1
|
Kameyama A. Eliminative Oximation of O-Glycans from Mucins. Methods Mol Biol 2024; 2763:151-158. [PMID: 38347408 DOI: 10.1007/978-1-0716-3670-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The large variety and high concentration of O-glycans are characteristic properties of mucins and play a crucial role in their unique functions. Analyzing the O-glycans of mucins is essential for investigating the functions of mucins. Eliminative oximation is an aqueous reaction that can be used to obtain O-glycan oximes from mucins. Using diazabicyclo undec-7ene (DBU) as a base, an organic superbase that can be removed with an organic solvent during solid-phase extraction, and adding hydroxylamine to the reaction mixture in advance, the O-glycans released from the mucin are immediately converted to the corresponding glycan oximes. The glycan oxime can then be fluorescently labeled with a fluorescent labeling reagent and 2-picoline borane via reductive amination. O-glycans that have been fluorescently labeled can be analyzed using conventional HPLC techniques.
Collapse
Affiliation(s)
- Akihiko Kameyama
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
2
|
Gathercole JL, Nguyen HTH, Harris P, Weeks M, Reis MG. Protein modifications due to homogenisation and heat treatment of cow milk. J DAIRY RES 2023; 90:1-8. [PMID: 36815389 DOI: 10.1017/s0022029923000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
This research paper aimed to locate protein modifications caused by treatment of milk and determine if the modification locations were consistent. The majority of milk for consumption is homogenised using pressure and heat, and this causes changes in the location of proteins in the milk as well as protein modifications. To investigate these proteomic changes, raw milk was pasteurised (72°C, 15 s), then, to separate the treatment for homogenisation, heated at these different pressures and temperatures: 45°C without no pressure applied, 45°C with 35 MPa, 80°C without pressure applied and 80°C, with 35 MPa. Proteomic analysis was done after separating the milk into three fractions: whey, casein and cream. Protein modifications in each fraction were examined and we found Maillard products as well as oxidation to be of interest. The proteins were also further identified and characterised to compare protein modification sites and differences in proteins present in the cream resulting from homogenisation and/or pasteurisation. This experiment showed that both heat and pressure during homogenisation can cause increases in protein modifications as a result of oxidation or the Maillard reaction. Total cysteine oxidation and total proline oxidation differed between treatments although this was only significantly different for cysteine. It was observed that protein modifications occurred in the same location in the protein sequence rather than in random locations which we highlighted by examining α-S1-casein, lactadherin and β-lactoglobulin.
Collapse
Affiliation(s)
| | - Hanh T H Nguyen
- AgResearch Ltd, Te Ohu Rangahau Kai, Massey University, Palmerston North, 4474, New Zealand
| | - Paul Harris
- AgResearch Ltd, Te Ohu Rangahau Kai, Massey University, Palmerston North, 4474, New Zealand
| | - Mike Weeks
- AgResearch Ltd, Te Ohu Rangahau Kai, Massey University, Palmerston North, 4474, New Zealand
| | - Mariza G Reis
- AgResearch Ltd, Te Ohu Rangahau Kai, Massey University, Palmerston North, 4474, New Zealand
| |
Collapse
|
3
|
Señoráns M, Gallo V, Calvo MV, Fontecha J. Lipidomic and Proteomic Profiling of the Milk Fat Globule Membrane from Different Industrial By-Products of the Butter and Butter Oil Manufacturing Process. Foods 2023; 12:foods12040750. [PMID: 36832824 PMCID: PMC9956092 DOI: 10.3390/foods12040750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent studies have demonstrated the positive effects of regular intake of milk fat globule membranes (MFGMs) on neural and cognitive development, as well as immune and gastrointestinal health in infants and elders. Dairy products and by-products generated from the butter and butter oil manufacturing process are valuable sources of MFGM. Thus, in view of the growing need to reduce by-products and waste, it is crucial to foster research aimed at the valorization of dairy by-products rich in MFGM. For this purpose, all the by-products coming from butter and butter oil production (from raw milk to the related by-products) were used to study the MFGM isolated fractions, followed by their characterization through a combined lipidomic and proteomic approach. The patterns of polar lipids and proteins indicated that buttermilk (BM), butterserum (BS), and their mix (BM-BS blend) are the most suitable by-products to be employed as starting material for the isolation and purification of MFGMs, thus obtaining MFGM-enriched ingredients for the manufacture of products with high biological activity.
