1
|
Sherlock DN, Abdel-Hamied E, Bucktrout R, Liang Y, Miura M, Loor JJ. Postruminal choline supply during negative nutrient balance alters components of hepatic mTOR signaling and plasma amino acids in lactating Holstein cows. J Dairy Sci 2023; 106:9733-9744. [PMID: 37641280 DOI: 10.3168/jds.2023-23239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/05/2023] [Indexed: 08/31/2023]
Abstract
Choline requirements for dairy cattle are unknown. However, enhanced postruminal supply of choline may increase flux through the methionine cycle to spare Met for other functions such as protein synthesis and phosphatidylcholine (PC) synthesis during periods of negative nutrient balance (NNB). The objective was to investigate the effects of postruminal choline supply during a feed restriction-induced NNB on hepatic abundance and phosphorylation of mTOR (mechanistic target of rapamycin)-related signaling proteins, hepatic lipidome and plasma AA. Ten primiparous rumen-cannulated Holstein cows (158 ± 24 DIM) were used in a replicated 5 × 5 Latin square design with 4 d of treatment and 10 d of recovery (14 d/period). Treatments were unrestricted intake with abomasal infusion of water, restricted intake (R; 60% of net energy for lactation requirements to induce NNB) with abomasal infusion of water (R0) or restriction plus abomasal infusion of 6.25, 12.5, or 25 g/d choline ion. Liver tissue was collected via biopsy on d 5 after infusions ended and used for Western blot analysis to measure proteins involved in mTOR signaling and untargeted lipidomics. Blood was collected on d 1 to 5 for plasma AA analysis. Statistical contrasts for protein and AA data were A0 versus R0 (CONT1), R0 versus the average of choline dose (CONT2) and tests of linear and quadratic effects of choline dose. Analysis of lipidomic data were performed with the web-based metabolomic processing tool MetaboAnalyst 5.0. Ratios of p-RPS6KB1:tRPS6KB1, p-EEF2:tEEF2, and p-EIF2:tEIF2 were greater with R (CONT1). Among those, supply of choline led to decreases in p-EEF2:tEEF2 (CONT2), p-EIF2:tEIF2 and tended to decrease p-EIF4BP1:tEIF4BP1. However, the effect was quadratic only for p-EEF2:tEEF2 and p-EIF2A:tEIF2A, reaching a nadir at 6.25 to 12.5 g/d choline ion. The ratio of p-RPS6KB1:tRPS6KB1 was not affected by supply of choline and was close to 2-fold greater at 25 g/d choline versus A0. Plasma Met concentration decreased with R (CONT1), but increased linearly with choline. Restriction also increased plasma 3-methyl-histidine (CONT1). The partial least squares discriminant analysis model of liver lipids distinguished treatments, with 13.4% of lipids being modified by treatment. One-way ANOVA identified 109 lipids with a false discovery rate ≤0.05. The largest group identified was PC species; all 35 detected decreased with R versus A0, but there were few differences among choline treatments. Overall, data suggested that dephosphorylation of EEF2 and EIF2A due to enhanced choline supply potentially helped maintain or increase protein synthesis during NNB. While activation of mTOR was not altered by choline, this idea of increased protein synthesis is partly supported by the increased circulating Met. However, enhanced postruminal choline had limited effects on the species of lipid produced during a period of NNB.
Collapse
Affiliation(s)
- D N Sherlock
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - E Abdel-Hamied
- Department of Animal Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - R Bucktrout
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - Y Liang
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - M Miura
- Ajinomoto Co. Inc., Kawasaki 210-8681, Japan
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801; Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801.
