1
|
Erens C, Van Broeckhoven J, Bronckaers A, Lemmens S, Hendrix S. The Dark Side of an Essential Amino Acid: L-Arginine in Spinal Cord Injury. J Neurotrauma 2023; 40:820-832. [PMID: 36503258 DOI: 10.1089/neu.2022.0271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
L-arginine is a semi-essential amino acid involved in a variety of physiological processes in the central nervous system (CNS). It is essential in the survival and functionality of neuronal cells. Nonetheless, L-arginine also has a dark side; it potentiates neuroinflammation and nitric oxide (NO) production, leading to secondary damage. Therefore, modulating the L-arginine metabolism is challenging because both detrimental and beneficial effects are dependent on this semi-essential amino acid. After spinal cord injury (SCI), L-arginine plays a crucial role in trauma-induced neuroinflammation and regenerative processes via the two key enzymes: nitric oxide synthase (NOS) and arginase (ARG). Studies on L-arginine metabolism using ARG and NOS inhibitors highlighted the conflicting role of this semi-essential amino acid. Similarly, L-arginine supplementation resulted in both negative and positive outcomes after SCI. However, new data indicate that arginine depletion substantially improves spinal cord regeneration after injury. Here, we review the challenging characteristics of L-arginine metabolism as a therapeutic target after SCI.
Collapse
Affiliation(s)
- Céline Erens
- Department of Immunology and Infection, Hasselt University, Biomedical Research Institute BIOMED, Diepenbeek, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Hasselt University, Biomedical Research Institute BIOMED, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Department of Cardio and Organ Systems, Hasselt University, Biomedical Research Institute BIOMED, Diepenbeek, Belgium
| | - Stefanie Lemmens
- Department of Immunology and Infection, Hasselt University, Biomedical Research Institute BIOMED, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Immunology and Infection, Hasselt University, Biomedical Research Institute BIOMED, Diepenbeek, Belgium.,Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24032528. [PMID: 36768846 PMCID: PMC9917245 DOI: 10.3390/ijms24032528] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically, with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in preclinical research and clinical trials. In the near future, several more are expected to come down the translational pipeline. Among ongoing and completed trials are those reporting the use of biomaterial scaffolds. The advancements in biomaterial technology, combined with stem cell therapy or other regenerative therapy, can now accelerate the progress of promising novel therapeutic strategies from bench to bedside. Various types of approaches to regeneration therapy for SCI have been combined with the use of supportive biomaterial scaffolds as a drug and cell delivery system to facilitate favorable cell-material interactions and the supportive effect of neuroprotection. In this review, we summarize some of the most recent insights of preclinical and clinical studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the biomaterial strategies for treatment with simplified results data. One hundred and sixty-eight articles were selected in the present review, in which we focused on biomaterial scaffolds. We conducted our search of articles using PubMed and Medline, a medical database. We used a combination of "Spinal cord injury" and ["Biomaterial", or "Scaffold"] as search terms and searched articles published up until 30 April 2022. Successful future therapies will require these biomaterial scaffolds and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, the loss of a structural framework, and biocompatibility. This database could serve as a benchmark to progress in future clinical trials for SCI using biomaterial scaffolds.
Collapse
|
3
|
Erens C, Van Broeckhoven J, Hoeks C, Schabbauer G, Cheng PN, Chen L, Hellings N, Broux B, Lemmens S, Hendrix S. L-Arginine Depletion Improves Spinal Cord Injury via Immunomodulation and Nitric Oxide Reduction. Biomedicines 2022; 10:biomedicines10020205. [PMID: 35203413 PMCID: PMC8869469 DOI: 10.3390/biomedicines10020205] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Spinal cord injury (SCI) elicits robust neuroinflammation that eventually exacerbates the initial damage to the spinal cord. L-arginine is critical for the responsiveness of T cells, which are important contributors to neuroinflammation after SCI. Furthermore, L-arginine is the substrate for nitric oxide (NO) production, which is a known inducer of secondary damage. Methods: To accomplish systemic L-arginine depletion, repetitive injections of recombinant arginase-1 (rArg-I) were performed. Functional recovery and histopathological parameters were analyzed. Splenic immune responses were evaluated by flow cytometry. Pro-inflammatory gene expression and nitrite concentrations were measured. Results: We show for the first time that systemic L-arginine depletion improves locomotor recovery. Flow cytometry and immunohistological analysis showed that intraspinal T-cell infiltration was reduced by 65%, and peripheral numbers of Th1 and Th17 cells were suppressed. Moreover, rArg-I treatment reduced the intraspinal NO production by 40%. Histopathological analyses revealed a 37% and 36% decrease in the number of apoptotic neurons and neuron-macrophage/microglia contacts in the spinal cord, respectively. Conclusions: Targeting detrimental T-cell responses and NO-production via rArg-I led to a reduced neuronal cell death and an improved functional recovery. These findings indicate that L-arginine depletion holds promise as a therapeutic strategy after SCI.
