflammatory cytokines play a crucial role. Among proinflammatory cytokines, interleukin-6 occupies one of the leading places in the pathogenesis of CRC. Therefore, it is important to elucidate the role of interleukin-6 (IL-6) in the development and progression of CRC, determine the diagnostic and prognostic value of the cytokine and analyze the application of therapeutic strategies aimed at the IL-6 signaling pathway in CRC. Purpose – to analyze the role of proinflammatory cytokine IL-6 in the development of colorectal cancer, consider the mechanisms of oncogenic action of cytokine, evaluate the results of therapeutic strategies aimed at the IL-6 signaling pathway in colorectal cancer and characterize prognostic and diagnostic value of IL-6. Data sources. Data search for review was performed in databases Pubmed, Cochrane Library, ScienceDirect. The results of research performed before May 2021 are analyzed. Relevant unpublished studies have been found in clinical trial registry of U.S. National Institutes of Health www.clinicaltrials.gov. Results. The assessment of diagnostic and prognostic value of IL-6 in patients with CRC is given. The mechanisms of IL-6 regulation of tumor growth, angiogenesis, apoptosis, metastasis in CRC are elucidated. The results of preclinical and clinical testing of monoclonal antibodies to IL-6, IL-6R, low molecular weight compounds that affect cytokine receptor signaling through gp130 and JAK-STAT, as well as drugs and compounds of natural origin, that are able to inhibit IL-6/STAT3 signal pathway, are presented. Conclusions. Strategies to block IL-6 signaling may be potentially useful in malignancies, most likely as a component of combination therapy, or in preventing adverse symptoms associated with cancer immunotherapy. Further research is needed to elucidate the exact role of classical IL-6 signaling and trans-signaling in the pathogenesis of colorectal cancer, as this may provide a basis for more targeted inhibition of the functions of this pleiotropic cytokine.
Collapse
|
8
|
Gu J, Sun R, Wang Q, Liu F, Tang D, Chang X. Standardized Astragalus Mongholicus Bunge- Curcuma Aromatica Salisb. Extract Efficiently Suppresses Colon Cancer Progression Through Gut Microbiota Modification in CT26-Bearing Mice. Front Pharmacol 2021; 12:714322. [PMID: 34531745 PMCID: PMC8438123 DOI: 10.3389/fphar.2021.714322] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Altered gut microbiota and a damaged colon mucosal barrier have been implicated in the development of colon cancer. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. (ACE) is a common herbal drug pair that widely used clinically to treat cancer. However, whether the anti-cancer effect of ACE is related to gut microbiota remains unclear yet. We standardized ACE and investigated the effects of ACE on tumour suppression and analyze the related mechanisms on gut microbiota in CT26 colon cancer-bearing mice in the present study. Firstly, four flavonoids (calycosin-7-glucoside, ononin, calycosin, formononetin) and three astragalosides (astragaloside A, astragaloside II, astragaloside I) riched in Astragalus mongholicus Bunge, three curcumins (bisdemethoxycurcumin, demethoxycurcumin, curcumin) and four essential oils (curdione, curzerene, germacrone and β-elemene) from Curcuma aromatica Salisb., in concentrations from 0.08 to 2.07 mg/g, were examined in ACE. Then the results in vivo studies indicated that ACE inhibited solid tumours, liver and spleen metastases of colon cancer while simultaneously reducing pathological tissue damage. Additionally, ACE regulated gut microbiota dysbiosis and the short chain fatty acid content in the gut, repaired intestinal barrier damage. ACE treatment suppressed the overgrowth of conditional pathogenic gut bacteria, including Escherichia-Shigella, Streptococcus and Enterococcus, while the probiotic gut microbiota like Lactobacillus, Roseburia, Prevotellaceae_UCG-001 and Mucispirillum were increased. More interestingly, the content level of SCFAs such as propionic acid and butyric acid was increased after ACE administration, which further mediates intestinal SDF-1/CXCR4 signalling pathway to repair the integrity of the intestinal barrier, decrease Cyclin D1 and C-myc expressions, eventually suppress the tumor the growth and metastasis of colon cancer. To sum up, the present study demonstrated that ACE could efficiently suppress colon cancer progression through gut microbiota modification, which may provide a new explanation of the mechanism of ACE against colon cancer.