| |
Collapse
|
2
|
Elsaadawy SA, Wu Z, Wang H, Hanigan MD, Bu D. Supplementing Ruminally Protected Lysine, Methionine, or Combination Improved Milk Production in Transition Dairy Cows. Front Vet Sci 2022; 9:780637. [PMID: 35400096 PMCID: PMC8990851 DOI: 10.3389/fvets.2022.780637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
The objectives of this study were to evaluate the effects of dietary supplementation of ruminally protected lysine (RPL), or methionine (RPM), and their combination (RPML) on the production efficiency of transition cows. A total of 120 pre-partum multiparous Holstein cows were assigned to four treatments based on previous lactation milk production, days (d) of pregnancy, lactation, and body condition score (BCS). Cows were fed a basal diet [pre-calving: 1.53 Mcal/kg dry matter (DM) and post-calving: 1.70 Mcal/kg DM] with or without supplemental ruminally protected amino acids (RPAA). Treatments were the basal diets without supplemental amino acids (CONTROL, n = 30), with supplemental methionine (RPM, pre-calving at 0.16% of DM and post-calving at 0.12% of DM, n = 30), with supplemental lysine (RPL, pre-calving at 0.33% of DM and post-calving at 0.24% DM, n = 30), and the combination (RPML, pre-calving at 0.16% RPM + 0.33% RPL of DM and post-calving at 0.12% RPM + 0.24 % RPL DM, n = 30). The dietary content of lysine was balanced to be within 6.157.2% metabolizable protein (MP)-lysine and that of methionine was balanced within 2.1-2.35% MP-methionine. Dry matter intake (DMI) was measured daily. Milk samples were taken on d 7, 14, and 21 days relative to calving (DRC), and milk yields were measured daily. Blood samples were taken on d -21, -14, -7 before expected calving and d 0, 7, 14, and 21 DRC. Data were analyzed using SAS software. There were significant Trt × time interactions (P < 0.01) for DMI pre- and post-calving period. The CON cows had lower DMI than RPM, RPL, and RPML, both pre-calving (P < 0.01) and post-calving periods (P < 0.01). Energy-corrected milk (P < 0.01), milk fat (P < 0.01), protein (P = 0.02), and lactose (P < 0.01) percentage levels were greater for RPM, RPL, and RPML cows compared to CON. Supplementing RPAA assisted in maintaining BCS post-calving than CON (P < 0.01). Blood concentrations of β-hydroxybutyrate decreased with RPM or RPL or the combination pre-calving (P < 0.01) and tended to decrease post-calving (P = 0.10). These results demonstrated that feeding RPL and RPM improved DMI and milk production efficiency, maintained BCS, and reduced β-hydroxybutyrate concentrations of transition cows.
Collapse
Affiliation(s)
- Samy A. Elsaadawy
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zaohai Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mark D. Hanigan
- Department of Dairy Science, Virginia Tech, Blacksburg, VA, United States
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Centre (ICRAF), Beijing, China
- Hunan Co-Innovation Center of Safety Animal Production, Changsha, China
| |
Collapse
|
3
|
Zheng L, Han R, Jiang W, Chen L, Yu W, Zhong WG, Wei BD. Evaluation of unprotected and rumen-protected L-carnitine in vitro and in vivo. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to evaluate the effectiveness of unprotected and rumen-protected L-carnitine through in vitro tests, rumen degradation tests, and in vivo tests. Twelve rumen-fistulated crossbred rams with similar body weights of 55 ± 3.6 kg and ages of 3 ± 0.2 yr old were divided into three treatment groups in a 3 × 3 Latin square design, G1 (basal diet with no additives), G2 (unprotected L-carnitine), or G3 (rumen-protected L-carnitine). Ruminal fluid and blood samples were collected before morning feeding on the last day of each experimental period (21 d). The percentage of L-carnitine remaining in the simulated rumen and abomasum and rumen increased with the increase in the wall material ratio (P < 0.05). L-carnitine supplementation decreased the plasma urea nitrogen concentration in the sheep (P < 0.05). G3 resulted in higher glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities as well as higher total antioxidant capacity (T-AOC) and lower malondialdehyde (MDA) concentrations in plasma than G1, and the difference was significant among the groups (P < 0.01). Thus, L-carnitine in the rumen could be protected by encapsulation for a certain time. Unprotected and rumen-protected L-carnitine supplementation effectively enhanced the antioxidant capacity of sheep, and the antioxidant capacity of sheep supplemented with rumen-protected L-carnitine was higher than that of sheep supplemented with unprotected L-carnitine.