Collapse
Affiliation(s)
- Céline Erens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Cindy Hoeks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Centre of Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Paul N. Cheng
- Department Research and Development, Bio-Cancer Treatment International Limited, Hong Kong 999077, China; (P.N.C.); (L.C.)
| | - Li Chen
- Department Research and Development, Bio-Cancer Treatment International Limited, Hong Kong 999077, China; (P.N.C.); (L.C.)
| | - Niels Hellings
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Bieke Broux
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Stefanie Lemmens
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (C.E.); (J.V.B.); (C.H.); (N.H.); (B.B.); (S.L.)
- Institute for Translational Medicine, Medical School Hamburg, 20457 Hamburg, Germany
- Correspondence:
| |
Collapse
|
4
|
Hannemann J, Rendant-Gantzberg L, Zummack J, Hillig J, Eilermann I, Böger R. Single Nucleotide Polymorphisms in the Arginase 1 and 2 Genes Are Differentially Associated with Circulating l-Arginine Concentration in Unsupplemented and l-Arginine-Supplemented Adults. J Nutr 2021; 151:763-771. [PMID: 33232463 DOI: 10.1093/jn/nxaa325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Genetic variation in arginase may underlie variability in whole blood l-arginine concentrations in unsupplemented and l-arginine-supplemented adults. OBJECTIVES We aimed to study whether single nucleotide polymorphisms (SNPs) in the arginase 1 (ARG1) and arginase 2 (ARG2) genes are associated with blood l-arginine concentrations in unsupplemented and l-arginine-supplemented individuals. METHODS In 374 adults (mean ± SD age: 59.6 ± 14.6 y; 180 males), we analyzed SNPs in the ARG1 (rs2246012 and rs2781667) and ARG2 genes (rs3742879 and rs2759757) and their associations with blood l-arginine concentrations. We analyzed associations of haplotypes for the ARG1 gene and for the ARG1 and ARG2 genes combined with blood l-arginine concentrations in supplement users and unsupplemented participants. RESULTS Of study participants, 120 had low (<42 μmol/L), 133 had medium (42-114 μmol/L), and 121 had high blood l-arginine concentrations (>114 μmol/L); 58 individuals were current l-arginine supplement users. We found a significantly higher prevalence of the minor allele of ARG1 rs2246012 in supplement users with higher blood l-arginine concentrations (P = 0.03). Mean ± SEM l-arginine concentration was 263 ± 9.76 μmol/L in supplement users homozygous for the minor allele of ARG1 rs2246012 (P = 0.004); it was 70.4 ± 25.6 μmol/L in unsupplemented participants homozygous for the minor allele of ARG2 rs3759757 (P = 0.03). The ARG1 haplotype was significantly associated with blood l-arginine concentrations in supplement users (P = 0.046), whereas the combined ARG1/ARG2 haplotype was significantly associated with blood l-arginine concentrations in the cohort as a whole (P = 0.012). CONCLUSIONS Genetic variability in the ARG1 and ARG2 genes is associated with blood l-arginine concentrations in humans: ARG1 is associated with blood l-arginine concentrations in l-arginine supplement users, whereas ARG2 is associated with blood l-arginine concentrations in unsupplemented participants. Our study is the first to describe a possible functional relation between ARG1 and ARG2 SNPs and blood l-arginine concentrations; genetic variability in ARG1 may explain variation in blood l-arginine concentrations during supplement use and discrepant study results.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonard Rendant-Gantzberg
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Zummack
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Hillig
