1
|
Oliver PJ, Arutla S, Yenigalla A, Hund TJ, Parinandi NL. Lipid Nutrition in Asthma. Cell Biochem Biophys 2021; 79:669-694. [PMID: 34244966 DOI: 10.1007/s12013-021-01020-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 12/27/2022]
Abstract
Asthma is a heterogeneous pulmonary disease that has constantly increased in prevalence over the past several decades. Primary symptoms include airway constriction, airway hyperresponsiveness, and airway remodeling with additional symptoms such as shortness of breath, wheezing, and difficulty breathing. Allergic asthma involves chronic inflammation of the lungs, and the rise in its yearly diagnosis is potentially associated with the increased global consumption of foods similar to the western diet. Thus, there is growing interest into the link between diet and asthma symptoms, with mounting evidence for an important modulatory role for dietary lipids. Lipids can act as biological mediators in both a proinflammatory and proresolution capacity. Fatty acids play key roles in signaling and in the production of mediators in the allergic and inflammatory pathways. The western diet leads to a disproportionate ω-6:ω-3 ratio, with drastically increased ω-6 levels. To counteract this, consumption of fish and fish oil and the use of dietary oils with anti-inflammatory properties such as olive and sesame oil can increase ω-3 and decrease ω-6 levels. Increasing vitamin intake, lowering LDL cholesterol levels, and limiting consumption of oxidized lipids can help reduce the risk of asthma and the exacerbation of asthmatic symptoms. These dietary changes can be achieved by increasing intake of fruits, vegetables, nuts, oily fish, seeds, animal-related foods (eggs, liver), cheeses, grains, oats, and seeds, and decreasing consumption of fried foods (especially fried in reused oils), fast foods, and heavily processed foods.
Collapse
Affiliation(s)
- Patrick J Oliver
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Sukruthi Arutla
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Anita Yenigalla
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Thomas J Hund
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Narasimham L Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
- Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Leong XF, Mustafa MR, Das S, Jaarin K. Association of elevated blood pressure and impaired vasorelaxation in experimental Sprague-Dawley rats fed with heated vegetable oil. Lipids Health Dis 2010; 9:66. [PMID: 20573259 PMCID: PMC2914008 DOI: 10.1186/1476-511x-9-66] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 06/23/2010] [Indexed: 12/31/2022] Open
Abstract
Background Poor control of blood pressure leads to hypertension which is a major risk factor for development of cardiovascular disease. The present study aimed to explore possible mechanisms of elevation in blood pressure following consumption of heated vegetable oil. Methods Forty-two male Sprague-Dawley rats were equally divided into six groups: Group I (control) - normal rat chow, Group II - fresh soy oil, Group III - soy oil heated once, Group IV - soy oil heated twice, Group V - soy oil heated five times, Group VI - soy oil heated ten times. Blood pressure was measured at the baseline level and at a monthly interval for six months. Plasma nitric oxide, heme oxygenase and angiotensin-converting enzyme levels were measured prior to treatment, at month-three and month-six later. At the end of treatment, the rats were sacrificed and thoracic aortas were taken for measurement of vascular reactivity. Results Blood pressure increased significantly (p < 0.01) in the repeatedly heated oil groups compared to the control and fresh soy oil groups. Consumption of diet containing repeatedly heated oil resulted higher plasma angiotensin-converting enzyme level and lower nitric oxide content and heme oxygenase concentration. Reheated soy oil groups exhibited attenuated relaxation in response to acetylcholine or sodium nitroprusside, and greater contraction to phenylephrine. Conclusion As a result of consumption of repeatedly heated soy oil, an elevation in blood pressure was observed which may be due to the quantitative changes in endothelium dependent and independent factors including enzymes directly involved in the regulation of blood pressure.
Collapse
Affiliation(s)
- Xin-Fang Leong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | | | | | | |
Collapse
|