Collapse
Affiliation(s)
- Lin Zheng
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, People’s Republic of China
- Institute of Animal Nutrition and Feed Science, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, People’s Republic of China
| | - Rui Han
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, People’s Republic of China
| | - Wei Jiang
- Yanbian University Agricultural College, Yanji, Jilin, People’s Republic of China
| | - Long Chen
- Institute of Animal Nutrition and Feed Science, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, People’s Republic of China
| | - Wei Yu
- Institute of Animal Nutrition and Feed Science, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, People’s Republic of China
| | - Wei-guang Zhong
- Institute of Animal Nutrition and Feed Science, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, People’s Republic of China
| | - Bing-dong Wei
- Institute of Animal Nutrition and Feed Science, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, People’s Republic of China
| |
Collapse
|
4
|
Liu G, Ding Y, Chen Y, Yang Y. Effect of energy intake and L-carnitine on fattening performance, carcass traits, meat quality, blood metabolites, and gene expression of lamb. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2019.106025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Liver fatty acid metabolism associations with reproductive performance of dairy cattle. Anim Reprod Sci 2019; 208:106104. [PMID: 31405453 DOI: 10.1016/j.anireprosci.2019.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022]
Abstract
The peri-calving period is characterized by a negative energy balance, which leads to lipid mobilization. Thus, during this period, the liver has important functions related to optimizing milk yield, preventing metabolic and infectious diseases, and improving fertility. To clarify the relationship between liver fatty acid metabolism and reproductive performance, the present study was conducted to assess the abundance of specific hepatic proteins related to lipid metabolism in both plasma and follicular fluid in dairy cattle with different days to conception (DC). Sixteen animals were grouped according to DC, as more and fewer DC (MDC and FDC, respectively). Blood and liver biopsies were sampled 14 days before the expected calving date and 4, 14 and 28 days after calving. The plasma beta-hydroxybutyric acid (BHBA) concentrations and the liver triacylglycerol (TAG) content were greater in the MDC group (P < 0.05), whereas the protein abundance of carnitine palmitoyl transferase 1 was greater in the FDC group (P < 0.05). Additionally, total bilirubin (TBil) concentration was less in the FDC than MDC group on day 28 (P < 0.05). These results indicate lipid mobilization and liver fatty acid oxidation capacity in dairy cows could contribute to the adaptations and reproductive performance.
Collapse
|
6
|
Ringseis R, Keller J, Eder K. Regulation of carnitine status in ruminants and efficacy of carnitine supplementation on performance and health aspects of ruminant livestock: a review. Arch Anim Nutr 2018; 72:1-30. [PMID: 29313385 DOI: 10.1080/1745039x.2017.1421340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carnitine has long been known to play a critical role for energy metabolism. Due to this, a large number of studies have been carried out to investigate the potential of supplemental carnitine in improving performance of livestock animals including ruminants, with however largely inconsistent results. An important issue that has to be considered when using carnitine as a feed additive is that the efficacy of supplemental carnitine is probably dependent on the animal's carnitine status, which is affected by endogenous carnitine synthesis, carnitine uptake from the gastrointestinal tract and carnitine excretion. The present review aims to summarise the current knowledge of the regulation of carnitine status and carnitine homeostasis in ruminants, and comprehensively evaluate the efficacy of carnitine supplementation on performance and/or health in ruminant livestock by comparing the outcomes of studies with carnitine supplementation in dairy cattle, growing and finishing cattle and sheep. While most of the studies show that supplemental carnitine, even in ruminally unprotected form, is bioavailable in ruminants, its effect on either milk or growth performance is largely disappointing. However, supplemental carnitine appears to be a useful strategy to offer protection against ammonia toxicity caused by consumption of high levels of non-protein N or forages with high levels of soluble N both, in cattle and sheep.
Collapse
Affiliation(s)
- Robert Ringseis
- a Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Gießen , Gießen , Germany
| | - Janine Keller
- a Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Gießen , Gießen , Germany
| | - Klaus Eder
- a Institute of Animal Nutrition and Nutrition Physiology , Justus-Liebig-University Gießen , Gießen , Germany
| |
Collapse
|
7
|
