1
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Astaxanthin promotes M2 macrophages and attenuates cardiac remodeling after myocardial infarction by suppression inflammation in rats. Chin Med J (Engl) 2021; 133:1786-1797. [PMID: 32701588 PMCID: PMC7470000 DOI: 10.1097/cm9.0000000000000814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Cardiac remodeling after acute myocardial infarction (AMI) is an important process. The present study aimed to assess the protective effects of astaxanthin (ASX) on cardiac remodeling after AMI. Methods The study was conducted between April and September 2018. To create a rat AMI model, rats were anesthetized, and the left anterior descending coronary artery was ligated. The rats in the ASX group received 10 mg·kg−1·day−1 ASX by gavage for 28 days. On the 1st day after AMI, but before ASX administration, six rats from each group were sacrificed to evaluate changes in the heart function and peripheral blood (PB) levels of inflammatory factors. On the 7th day after AMI, eight rats from each group were sacrificed to evaluate the PB levels of inflammatory factors and the M2 macrophage count using both immunofluorescence (IF) and flow cytometry (FC). The remaining rats were observed for 28 days. Cardiac function was examined using echocardiography. The inflammatory factors, namely, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10, were assessed using enzyme-linked immunosorbent assay. The heart weight/body weight (BW), and lung weight (LW)/BW ratios were calculated, and myocardial fibrosis in the form of collagen volume fraction was measured using Masson trichrome staining. Hematoxylin and eosin (H&E) staining was used to determine the myocardial infarct size (MIS), and TdT-mediated dUTP nick-end labeling staining was used to analyze the myocardial apoptosis index. The levels of apoptosis-related protein, type I/III collagen, transforming growth factor β1 (TGF-β1), metalloproteinase 9 (MMP9), and caspase 3 were assessed by Western blotting. Unpaired t-test, one-way analysis of variance, and non-parametric Mann-Whitney test were used to analyze the data. Results On day 1, cardiac function was worse in the ASX group than in the sham group (left ventricular end-systolic diameter [LVIDs]: 0.72 ± 0.08 vs. 0.22 ± 0.06 cm, t = −11.38; left ventricular end-diastolic diameter [LVIDd]: 0.89 ± 0.09 vs. 0.48 ± 0.05 cm, t = −9.42; end-systolic volume [ESV]: 0.80 [0.62, 0.94] vs. 0.04 [0.03, 0.05] mL, Z = −2.89; end-diastolic volume [EDV]: 1.39 [1.03, 1.49] vs. 0.28 [0.22, 0.32] mL, Z = −2.88; ejection fraction [EF]: 0.40 ± 0.04 vs. 0.86 ± 0.05, t = 10.00; left ventricular fractional shortening [FS] rate: 0.19 [0.18, 0.20] %FS vs. 0.51 [0.44, 0.58] %FS, Z = −2.88, all P < 0.01; n = 6). The levels of inflammatory factors significantly increased (TNF-α: 197.60 [133.89, 237.94] vs. 50.48 [47.21 57.10] pg/mL, Z = −2.88; IL-1β: 175.23 [160.74, 215.09] vs. 17.78 [16.83, 19.56] pg/mL, Z = −2.88; IL-10: 67.64 [58.90, 71.46] vs. 12.33 [11.64, 13.98] pg/mL, Z = −2.88, all P < 0.01; n = 6). On day 7, the levels of TNF-α and IL-1β were markedly lower in the ASX group than in the AMI group (TNF-α: 71.70 [68.60, 76.00] vs. 118.07 [106.92, 169.08] pg/mL, F = 42.64; IL-1β: 59.90 [50.83, 