Collapse
|
4
|
Tian MY, Hao DX, Liu Y, He J, Zhao ZH, Guo TY, Li X, Zhang Y. Milk exosomes: an oral drug delivery system with great application potential. Food Funct 2023; 14:1320-1337. [PMID: 36722924 DOI: 10.1039/d2fo02013k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Exosomes are extracellular vesicles with the smallest diameter, usually divided into cellular sources and body fluid sources. Due to their special properties different from cell-derived exosomes, the application of milk exosomes as an oral drug delivery system has increased greatly. This article introduces the physical and chemical properties of exosomes, separation technology, dyeing and labeling technology, targeted modification technology, and the application of milk exosomes in drug loading and disease therapies.
Collapse
Affiliation(s)
- Meng-Yuan Tian
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Dong-Xia Hao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Yang Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Jin He
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Zhuo-Hua Zhao
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Ting-Yu Guo
- The International Department of the High School Affiliated to Shaanxi Normal University, Xi'an, China
| | - Xing Li
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Yuan Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China; College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
5
|
Fan R, Xie S, Wang S, Yu Z, Sun X, Du Q, Yang Y, Han R. Identification markers of goat milk adulterated with bovine milk based on proteomics and metabolomics. Food Chem X 2023; 17:100601. [PMID: 36974185 PMCID: PMC10039227 DOI: 10.1016/j.fochx.2023.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
This study investigated the differences in proteins and metabolites from goat and bovine milk, and their mixtures, using data-independent-acquisition-based proteomics and metabolomics methods. In the skim milk, relative abundances of secretoglobin family 1D member (SCGB1D), polymeric immunoglobulin receptor, and glycosylation-dependent cell adhesion molecule 1 were increased, with an increase in the amount of 1-100 % bovine milk and served as markers at the 1 % adulteration level. In whey samples, β-lactoglobulin and α-2-HS-glycoprotein could be used to detect adulteration at the 0.1 % adulteration level, and SCGB1D and zinc-alpha-2-glycoprotein at the 1 % level. The metabolites of uric acid and N-formylkynurenine could be used to detect bovine milk at adulteration levels as low as 1 % based on variable importance at a projection value of > 1.0 and P-value of < 0.05. Our findings suggest novel markers of SCGB1D, uric acid, and N-formylkynurenine that can help to facilitate assessments of goat milk authenticity.
Collapse
Affiliation(s)
- Rongbo Fan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Shubin Xie
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Shifeng Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Zhongna Yu
- Haidu College. Qingdao Agricultural University, Laiyang 265200, Shandong, China
| | - Xueheng Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Qijing Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
- Corresponding author.
| |
Collapse
|
6
|
Umar M, Ruktanonchai U, Makararpong D, Anal AK. Enhancing Immunity Against Pathogens Through Glycosylated Bovine Colostrum Proteins. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2169866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Muhammad Umar
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Pathumthani, Thailand
| | - Uracha Ruktanonchai
- NANOTEC, National Science and Technology Development Agency, Pathumthani, Thailand
| | | | - Anil Kumar Anal
- Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Pathumthani, Thailand
| |
Collapse
|
7
|
Zhang L, Yan D, Roy MC, Huang J, Zhou P. Variation in both proteome and N-glycoproteome of goat MFGM over lactation. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Glycoproteomic and Lipidomic Characterization of Industrially Produced Whey Protein Phospholipid Concentrate with Emphasis on Antimicrobial Xanthine Oxidase, Oxylipins and Small Milk Fat Globules. DAIRY 2022. [DOI: 10.3390/dairy3020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work investigates the composition of whey protein phospholipid concentrate (WPPC), an underutilized dairy stream, and reveals that it is a source of many bioactive compounds that can benefit the immune system and gut health. Our glycoproteomics approach uncovered that proteins derived from the milk fat globule membrane (MFGM) represent 23% of the total protein relative abundance and identified 85 N-glycans. Released sialic acid, an additional marker of glycosylation, ranged from 1.2 to 2% of the total weight. Xanthine oxidase, a glycosylated marker of MFG bioactivity, was found in high abundance and displayed higher antimicrobial activity than bovine milk, despite its similar fat and solids content. An average MFG diameter of 2.64 ± 0.01 µm was found in liquid WPPC, compared to 4.78 ± 0.13 µm in bovine milk, which likely explains the unusually high presence of glycosylated membrane-bound proteins and phospholipids, whose total fatty acids accounted for 20% of the WPPC total fatty acid pool. Free and bound oxylipins (mainly derived from linoleic acid) were also identified, together with other less abundant anti-inflammatory lipid mediators derived from eicosapentaenoic acid and docosahexaenoic acid. Our study demonstrates that WPPC represents a promising starting material for bioactive compound extraction and a functional vehicle for the delivery of small MFGs.