Olagaray KE, Shaffer JE, Armendariz CK, Bellamine A, Jacobs S, Titgemeyer EC, Bradford BJ. Relative bioavailability of carnitine delivered by ruminal or abomasal infusion or by encapsulation in dairy cattle. J Dairy Sci 2017; 101:2060-2071. [PMID: 29274978 DOI: 10.3168/jds.2017-13656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022]
Abstract
Two studies were designed to evaluate the relative bioavailability of l-carnitine delivered by different methods in dairy cattle. In experiment 1, 4 Holstein heifers were used in a split-plot design to compare ruminally or abomasally infused l-carnitine. The study included 2 main-plot periods, with infusion routes allocated in a crossover design. Within main-plot periods, each of 3 subplot periods consisted of 4-d infusions separated with 4-d rest periods. Subplot treatments were infusion of 1, 3, and 6 g of l-carnitine/d in conjunction with 6 g/d of arabinogalactan given in consideration of eventual product manufacturing. Doses increased within a period to minimize carryover risk. Treatments were solubilized in 4 L of water and delivered in two 10-h infusions daily. Blood was collected before the start of infusion period and on d 4 of each infusion period to obtain baseline and treatment l-carnitine concentrations. There was a dose × route interaction and route effect for increases in plasma carnitine above baseline, with increases above baseline being greater across all dose levels when infused abomasally compared with ruminally. Results demonstrated superior relative bioavailability of l-carnitine when ruminal exposure was physically bypassed. In experiment 2, 56 lactating Holstein cows (143 ± 72 d in milk) were used in 2 cohorts in randomized complete block designs (blocked by parity and milk production) to evaluate 2 rumen-protected products compared with crystalline l-carnitine. Treatments were (1) control, (2) 3 g/d of crystalline l-carnitine (crystalline), (3) 6 g/d of crystalline, (4) 5 g/d of 40COAT (40% coating, 60% l-carnitine), (5) 10 g/d of 40COAT, (6) 7.5 g/d of 60COAT (60% coating, 40% l-carnitine), and (7) 15 g/d of 60COAT. Treatments were top-dressed to diets twice daily. Each cohort used 14-d and included a 6-d baseline measurement period with the final 2 d used for data and sample collection, and an 8-d treatment period with the final 2 d used for data and sample collection. Plasma, urine, and milk samples were analyzed for l-carnitine. Crystalline and 40COAT linearly increased plasma l-carnitine, and 60COAT tended to linearly increase plasma l-carnitine. Total excretion (milk + urine) of l-carnitine averaged 1.52 ± 0.04 g/d in controls, increased linearly with crystalline and 40COAT, and increased quadratically with 60COAT. Crystalline increased plasma l-carnitine and l-carnitine excretion more than 40COAT and 60COAT. In conclusion, preventing ruminal degradation of l-carnitine increased delivery of bioavailable carnitine to cattle, but effective ruminal protection and postruminal bioavailability is challenging.
Collapse
Affiliation(s)
- K E Olagaray
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - J E Shaffer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - C K Armendariz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | | | | | - E C Titgemeyer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506.
| |
Collapse
|
8
|
Han van der Kolk JH, Gross JJ, Gerber V, Bruckmaier RM. Disturbed bovine mitochondrial lipid metabolism: a review. Vet Q 2017; 37:262-273. [PMID: 28712316 DOI: 10.1080/01652176.2017.1354561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise and cannot be covered by feed intake. This review mainly focuses on the role of long chain fatty acids in disturbed energy metabolism of the bovine species. Long chain fatty acids regulate energy metabolism as ligands of peroxisome proliferator-activated receptors. Carnitine acts as a carrier of fatty acyl groups as long-chain acyl-CoA derivatives do not penetrate the mitochondrial inner membrane. There are two different types of disorders in lipid metabolism which can occur in cattle, namely the hypoglycaemic-hypoinsulinaemic and the hyperglycaemic-hyperinsulinaemic type with the latter not always associated with ketosis. There is general agreement that fatty acid β-oxidation capability is limited in the liver of (ketotic) cows. In accord, supplemental L-carnitine decreased liver lipid accumulation in periparturient Holstein cows. Of note, around parturition concurrent oxidation of fatty acids in skeletal muscle is highly activated. Also peroxisomal β-oxidation in liver of dairy cows may be part of the hepatic adaptations to a negative energy balance (NEB) to break down fatty acids. An elevated blood concentration of nonesterified fatty acids is one of the indicators of NEB in cattle among others like increased β-hydroxy butyrate concentration, and decreased concentrations of glucose, insulin, and insulin-like growth factor-I. Assuming that liver carnitine concentrations might limit hepatic fatty acid oxidation capacity in dairy cows, further study of the role of acyl-CoA dehydrogenases and/or riboflavin in bovine ketosis is warranted.