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ina Eilermann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Butylphthalide has an Anti-Inflammatory Role in Spinal Cord Injury by Promoting Macrophage/Microglia M2 Polarization via p38 Phosphorylation. Spine (Phila Pa 1976) 2020; 45:E1066-E1076. [PMID: 32205688 DOI: 10.1097/brs.0000000000003503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental animal study of treatment of spinal cord injury (SCI). OBJECTIVE This report aims to evaluate the in vivo effects of butylphthalide NBP on SCI biology and to explore its potential mechanism. SUMMARY OF BACKGROUND DATA SCI causes great damage to humans. The inflammatory and reconstructive processes after SCI is regulated by activation of astroglial and microglial cells. Activated microglia/macrophages can be divided into M2 (anti-inflammatory) and M1 (pro-inflammatory) phenotypes. Butylphthalide (3-n-butylphthalide or NBP) treatment can significantly alleviate ischemic brain damage, and further study has confirmed that central neuroprotective effects can be realized by converting M1 polarized microglia/macrophages to the M2 phenotype. Thus far, it remains unknown whether NBP can modulate the transition of macrophages/microglia between the M1 and M2 phenotypes. METHODS We randomly divided male mice into three groups (sham group, SCI group, SCI+ NBP group). Molecular and histological tests were performed to detect the macrophage/microglia polarization as well as the potential mechanism of NBP in vivo and in vitro. RESULT It was found that NBP treatment significantly attenuated the motor dysfunction and neuronal apoptosis induced by SCI. Treatment with NBP could also reduce pro-inflammatory cytokine release after SCI and could facilitate macrophage/microglia M2 polarization and inhibit M1 polarization after SCI. To verify the findings in animal experiments, we examined the effect of NBP on BV2 cell polarization, the results showed that NBP treatment could enhance M2 polarization and inhibit M1 polarization, and that M2 polarization occurred in a p38-dependent manner. CONCLUSION NBP plays an important role in the anti-inflammatory response in SCI via the facilitation of macrophage/microglia M2 polarization as well as the inhibition of macrophage/microglia M1 polarization. The M2 polarization of macrophages/microglia occurs via activation of p38 pathway. LEVEL OF EVIDENCE 3.
Collapse
|
6
|
Wu Y, Streijger F, Wang Y, Lin G, Christie S, Mac-Thiong JM, Parent S, Bailey CS, Paquette S, Boyd MC, Ailon T, Street J, Fisher CG, Dvorak MF, Kwon BK, Li L. Parallel Metabolomic Profiling of Cerebrospinal Fluid and Serum for Identifying Biomarkers of Injury Severity after Acute Human Spinal Cord Injury. Sci Rep 2016; 6:38718. [PMID: 27966539 PMCID: PMC5155264 DOI: 10.1038/srep38718] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/10/2016] [Indexed: 12/28/2022] Open
Abstract
Suffering an acute spinal cord injury (SCI) can result in catastrophic physical and emotional loss. Efforts to translate novel therapies in acute clinical trials are impeded by the SCI community's singular dependence upon functional outcome measures. Therefore, a compelling rationale exists to establish neurochemical biomarkers for the objective classification of injury severity. In this study, CSF and serum samples were obtained at 3 time points (~24, 48, and 72 hours post-injury) from 30 acute SCI patients (10 AIS A, 12 AIS B, and 8 AIS C). A differential chemical isotope labeling liquid chromatography mass spectrometry (CIL LC-MS) with a universal metabolome standard (UMS) was applied to the metabolomic profiling of these samples. This method provided enhanced detection of the amine- and phenol-containing submetabolome. Metabolic pathway analysis revealed dysregulations in arginine-proline metabolism following SCI. Six CSF metabolites were identified as potential biomarkers of baseline injury severity, and good classification performance (AUC > 0.869) was achieved by using combinations of these metabolites in pair-wise comparisons of AIS A, B and C patients. Using the UMS strategy, the current data set can be expanded to a larger cohort for biomarker validation, as well as discovering biomarkers for predicting neurologic outcome.