73.78] vs. 151.60 [108.4, 198.36] pg/mL, F = 44.35, all P < 0.01, n = 8). Conversely, IL-10 levels significantly increased (141.84 [118.98, 158.36] vs. 52.96 [42.68, 74.52] pg/mL, F = 126.67, P < 0.01, n = 8). The M2 macrophage count significantly increased (2891.42 ± 211.29 vs. 1583.38 ± 162.22, F = 274.35, P < 0.01 by immunofluorescence test; 0.96 ± 0.18 vs. 0.36 ± 0.05, F = 46.24, P < 0.05 by flowcytometry test). On day 28, cardiac function was better in the ASX group than in the AMI group (LVIDs: 0.50 [0.41, 0.56] vs. 0.64 [0.56, 0.74] cm, Z = −3.60; LVIDd: 0.70 [0.60, 0.76] vs. 0.80 [0.74 0.88] cm, Z = −2.96; ESV: 0.24 [0.18, 0.45] vs. 0.58 [0.44, 0.89] mL, Z = −3.62; EDV: 0.76 [0.44, 1.04] vs. 1.25 [0.82, 1.46] mL, Z = −2.54; EF: 0.60 ± 0.08 vs. 0.50 ± 0.12, F = 160.48; %FS: 0.29 [0.24, 0.31] vs. 0.20 [0.17, 0.21], Z = −4.43, all P < 0.01; n = 16). The MIS and LW/BW ratio were markedly lower in the ASX group than in the AMI group (myocardial infarct size: 32.50 ± 1.37 vs. 50.90 ± 1.73, t = 23.63, P < 0.01, n = 8; LW/BW: 1.81 ± 0.15 vs. 2.17 ± 0.37, t = 3.66, P = 0.01, n = 16). The CVF was significantly lower in the ASX group than in the AMI group: 12.88 ± 2.53 vs. 28.92 ± 3.31, t = 10.89, P < 0.01, n = 8. The expression of caspase 3, TGF-β1, MMP9, and type I/III collagen was lower in the ASX group than in the AMI group (caspase 3: 0.38 ± 0.06 vs. 0.66 ± 0.04, t = 8.28; TGF-β1: 0.37 ± 0.04 vs. 0.62 ± 0.07, t = 6.39; MMP9: 0.20 ± 0.06 vs. 0.40 ± 0.06, t = 4.62; type I collagen: 0.42 ± 0.09 vs. 0.74 ± 0.07, t = 5.73; type III collagen: 0.13 ± 0.02 vs. 0.74 ± 0.07, t = 4.32, all P < 0.01; n = 4). Conclusions ASX treatment after AMI may promote M2 macrophages and effectively attenuate cardiac remodeling by inhibiting inflammation and reducing myocardial fibrosis.
Collapse
|
3
|
Fu JY, Jing Y, Xiao YP, Wang XH, Guo YW, Zhu YJ. Astaxanthin inhibiting oxidative stress damage of placental trophoblast cells in vitro. Syst Biol Reprod Med 2020; 67:79-88. [PMID: 33103484 DOI: 10.1080/19396368.2020.1824031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress from the trophoblasts is one of the possible pathological mechanisms of Preeclampsia (PE). This study aimed at exploring the potential effects of astaxanthin (ATX) on oxidative stress damaged placental trophoblast cell line HTR-8/SVneo. Oxidative stress-induced damaged through H2O2 treatment was checked by MTS CellTiter 96® cell viability, 2',7'-dichlorofluorescein diacetate (DCFH-DA) induced fluorescence, the level of the intracellular malondialdehyde (MDA), and the detection of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT). Different concentrations of ATX were applied, and then the proliferation rate, apoptotic percentage, cell cycle distribution, invasion test and relative biological function of the rescued cells were followed. We provide evidence that ATX had an anti-oxidative effect against oxidative stress induced by H2O2 on the trophoblast cell line and had beneficial role in promoting cell proliferation, inhibiting cell apoptosis, and inducing cell invasion.Abbreviations: UV: ultraviolet; DCFH-DA: 2',7'-dichlorofluorescein diacetate; EVT: extravillous trophoblast; MMPs: matrix metalloproteinases; IUGR: intrauterine growth restriction.