Collapse
Affiliation(s)
- Junfei Gu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruolan Sun
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiaohan Wang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fuyan Liu
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Decai Tang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiangwei Chang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
9
|
The Efficacy of Citrus maxima Peels Aqueous Extract Against Cryptosporidiosis in Immunecompromised Mice. Acta Parasitol 2021; 66:638-653. [PMID: 33471284 DOI: 10.1007/s11686-020-00315-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Cryptosporidiosis is an opportunistic globally distributed parasitic disease caused by protozoan Cryptosporidium where its development is closely related to the host's immune status. New therapeutic agents are a high priority as chemotherapeutics are impractical and vaccines are unavailable for young as well as immune-compromised patients or animals. The current study was designed to evaluate the therapeutic effect of the internal white (albedo) and external yellow (flavedo) peels of Citrus maxima (C. maxima) as an alternative medicinal plant. MATERIALS AND METHODS : Parasitological examination for oocysts in the stool was determined. Histopathological alterations and immunohistochemical expression of APC and cyclin D1 as well as an assessment of interferon-γ (IFN-γ) and interleukin 1β (IL-1β) in ileal tissues was carried out. In addition, the biochemical examination of serum albumin, globulin and liver enzymes were evaluated. Results revealed a significant decrease of oocysts count correlated with an amelioration of histopathological and immunohistochemical changes in ileal tissue with an enhancement of liver enzymes and inflammatory cytokines levels. CONCLUSION It could be concluded that treatment with C. maxima peel extracts have a potential therapeutic and an immunoregulatory efficacy against Cryptosporidiosis. Obtained results showed that the white peel was found to have more immunological effect that could significantly enhance inflammatory cytokines response towards normal status. Hence, it can be used in the daily animal diet to give protective effects against infection.
Collapse
|
10
|
Wang Q, Han J, Xu P, Jian X, Huang X, Liu D. Silencing of LncRNA SNHG16 Downregulates Cyclin D1 (CCND1) to Abrogate Malignant Phenotypes in Oral Squamous Cell Carcinoma (OSCC) Through Upregulating miR-17-5p. Cancer Manag Res 2021; 13:1831-1841. [PMID: 33654431 PMCID: PMC7910113 DOI: 10.2147/cmar.s298236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background Targeting the long non-coding RNAs (LncRNAs)-microRNAs (miRNAs)-mRNA competing endogenous RNA (ceRNA) networks has been proved as an effective strategy to treat multiple cancers, including oral squamous cell carcinoma (OSCC). Based on this, the present study identified a novel LncRNA SNHG16/miR-17-5p/CCND1 signaling pathway that played an important role in regulating the pathogenesis of OSCC. Methods The expression levels of cancer-associated genes were examined by Real-Time qPCR and Western Blot at transcriptional and translated levels, respectively. CCK-8 assay was performed to determine cell proliferation, and cell apoptosis ratio was measured by the Annexin V-FITC/PI double staining assay. Transwell assay was performed to examine cell migration, and dual-luciferase reporter gene system assay was used to validate the ceRNA networks. Results LncRNA SNHG16 and CCND1 were upregulated, while miR-17-5p was downregulated in OSCC tissues and cell lines, compared to their normal counterparts. Also, miR-17-5p negatively correlated with both LncRNA SNHG16 and CCND1 mRNA, but LncRNA SNHG16 was positively relevant to CCND1 mRNA in OSCC tissues. By performing the gain- and loss-of-function experiments, we noticed that LncRNA SNHG16 overexpression aggravated the malignant phenotypes, such as cell proliferation, viability, migration and epithelial-mesenchymal transition (EMT) in OSCC cells, while LncRNA SNHG16 knock-down had opposite effects. Furthermore, our dual-luciferase reporter gene system evidenced that LncRNA SNHG16 sponged miR-17-5p to upregulate CCND1 in OSCC cells, and the inhibiting effects of LncRNA SNHG16 ablation on OSCC progression were abrogated by both downregulating miR-17-5p and overexpressing CCND1. Finally, the xenograft tumor-bearing mice models were established, and our data validated that LncRNA SNHG16 served as an oncogene to promote tumorigenicity of OSCC cells in vivo. Conclusion Taken together, targeting the LncRNA SNHG16/miR-17-5p/CCND1 axis hindered the development of OSCC, and this study provided potential diagnostic and therapeutic biomarkers for OSCC in clinic.