Collapse
Affiliation(s)
- Yiman Wu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G2G2, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Yining Wang
- Department of Computing Science, University of Alberta, Edmonton, AB, T6T 2E8, Canada
| | - Guohui Lin
- Department of Computing Science, University of Alberta, Edmonton, AB, T6T 2E8, Canada
| | - Sean Christie
- Division of Neurosurgery, Dalhousie University, Halifax Infirmary, 1796 Summer Street, Halifax, NS, B3H 3A7, Canada
| | - Jean-Marc Mac-Thiong
- Hôpital du Sacré-Coeur de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
| | - Stefan Parent
- Chu Sainte-Justine, Dept. of Surgery, Université de Montréal, PO Box 6128, Station Centre-ville, Montreal, QC, H3C 3J7, Canada
| | - Christopher S Bailey
- Division of Orthopaedic Surgery, Schulich Medicine &Dentistry, Victoria Hospital 800 Commissioners Road East, Room E4 120, London, ON, N6C 5W9, Canada
| | - Scott Paquette
- Division of Neurosurgery, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Michael C Boyd
- Division of Neurosurgery, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Tamir Ailon
- Division of Neurosurgery, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - John Street
- Department of Orthopaedics, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Charles G Fisher
- Department of Orthopaedics, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Marcel F Dvorak
- Department of Orthopaedics, University of British Columbia, Vancouver Spine Surgery Institute, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Blusson Spinal Cord Centre, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G2G2, Canada
| |
Collapse
|
7
|
Ghosh M, Xu Y, Pearse DD. Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. J Neuroinflammation 2016; 13:9. [PMID: 26757726 PMCID: PMC4711034 DOI: 10.1186/s12974-015-0463-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/17/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Microglia and macrophages play a central role in neuroinflammation. Pro-inflammatory cytokines trigger their conversion to a classically activated (M1) phenotype, sustaining inflammation and producing a cytotoxic environment. Conversely, anti-inflammatory cytokines polarize the cells towards an alternatively activated (M2), tissue reparative phenotype. Elucidation of the signal transduction pathways involved in M1 to M2 phenotypic conversion may provide insight into how the innate immune response can be harnessed during distinct phases of disease or injury to mediate neuroprotection and neurorepair. METHODS Microglial cells (cell line and primary) were subjected to combined cyclic adenosine monophosphate (cyclic AMP) and IL-4, or either alone, in the presence of pro-inflammatory mediators, lipopolysaccharide (LPS), or tumor necrosis factor-α (TNF-α). Their effects on the expression of characteristic markers for M1 and M2 microglia were assessed. Similarly, the M1 and M2 phenotypes of microglia and macrophages within the lesion site were then evaluated following a contusive spinal cord injury (SCI) to the thoracic (T8) spinal cord of rats and mice when the agents were administered systemically. RESULTS It was demonstrated that cyclic AMP functions synergistically with IL-4 to promote M1 to M2 conversion of microglia in culture. The combination of cyclic AMP and IL-4, but neither alone, induced an Arg-1(+)/iNOS(-)cell phenotype with concomitant expression of other M2-specific markers including TG2 and RELM-α. M2-converted microglia showed ameliorated production of pro-inflammatory cytokines (TNF-α and IP-10) and reactive oxygen species, with no alteration in phagocytic properties. M2a conversion required protein kinase A (PKA), but not the exchange protein directly activated by cyclic AMP (EPAC). Systemic delivery of cyclic AMP and IL-4 after experimental SCI also promoted a significant M1 to M2a phenotypic change in microglia and macrophage population dynamics in the lesion. CONCLUSIONS Using primary microglia, microglial cell lines, and experimental models of CNS injury, we demonstrate that cyclic AMP levels are a critical determinant in M1-M2 polarization. High levels of cyclic AMP promoted an Arg-1(+) M2a phenotype when microglia were activated with pro-inflammatory stimuli and Th2 cytokines. Th2 cytokines or cyclic AMP independently did not promote these changes. Phenotypic conversion of microglia provides a powerful new therapeutic approach for altering the balance of cytotoxic to reparative microglia in a diversity of neurological diseases and injury.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Yong Xu
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,The Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
8
|
Acute Putrescine Supplementation with Schwann Cell Implantation Improves Sensory and Serotonergic Axon Growth and Functional Recovery in Spinal Cord Injured Rats. Neural Plast 2015; 2015:186385. [PMID: 26550496 PMCID: PMC4621347 DOI: 10.1155/2015/186385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/25/2015] [Accepted: 07/02/2015] [Indexed: 01/29/2023] Open
Abstract
Schwann cell (SC) transplantation exhibits significant potential for spinal cord injury (SCI) repair and its use as a therapeutic modality has now progressed to clinical trials for subacute and chronic human SCI. Although SC implants provide a receptive environment for axonal regrowth and support functional recovery in a number of experimental SCI models, axonal regeneration is largely limited to local systems and the behavioral improvements are modest without additional combinatory approaches. In the current study we investigated whether the concurrent delivery of the polyamine putrescine, started either 30 min or 1 week after SCI, could enhance the efficacy of SCs when implanted subacutely (1 week after injury) into the contused rat spinal cord. Polyamines are ubiquitous organic cations that play an important role in the regulation of the cell cycle, cell division, cytoskeletal organization, and cell differentiation. We show that the combination of putrescine with SCs provides a significant increase in implant size, an enhancement in axonal (sensory and serotonergic) sparing and/or growth, and improved open field locomotion after SCI, as compared to SC implantation alone. These findings demonstrate that polyamine supplementation can augment the effectiveness of SCs when used as a therapeutic approach for subacute SCI repair.