Collapse
Affiliation(s)
- Jiu-Yuan Fu
- Department of Obstetrics, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Yang Jing
- Department of Vascular Surgery, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Yan-Ping Xiao
- Department of Obstetrics, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Xiao-Hua Wang
- Department of Gynecology, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Yan-Wei Guo
- Department of Obstetrics, Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Yan-Ju Zhu
- Department of Obstetrics, Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
4
|
Zhao Y, Li J, Dai M, Dong P, Liang X, Komiyama M. Discriminative Preparation of Stable H- or J-Aggregates of Astaxanthin in Waterborne Chitosan/DNA Nanoparticles. CHEM LETT 2019. [DOI: 10.1246/cl.180940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yingyuan Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Mingqin Dai
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, P. R. China
| | - Makoto Komiyama
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| |
Collapse
|
5
|
Gao D, Wang H, Xu Y, Zheng D, Zhang Q, Li W. Protective effect of astaxanthin against contrast-induced acute kidney injury via SIRT1-p53 pathway in rats. Int Urol Nephrol 2018; 51:351-358. [PMID: 30456546 DOI: 10.1007/s11255-018-2027-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/03/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE The present study was designed to further investigate the protective effect of astaxanthin (AST) on contrast-induced acute kidney injury (CI-AKI) in rats and the relationship between SIRT1-p53 pathway and astaxanthin. METHODS 40 adult male Sprague Dawley (SD) rats were randomly divided into five groups (n = 8/group): control (CON), normal rats treated with AST (AST), CM-treated (CM), CM rats treated with isoform of nitric oxide synthase (iNOS) inhibitor (iNOS + CM), and CM rats treated with AST (AST + CM). Serum creatinine (Scr) and blood urea nitrogen (BUN) values were measured at 72 h following the procedure. Hematoxylin and eosin (H-E) staining was used to observe the pathologic changes of kidney. Tunel staining was used to test apoptosis of kidney tubules. Oxidative stress, SIRT1 activity, nitric oxide (NO), and 3-nitrotyrosine (3-NT) content were individually measured with the commercial available kits. RESULTS Compared with the CON group, Scr and BUN levels significantly increased in the CM group (P < 0.05), and the values in two pre-treatment groups (iNOS + CM and AST + CM) had significantly decreased (P < 0.05). H-E and Tunel staining had shown that renal tubular injury was severe in CM group. The renal injury score and apoptosis index in the two pre-treatment groups also decreased (P < 0.05). The present study showed that in CM group the levels of oxidative stress indicators significantly increased, and the activities of antioxidant stress indicators significantly decreased. These indicators in two pre-treatment groups significantly improved (P < 0.05). In the CM group the expression levels of SITR1 significantly increased, and the ac-p53/p53 significantly increased (P < 0.05). Compared with the CM group, in AST + CM group the expression levels of SIRT1 increased, the expression levels of p53 and ac-p53/p53 decreased (P < 0.05).The levels of NO and 3-NT in CM group significantly increased (P < 0.05). Compared the CM group, the levels in the two pre-treatment groups significantly decreased (P < 0.05). CONCLUSIONS Astaxanthin has a protective effect on CI-AKI, the mechanism may be related to the SIRT1-p53 pathway. Astaxanthin can reduce the content of NO and 3-NT in renal tissue of CI-AKI, and alleviate the renal injury induced by contrast agents.
Collapse
Affiliation(s)
- Dongmei Gao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Hu Wang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yang Xu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Di Zheng
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, 221002, Jiangsu, China
| | - Quan Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, 221002, Jiangsu, China
| | - Wenhua Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
6
|