Collapse
Affiliation(s)
- J H Han van der Kolk
- a Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty , University of Bern and Agroscope , Bern , Switzerland
| | - J J Gross
- b Veterinary Physiology, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - V Gerber
- a Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty , University of Bern and Agroscope , Bern , Switzerland
| | - R M Bruckmaier
- b Veterinary Physiology, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| |
Collapse
|
9
|
Pirestani A, Aghakhani M. The effects of rumen-protected choline and l-carnitine supplementation in the transition period on reproduction, production, and some metabolic diseases of dairy cattle. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1332632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- A. Pirestani
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
- Transgenesis Center of Excellence, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - M. Aghakhani
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
10
|
Osorio J, Trevisi E, Ji P, Drackley J, Luchini D, Bertoni G, Loor J. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart. J Dairy Sci 2014; 97:7437-50. [DOI: 10.3168/jds.2013-7679] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 09/01/2014] [Indexed: 11/19/2022]
|
11
|
Akbar H, Bionaz M, Carlson D, Rodriguez-Zas S, Everts R, Lewin H, Drackley J, Loor J. Feed restriction, but not l-carnitine infusion, alters the liver transcriptome by inhibiting sterol synthesis and mitochondrial oxidative phosphorylation and increasing gluconeogenesis in mid-lactation dairy cows. J Dairy Sci 2013; 96:2201-2213. [DOI: 10.3168/jds.2012-6036] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/02/2013] [Indexed: 01/21/2023]
|
12
|
Ringseis R, Wen G, Eder K. Regulation of Genes Involved in Carnitine Homeostasis by PPARα across Different Species (Rat, Mouse, Pig, Cattle, Chicken, and Human). PPAR Res 2012; 2012:868317. [PMID: 23150726 PMCID: PMC3486131 DOI: 10.1155/2012/868317] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/27/2012] [Indexed: 11/17/2022] Open
Abstract
Recent studies in rodents convincingly demonstrated that PPARα is a key regulator of genes involved in carnitine homeostasis, which serves as a reasonable explanation for the phenomenon that energy deprivation and fibrate treatment, both of which cause activation of hepatic PPARα, causes a strong increase of hepatic carnitine concentration in rats. The present paper aimed to comprehensively analyse available data from genetic and animal studies with mice, rats, pigs, cows, and laying hens and from human studies in order to compare the regulation of genes involved in carnitine homeostasis by PPARα across different species. Overall, our comparative analysis indicates that the role of PPARα as a regulator of carnitine homeostasis is well conserved across different species. However, despite demonstrating a well-conserved role of PPARα as a key regulator of carnitine homeostasis in general, our comprehensive analysis shows that this assumption particularly applies to the regulation by PPARα of carnitine uptake which is obviously highly conserved across species, whereas regulation by PPARα of carnitine biosynthesis appears less well conserved across species.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| |
Collapse
|
13
|
Schlegel G, Keller J, Hirche F, Geissler S, Schwarz FJ, Ringseis R, Stangl GI, Eder K. Expression of genes involved in hepatic carnitine synthesis and uptake in dairy cows in the transition period and at different stages of lactation. BMC Vet Res 2012; 8:28. [PMID: 22417075 PMCID: PMC3361467 DOI: 10.1186/1746-6148-8-28] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/14/2012] [Indexed: 12/14/2022] Open
Abstract
Background In rodents and pigs, it has shown that carnitine synthesis and uptake of carnitine into cells are regulated by peroxisome proliferator-activated receptor α (PPARA), a transcription factor which is physiologically activated during fasting or energy deprivation. Dairy cows are typically in a negative energy balance during early lactation. We investigated the hypothesis that genes of carnitine synthesis and uptake in dairy cows are enhanced during early lactation. Results mRNA abundances of PPARA and some of its classical target genes and genes involved in carnitine biosynthesis [trimethyllysine dioxygenase (TMLHE), 4-N-trimethylaminobutyraldehyde dehydrogenase (ALDH9A1), γ-butyrobetaine dioxygenase (BBOX1)] and uptake of carnitine [novel organic cation transporter 2 (SLC22A5)] as well as carnitine concentrations in liver biopsy samples of 20 dairy cows in late pregnancy (3 wk prepartum) and early lactation (1 wk, 5 wk, 14 wk postpartum) were determined. From 3 wk prepartum to 1 wk postpartum, mRNA abundances of PPARΑ and several PPARΑ target genes involved in fatty acid uptake, fatty acid oxidation and ketogenesis in the liver were strongly increased. Simultaneously, mRNA abundances of enzymes of carnitine synthesis (TMLHE: 10-fold; ALDH9A1: 6-fold; BBOX1: 1.8-fold) and carnitine uptake (SLC22A5: 13-fold) and the concentration of carnitine in the liver were increased from 3 wk prepartum to 1 wk postpartum (P < 0.05). From 1 wk to 5 and 14 wk postpartum, mRNA abundances of these genes and hepatic carnitine concentrations were declining (P < 0.05). There were moreover positive correlations between plasma concentrations of non-esterified fatty acids (NEFA) and hepatic carnitine concentrations at 1 wk, 5 wk and 14 wk postpartum (P < 0.05). Conclusions The results of this study show for the first time that the expression of hepatic genes of carnitine synthesis and cellular uptake of carnitine is enhanced in dairy cows during early lactation. These changes might provide an explanation for increased hepatic carnitine concentrations observed in 1 wk postpartum and might be regarded as a physiologic means to provide liver cells with sufficient carnitine required for transport of excessive amounts of NEFA during a negative energy balance.