Collapse
Affiliation(s)
- Qiuling Wang
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Jingxin Han
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Pu Xu
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Xinchun Jian
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xieshan Huang
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Deyu Liu
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| |
Collapse
|
11
|
Xin S, Ye X. Knockdown of long non‑coding RNA CCAT2 suppresses the progression of thyroid cancer by inhibiting the Wnt/β‑catenin pathway. Int J Mol Med 2020; 46:2047-2056. [PMID: 33125134 PMCID: PMC7595661 DOI: 10.3892/ijmm.2020.4761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer (TC) is one of the most common malignancies with a high mortality rate. Long non-coding RNA CCAT2 (CCAT2) participates in the occurrence and development of certain human cancers; however, whether it is involved in TC remains unclear. Thus, the present study investigated the role of CCAT2 in TC and the underlying mechanism. CCAT2 expression in both TC tissues and cell lines was examined by reverse transcription-quantitative PCR. CCAT2 expression was silenced in TC cell lines by a specific small interfering (si)RNA against CCAT2 (si-CCAT2). The effects of CCAT2 silencing on TC cell proliferation were detected by CCK-8 and colony formation assays. Cell cycle and apoptosis of the treated TC cells were assessed by flow cytometry. Wound healing and Transwell assays were performed to detect the effects of si-CCAT2 on the migration and invasion of TC cells. Apoptosis-related proteins and Wnt/β-catenin cascade-associated agents were examined by western blotting. The interaction between CCAT2 and the Wnt/β-catenin pathway in the transfected cells was detected by performing a dual-luciferase reporter assay. CCAT2 expression was increased in TC tissue samples and cell lines compared with the controls. Tissue CCAT2 level was associated with T stage and tumor-node-metastasis stage of TC. Silencing CCAT2 inhibited TC cell proliferation, migration and invasion, and promoted TC cell cycle arrest and apoptosis. Furthermore, CCAT2 knockdown suppressed the activity of the Wnt/β-catenin cascade in TC cells treated with lithium chloride. In summary, the present study demonstrated that CCAT2 knockdown suppresses TC progression via inactivating the Wnt/β-catenin cascade, indicating that suppressing CCAT2 and the Wnt/β-catenin signaling pathway may be a promising therapeutic strategy for treating TC.
Collapse
Affiliation(s)
- Suping Xin
- Department of Endocrinology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Xinhua Ye
- Department of Endocrinology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
12
|
Liu Y, Liu Q, Wang Z, Chen M, Chen Y, Li X, Huang D, Fan S, Xiong W, Li G, Zhang W. Upregulation of cyclin D1 can act as an independent prognostic marker for longer survival time in human nasopharyngeal carcinoma. J Clin Lab Anal 2020; 34:e23298. [PMID: 32697404 PMCID: PMC7439355 DOI: 10.1002/jcla.23298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/14/2023] Open
Abstract
Background Cyclin D1 is an essential part of oncogenic transformation. We previously proved that cyclin D1 was upregulated in nasopharyngeal carcinoma (NPC) and promoted the NPC cell proliferation. But the association between cyclin D1 and the clinical outcome of NPC has not yet been determined. The study explores the possible relevance between the cyclin D1 expression and clinical parameters and its predictive value of prognosis in NPC patients. Methods We analyzed the clinical data from 379 NPC patients and 112 non‐NPC patients in our previous study, which made further statistics. Receiver operating curve (ROC) was applied to select the optimal cutoff points. By analyzing the clinical data from 101 NPC patients using Chi‐squared test, we estimated the relationship between the cyclin D1 expression level and clinicopathological parameters. We also used Kaplan‐Meier method and log‐rank test assess and compared the disease‐free survival (DFS) rate and overall survival (OS) rate. The Cox proportional hazards model was adopted to perform the univariate and multivariate analyses. Result Receiver operating curve analysis reported that cyclin D1 was used to differentiate between NPC patients and non‐NPC patients (P < .001, sensitivity: 53.6%, specificity: 85.7%, AUC = 0.752). Cyclin D1 was positively correlated with lymph node metastasis (P = .015). A survival analysis of the 101 NPC patients indicated that the positive expression of cyclin D1 was predictive of a good prognosis (DFS: P = .010, OS: P = .019). Multivariate analysis showed that cyclin D1 could be used independently to predict NPC patients' prognosis (DFS: P = .038). Conclusion The overexpression of cyclin D1 is a good prognostic marker for NPC.
Collapse
Affiliation(s)
- Yijun Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meilin Chen
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi Chen
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Donghai Huang
- Xiangya Hospital, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|