Sakai S, Nishida A, Ohno M, Inatomi O, Bamba S, Sugimoto M, Kawahara M, Andoh A. Astaxanthin, a xanthophyll carotenoid, prevents development of dextran sulphate sodium-induced murine colitis. J Clin Biochem Nutr 2018; 64:66-72. [PMID: 30705514 PMCID: PMC6348411 DOI: 10.3164/jcbn.18-47] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin is a xanthophyll carotenoid, which possesses strong scavenging effect on reactive oxygen species. In this study, we examined the effect of astaxanthin on dextran sulfate sodium (DSS)-induced colitis in mice. Experimental colitis was induced by the oral administration of 4% w/v DSS in tap water in C57BL/6J mice. Astaxanthin was mixed with a normal rodent diet (0.02 or 0.04%). Astaxanthin significantly ameliorated DSS-induced body weight loss and reduced the disease activity index. The ameliorating effects was observed in a dose-dependent manner. Immunochemical analyses showed that astaxanthin markedly suppressed DSS-induced histological inflammatory changes (inflammatory cell infiltration, edematous changes and goblet cell depletion). Plasma levels of malondialdehyde and 8-hydroxy-2-deoxyguanosine were significantly reduced by the administration of 0.04% astaxanthin. Astaxanthin significantly suppressed the mucosal mRNA expression of IL-1β, IL-6, TNF-α, IL-36α and IL-36γ. Astaxanthin blocked the DSS-induced translocation of NF-κB p65 and AP-1 (c-Jun) into the nucleus of mucosal epithelial cells, and also suppressed DSS-induced mucosal activation of MAPKs (ERK1/2, p38 and JNK). In conclusion, astaxanthin prevented the development of DSS-induced colitis via the direct suppression of NF-κB, AP-1 and MAPK activation. These findings suggest that astaxanthin is a novel candidate as a therapeutic option for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Shigeki Sakai
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Masashi Ohno
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Osamu Inatomi
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Shigeki Bamba
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Mitsushige Sugimoto
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Masahiro Kawahara
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| | - Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| |
Collapse
|
7
|
Hwang YH, Hong SG, Mun SK, Kim SJ, Lee SJ, Kim JJ, Kang KY, Yee ST. The Protective Effects of Astaxanthin on the OVA-Induced Asthma Mice Model. Molecules 2017; 22:molecules22112019. [PMID: 29160801 PMCID: PMC6150233 DOI: 10.3390/molecules22112019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 01/10/2023] Open
Abstract
Although astaxanthin has a variety of biological activities such as anti-oxidant effects, inhibitory effects on skin deterioration and anti-inflammatory effects, its effect on asthma has not been studied. In this paper, the inhibitory effect of astaxanthin on airway inflammation in a mouse model of ovalbumin (OVA)-induced asthma was investigated. We evaluated the number of total cells, Th1/2 mediated inflammatory cytokines in bronchoalveolar lavage fluid (BALF) and airway hyperresponsiveness as well as histological structure. The level of total IgE, IgG1, IgG2a, OVA-specific IgG1, and OVA-specific IgG2a were also examined. The oral administration of 50 mg/mL astaxanthin inhibited the respiratory system resistance, elastance, newtonian resistance, tissue damping, and tissue elastance. Also, astaxanthin suppressed the total cell number, IL-4, and IL-5, and increased the IFN-γ in the BALF. In the sera, total IgE, IgG1, and OVA-specific IgG1 were reduced by astaxanthin exposure and IgG2a and OVA-specific IgG2a were enhanced via oral administration of astaxanthin. Infiltration of inflammatory cells in the lung, production of mucus, lung fibrosis, and expression of caspase-1 or caspase-3 were suppressed in OVA-induced asthmatic animal treated with astaxanthin. These results suggest that astaxanthin may have therapeutic potential for treating asthma via inhibiting Th2-mediated cytokine and enhancing Th1-mediated cytokine.
Collapse
Affiliation(s)
- Yun-Ho Hwang
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea; (Y.-H.H.); (S.-G.H.); (S.-K.M.); (S.-J.K.); (S.-J.L.)
| | - Seong-Gyeol Hong
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea; (Y.-H.H.); (S.-G.H.); (S.-K.M.); (S.-J.K.); (S.-J.L.)
| | - Seul-Ki Mun
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea; (Y.-H.H.); (S.-G.H.); (S.-K.M.); (S.-J.K.); (S.-J.L.)
| | - Su-Jin Kim
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea; (Y.-H.H.); (S.-G.H.); (S.-K.M.); (S.-J.K.); (S.-J.L.)
| | - Sung-Ju Lee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea; (Y.-H.H.); (S.-G.H.); (S.-K.M.); (S.-J.K.); (S.-J.L.)
| | - Jong-Jin Kim
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, No. 02-02 Helios, Singapore 138667, Singapore;
| | - Kyung-Yun Kang
- Suncheon Research Center for Natural Medicines, Suncheon 540-950, Korea;
| | - Sung-Tae Yee
- College of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon 540-950, Korea; (Y.-H.H.); (S.-G.H.); (S.-K.M.); (S.-J.K.); (S.-J.L.)
- Correspondence: ; Tel.: +82-61-750-3752; Fax: +82-61-750-3708
| |
Collapse
|