Collapse
|
9
|
Chandel S, Joon A, Ghosh S. Enteroaggregative Escherichia coli induces altered glycosylation in membrane proteins of cultured human intestinal epithelial cells. Biochimie 2022; 199:68-80. [DOI: 10.1016/j.biochi.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 11/02/2022]
|
10
|
Xiao J, Wang J, Gan R, Wu D, Xu Y, Peng L, Geng F. Quantitative N-glycoproteome analysis of bovine milk and yogurt. Curr Res Food Sci 2022; 5:182-190. [PMID: 35072106 PMCID: PMC8763629 DOI: 10.1016/j.crfs.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Post-translational modification structure of food's proteins might be changed during processing, thereby affecting the nutritional characteristics of the food product. In this study, differences in protein N-glycosylation patterns between milk and yogurt were quantitatively compared based on glycopeptide enrichment, liquid chromatography separation, and tandem mass spectrometry analysis. A total of 181 N-glycosites were identified, among which 142 were quantified in milk and yogurt. Significant alterations in the abundance of 13 of these N-glycosites were evident after the fermentation of milk into yogurt. Overall, the N-glycosylation status of the majority of milk proteins remained relatively unchanged in yogurt, suggesting that their conformations, activities, and functions were maintained despite the fermentation process. Among the main milk proteins, N241 of cathepsin D and N358 of lactoperoxidase were markedly reduced after undergoing lactic acid fermentation to produce yogurt. Furthermore, a comparative analysis of current and previously reported N-glycoproteomic data revealed heterogeneity in the N-glycosylation of milk proteins. To sum up, a quantitative comparison of the N-glycoproteomes of milk and yogurt was presented here for the first time, providing evidence that the fermentation process of yogurt could cause changes in the N-glycosylation of certain milk proteins. 181 N-glycosites from 118 N-glycoproteins were identified in milk and yogurt. 13 N-glycosites changed significantly after fermentation of milk into yogurt. N241 of cathepsin D and N358 of lactoperoxidase was markedly reduced in yogurt. Heterogeneity of N-glycosylation of milk protein has been documented.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, Sichuan, China
| | - Di Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yisha Xu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Corresponding author.
| |
Collapse
|
11
|
Chen W, Wang R, Li D, Zuo C, Wen P, Liu H, Chen Y, Fujita M, Wu Z, Yang G. Comprehensive Analysis of the Glycome and Glycoproteome of Bovine Milk-Derived Exosomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12692-12701. [PMID: 33137256 DOI: 10.1021/acs.jafc.0c04605] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bovine milk-derived exosomes (BMDEs) have potential applications in the pharmaceutical industry as drug delivery carriers. A comprehensive analysis of protein glycosylation in exosomes is necessary to elucidate the process of targeted delivery. In this work, free oligosaccharides (FOSs), O-glycans, and N-glycans in BMDEs and whey were first analyzed through multiple derivation strategies. In summary, 13 FOSs, 44 O-glycans, and 94 N-glycans were identified in bovine milk. To analyze site-specific glycosylation of glycoproteins, a one-step method was used to enrich and characterize intact glycopeptides. A total of 1359 proteins including 114 glycoproteins were identified and most of these were located in the exosomes. Approximately 95 glycopeptides were initially discovered and 5 predicted glycosites were confirmed in BMDEs. Collectively, these findings revealed the characterization and distribution of glycans and glycoproteins in BMDEs, providing insight into the potential applications of BMDEs in drug delivery and food science.