Collapse
|
9
|
Lewis KE, Rasmussen AL, Bennett W, King A, West AK, Chung RS, Chuah MI. Microglia and motor neurons during disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis: changes in arginase1 and inducible nitric oxide synthase. J Neuroinflammation 2014; 11:55. [PMID: 24655927 PMCID: PMC3994340 DOI: 10.1186/1742-2094-11-55] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting the motor system. Although the etiology of the disease is not fully understood, microglial activation and neuroinflammation are thought to play a role in disease progression. METHODS We examined the immunohistochemical expression of two markers of microglial phenotype, the arginine-metabolizing enzymes inducible nitric oxide synthase (iNOS) and arginase1 (Arg1), in the spinal cord of a mouse model carrying an ALS-linked mutant human superoxide dismutase transgene (SOD1(G93A)) and in non-transgenic wild-type (WT) mice. Immunolabeling for iNOS and Arg1 was evaluated throughout disease progression (6 to 25 weeks), and correlated with body weight, stride pattern, wire hang duration and ubiquitin pathology. For microglia and motor neuron counts at each time point, SOD1(G93A) and WT animals were compared using an independent samples t-test. A Welch t-test correction was applied if Levene's test showed that the variance in WT and SOD1G93A measurements was substantially different. RESULTS Disease onset, measured as the earliest change in functional parameters compared to non-transgenic WT mice, occurred at 14 weeks of age in SOD1(G93A) mice. The ventral horn of the SOD1(G93A) spinal cord contained more microglia than WT from 14 weeks onwards. In SOD1(G93A) mice, Arg1-positive and iNOS-positive microglia increased 18-fold and 7-fold, respectively, between 10 and 25 weeks of age (endpoint) in the lumbar spinal cord, while no increase was observed in WT mice. An increasing trend of Arg1- and iNOS-expressing microglia was observed in the cervical spinal cords of SOD1(G93A) mice. Additionally, Arg1-negative motor neurons appeared to selectively decline in the spinal cord of SOD1(G93A) mice, suggesting that Arg1 may have a neuroprotective function. CONCLUSIONS This study suggests that the increase in spinal cord microglia occurs around and after disease onset and is preceded by cellular pathology. The results show that Arg1 and iNOS, thought to have opposing inflammatory properties, are upregulated in microglia during disease progression and that Arg1 in motor neurons may confer protection from disease processes. Further understanding of the neuroinflammatory response, and the Arg1/iNOS balance in motor neurons, may provide suitable therapeutic targets for ALS.
