1
|
Huang R, Worrell J, Garner E, Wang S, Homsey T, Xu B, Galer EL, Zhou Y, Tavakol S, Daneshvar M, Le T, Vinters HV, Salamon N, McArthur DL, Nuwer MR, Wu I, Leiter JC, Lu DC. Epidural electrical stimulation of the cervical spinal cord opposes opioid-induced respiratory depression. J Physiol 2022; 600:2973-2999. [PMID: 35639046 DOI: 10.1113/jp282664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/25/2022] [Indexed: 02/02/2023] Open
Abstract
Opioid overdose suppresses brainstem respiratory circuits, causes apnoea and may result in death. Epidural electrical stimulation (EES) at the cervical spinal cord facilitated motor activity in rodents and humans, and we hypothesized that EES of the cervical spinal cord could antagonize opioid-induced respiratory depression in humans. Eighteen patients requiring surgical access to the dorsal surface of the spinal cord between C2 and C7 received EES or sham stimulation for up to 90 s at 5 or 30 Hz during complete (OFF-State) or partial suppression (ON-State) of respiration induced by remifentanil. During the ON-State, 30 Hz EES at C4 and 5 Hz EES at C3/4 increased tidal volume and decreased the end-tidal carbon dioxide level compared to pre-stimulation control levels. EES of 5 Hz at C5 and C7 increased respiratory frequency compared to pre-stimulation control levels. In the OFF-State, 30 Hz cervical EES at C3/4 terminated apnoea and induced rhythmic breathing. In cadaveric tissue obtained from a brain bank, more neurons expressed both the neurokinin 1 receptor (NK1R) and somatostatin (SST) in the cervical spinal levels responsive to EES (C3/4, C6 and C7) compared to a region non-responsive to EES (C2). Thus, the capacity of cervical EES to oppose opioid depression of respiration may be mediated by NK1R+/SST+ neurons in the dorsal cervical spinal cord. This study provides proof of principle that cervical EES may provide a novel therapeutic approach to augment respiratory activity when the neural function of the central respiratory circuits is compromised by opioids or other pathological conditions. KEY POINTS: Epidural electrical stimulation (EES) using an implanted spinal cord stimulator (SCS) is an FDA-approved method to manage chronic pain. We tested the hypothesis that cervical EES facilitates respiration during administration of opioids in 18 human subjects who were treated with low-dose remifentanil that suppressed respiration (ON-State) or high-dose remifentanil that completely inhibited breathing (OFF-State) during the course of cervical surgery. Dorsal cervical EES of the spinal cord augmented the respiratory tidal volume or increased the respiratory frequency, and the response to EES varied as a function of the stimulation frequency (5 or 30 Hz) and the cervical level stimulated (C2-C7). Short, continuous cervical EES restored a cyclic breathing pattern (eupnoea) in the OFF-State, suggesting that cervical EES reversed the opioid-induced respiratory depression. These findings add to our understanding of respiratory pattern modulation and suggest a novel mechanism to oppose the respiratory depression caused by opioids.
Collapse
Affiliation(s)
- Ruyi Huang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Interdepartmental Program in Neuroscience, University of California, Los Angeles, CA, USA
| | - Jason Worrell
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eric Garner
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephanie Wang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tali Homsey
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Bo Xu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Erika L Galer
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Molecular, Cellular, Integrated Physiology Program, University of California, Los Angeles, CA, USA
| | - Yan Zhou
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sherwin Tavakol
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Meelod Daneshvar
- University of California Fresno, Department of Surgery, Fresno, CA, USA
| | - Timothy Le
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David L McArthur
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Marc R Nuwer
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Irene Wu
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine, Lebanon, NH, USA
| | - Daniel C Lu
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Neuromotor Recovery and Rehabilitation Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Interdepartmental Program in Neuroscience, University of California, Los Angeles, CA, USA.,Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Kiang L, Woodington B, Carnicer-Lombarte A, Malliaras G, Barone DG. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. J Neural Eng 2022; 19. [PMID: 35320780 DOI: 10.1088/1741-2552/ac605f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Bioelectronic stimulation of the spinal cord has demonstrated significant progress in restoration of motor function in spinal cord injury (SCI). The proximal, uninjured spinal cord presents a viable target for the recording and generation of control signals to drive targeted stimulation. Signals have been directly recorded from the spinal cord in behaving animals and correlated with limb kinematics. Advances in flexible materials, electrode impedance and signal analysis will allow SCR to be used in next-generation neuroprosthetics. In this review, we summarize the technological advances enabling progress in SCR and describe systematically the clinical challenges facing spinal cord bioelectronic interfaces and potential solutions, from device manufacture, surgical implantation to chronic effects of foreign body reaction and stress-strain mismatches between electrodes and neural tissue. Finally, we establish our vision of bi-directional closed-loop spinal cord bioelectronic bypass interfaces that enable the communication of disrupted sensory signals and restoration of motor function in SCI.
Collapse
Affiliation(s)
- Lei Kiang
- Orthopaedic Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore, 169608, SINGAPORE
| | - Ben Woodington
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Alejandro Carnicer-Lombarte
- Clinical Neurosciences, University of Cambridge, Bioelectronics Laboratory, Cambridge, CB2 0PY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - George Malliaras
- University of Cambridge, University of Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Damiano G Barone
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|