Collapse
Affiliation(s)
- Gloria Schlegel
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In recent years, l-carnitine has been used increasingly as a supplement in livestock animals. The present review gives an overview of the effects of dietary l-carnitine supplementation on the reproductive performance of sows. Results concerning the effect of l-carnitine supplementation during pregnancy on litter sizes are controversial. There are some studies reporting an increased number of piglets born alive per litter, while others could not find such an effect. In contrast, most studies performed show consistently that l-carnitine supplementation to a sow diet low in native carnitine during gestation increases piglet and litter weights at birth and enhances growth of litters during the suckling period. Biochemical mechanisms underlying the favourable effect of carnitine on intra-uterine growth have not been fully elucidated. There is, however, some evidence that carnitine influences the insulin-like growth factor-axis in sows and leads to greater placentae, which in turn improves intra-uterine nutrition, and stimulates oxidation of glucose in the fetuses. These effects may, at least in part, be responsible for higher birth weights of piglets. The stimulating effect of carnitine on growth of the litters might be due to an improved suckling behaviour of piglets born to l-carnitine-supplemented sows, causing the sows' milk production to rise. In conclusion, recent studies have clearly shown that dietary l-carnitine supplementation increases the reproductive performance of sows. These findings suggest that endogenous de novo synthesis of carnitine is insufficient to meet the metabolic requirement of sows during gestation.
Collapse
|
15
|
Carlson DB, McFadden JW, D'Angelo A, Woodworth JC, Drackley JK. Dietary L-carnitine affects periparturient nutrient metabolism and lactation in multiparous cows. J Dairy Sci 2007; 90:3422-41. [PMID: 17582127 DOI: 10.3168/jds.2006-811] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to determine the effects of dietary L-carnitine supplementation on liver lipid accumulation, hepatic nutrient metabolism, and lactation in multiparous cows during the periparturient period. Cows were assigned to treatments at d -25 relative to expected calving date and remained on the experiment until 56 d in milk. Treatments were 4 amounts of supplemental dietary carnitine: control (0 g/d of L-carnitine; n = 14); low carnitine (LC, 6 g/d; n = 11); medium carnitine (MC, 50 g/d; n = 12); and high carnitine (HC, 100 g/d; n = 12). Carnitine was supplied by mixing a feed-grade carnitine supplement with 113.5 g of ground corn and 113.5 g of dried molasses, which was then fed twice daily as a topdress to achieve desired daily carnitine intakes. Carnitine supplementation began on d -14 relative to expected calving and continued until 21 d in milk. Liver and muscle carnitine concentrations were markedly increased by MC and HC treatments. Milk carnitine concentrations were elevated by all amounts of carnitine supplementation, but were greater for MC and HC than for LC during wk 2 of lactation. Dry matter intake and milk yield were decreased by the HC treatment. The MC and HC treatments increased milk fat concentration, although milk fat yield was unaffected. All carnitine treatments decreased liver total lipid and triacylglycerol accumulation on d 10 after calving. In addition, carnitine-supplemented cows had higher liver glycogen during early lactation. In general, carnitine supplementation increased in vitro palmitate beta-oxidation by liver slices, with MC and HC treatments affecting in vitro palmitate metabolism more potently than did LC. In vitro conversion of Ala to glucose by liver slices was increased by carnitine supplementation independent of dose. The concentration of nonesterified fatty acids in serum was not affected by carnitine. As a result of greater hepatic fatty acid beta-oxidation, plasma beta-hydroxybutyric acid was higher for the MC and HC treatments. Serum insulin was greater for all carnitine treatments, although plasma glucose was unaffected. Plasma urea N was lower and plasma total protein was higher for the MC and HC treatments. By decreasing liver lipid accumulation and stimulating hepatic glucose output, carnitine supplementation might improve glucose status and diminish the risk of developing metabolic disorders during early lactation.
Collapse
Affiliation(s)
- D B Carlson
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | | | | | | | | |
Collapse
|