Collapse
Affiliation(s)
- Katherine E Lewis
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Anna L Rasmussen
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - William Bennett
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Anna King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Adrian K West
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Roger S Chung
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
| | - Meng Inn Chuah
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
10
|
Chong KW, Chanalaris A, Burleigh A, Jin H, Watt FE, Saklatvala J, Vincent TL. Fibroblast growth factor 2 drives changes in gene expression following injury to murine cartilage in vitro and in vivo. ACTA ACUST UNITED AC 2013; 65:2346-55. [PMID: 23740825 PMCID: PMC3992838 DOI: 10.1002/art.38039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 05/23/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The articular cartilage is known to be highly mechanosensitive, and a number of mechanosensing mechanisms have been proposed as mediators of the cellular responses to altered mechanical load. These pathways are likely to be important in tissue homeostasis as well as in the pathogenesis of osteoarthritis. One important injury-activated pathway involves the release of pericellular fibroblast growth factor 2 (FGF-2) from the articular cartilage. Using a novel model of murine cartilage injury and surgically destabilized joints in mice, we examined the extent to which FGF-2 contributes to the cellular gene response to injury. METHODS Femoral epiphyses from 5-week-old wild-type mice were avulsed and cultured in serum-free medium. Explant lysates were Western blotted for phospho-JNK, phospho-p38, and phospho-ERK or were fixed for immunohistochemical analysis of the nuclear translocation of p65 (indicative of NF-κB activation). RNA was extracted from injured explants, rested explants that had been stimulated with recombinant FGF-2 or FGF-18, or whole joints from either wild-type mice or FGF-2(-/-) mice. Reverse transcription-polymerase chain reaction was performed to examine a number of inflammatory response genes that had previously been identified in a microarray analysis. RESULTS Murine cartilage avulsion injury resulted in rapid activation of the 3 MAP kinase pathways as well as NF-κB. Almost all genes identified in murine joints following surgical destabilization were also regulated in cartilage explants upon injury. Many of these genes, including those for activin A (Inhba), tumor necrosis factor-stimulated gene 6 (Tnfaip6), matrix metalloproteinase 19 (Mmp19), tissue inhibitor of metalloproteinases 1 (Timp1), and podoplanin (Pdpn), were significantly FGF-2 dependent following injury to cartilage in vitro and to joint tissues in vivo. CONCLUSION FGF-2-dependent gene expression occurs in vitro and in vivo in response to cartilage/joint injury in mice.
Collapse
Affiliation(s)
- Ka-Wing Chong
- Kennedy Institute of Rheumatology and University of Oxford, London, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Alternatively Activated Macrophages in Spinal Cord Injury and Remission: Another Mechanism for Repair? Mol Neurobiol 2013; 47:1011-9. [DOI: 10.1007/s12035-013-8398-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022]
|
12
|
Akazawa Y, Kubo M, Zhang R, Matsumoto K, Yan F, Setiawan H, Takahashi H, Fujikura Y, Ogino K. Inhibition of arginase ameliorates experimental ulcerative colitis in mice. Free Radic Res 2013; 47:137-45. [PMID: 23215832 DOI: 10.3109/10715762.2012.756980] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is produced from the conversion of L-arginine by NO synthase (NOS) and regulates a variety of processes in the gastrointestinal tract. Considering the increased activity of arginase in colitis tissue, it is speculated that arginase could inhibit NO synthesis by competing for the same L-arginine substrate, resulting in the exacerbation of colitis. We examined the role of arginase and its relationship to NO metabolism in dextran sulfate sodium (DSS)-induced colitis. Experimental colitis was induced in mice by administration of 2.5% DSS in drinking water for 8 days. Treatment for arginase inhibition was done by once daily intraperitoneal injection of N(ω)-hydroxy-nor- arginine (nor-NOHA). On day 8, we evaluated clinical parameters (body weight, disease activity index, and colon length), histological features, the activity and expression of arginase, L-arginine content, the expression of NO synthase (NOS), and the concentration of NO end-product (NOx: nitrite + nitrate). Administration of nor-NOHA improved the worsened clinical parameters and histological features in DSS-induced colitis. Treatment with nor-NOHA attenuated the increased activity of arginase, upregulation of arginase Ι at both mRNA and protein levels, and decreased the content of L-arginine in colonic tissue in the DSS-treated mice. Conversely, despite the decreased expression of NOS2 mRNA, the decreased concentration of NOx in colonic tissues was restored to almost normal levels. The consumption of L-arginine by arginase could lead to decreased production of NO from NOS, contributing to the pathogenesis of the colonic inflammation; thus, arginase inhibition might be effective for improving colitis.
Collapse
Affiliation(s)
- Y Akazawa
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Stojanovic I, Djordjevic G, Pavlovic R, Djordjevic V, Pavlovic D, Cvetkovic T, Ljubisavljevic S, Basic J, Zabar K. The importance of l-arginine metabolism modulation in diabetic patients with distal symmetric polyneuropathy. J Neurol Sci 2013; 324:40-4. [DOI: 10.1016/j.jns.2012.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|