Collapse
Affiliation(s)
- Wenyan Chen
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Rong Wang
- School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dan Li
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chenyang Zuo
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Piaopiao Wen
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haili Liu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongquan Chen
- School of Medicine, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Morihisa Fujita
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ganglong Yang
- The Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Wang S, Li J, You L, Dai M, Zhao Y. High Expression of MUC15 Is Correlated with Poor Prognosis of Pancreatic Cancer and Promotes Migration, Invasion, and Chemo-Resistance In Vitro. Med Sci Monit 2020; 26:e926432. [PMID: 33051432 PMCID: PMC7570823 DOI: 10.12659/msm.926432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND MUC15, one of the hydrophilic glycoproteins that protect wet-surfaced epithelia, has been shown to be involved in tumorigenesis of various tumors. However, the mechanism of MUC15 in pancreatic cancer have not been revealed yet. Our study focused on investigating its clinical significance and function in pancreatic cancer. MATERIAL AND METHODS Using tissue microarrays and immunohistochemical staining, we evaluated MUC15 expression in 92 patients diagnosed with pancreatic ductal adenocarcinoma (PDAC). The correlations between MUC15 expression and clinicopathological variables and prognosis were analyzed. To validate our findings, we analyzed the data from an online database. We then demonstrated its function or mechanism in pancreatic cancer cell lines using transwell assay, cytotoxicity assay, cell apoptotic detection, and western blot. RESULTS The expression level of MUC15 was remarkably increased in PDAC tissues in comparison with para-cancerous tissues, and was associated with poor prognosis. Cytoplasmic MUC15 expression was identified as an independent prognostic indicator for overall survival by multivariate Cox regression analysis. Functionally, overexpressed MUC15 enhanced the migration and invasion ability in cancer cells. In vitro studies revealed that MUC15 enhanced the gemcitabine resistance of pancreatic cancer. Additionally, the regulatory mechanism of MUC15 in PDAC were correlated with ERK and AKT signaling pathways. CONCLUSIONS We performed integrated analysis and revealed that MUC15 is a good prognostic predictor for patients with PDAC. The functional experiments showed that MUC15 contributed to the malignant behaviors of pancreatic cancer in vitro.
Collapse
Affiliation(s)
- Shunda Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China (mainland)
| | - Junjie Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China (mainland)
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China (mainland)
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China (mainland)
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China (mainland)
| |
Collapse
|
13
|
Cao X, Zheng Y, Wu S, Yang N, Wu J, Liu B, Ye W, Yang M, Yue X. Characterization and comparison of milk fat globule membrane N-glycoproteomes from human and bovine colostrum and mature milk. Food Funct 2019; 10:5046-5058. [PMID: 31359016 DOI: 10.1039/c9fo00686a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human and bovine milk fat globule membrane (MFGM) proteins have been identified and characterized; however, their glycosylation during lactation remains unclear. We adopted a glycoproteomics approach to profile and compare MFGM N-glycoproteomes in human and bovine milk during lactation. A total of 843, 718, 614, and 273 N-glycosite peptides corresponding to 465, 423, 334, and 176 glycoproteins were identified in human colostrum, human mature milk, bovine colostrum, and bovine mature milk, respectively. The biological functions of these MFGM N-glycoproteins were revealed through bioinformatics. Substantial differences were observed between human and bovine milk, and immune-related MFGM N-glycoproteins varied between colostrum and mature milk from both species. Our results expand current knowledge of MFGM N-glycoproteomes, and further demonstrate the complexity and biological functions of MFGM N-glycosylation. These data can provide references for the application of bovine MFGM N-glycoproteins in infant formula to resemble human milk and in functional foods.
Collapse
Affiliation(s)
- Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ripollés D, Parrón JA, Fraguas J, Calvo M, Pérez MD, Sánchez L. Determination of lactadherin concentration in dairy by-products by ELISA: Effect of heat treatment and hydrolysis. J Dairy Sci 2017; 101:912-923. [PMID: 29153516 DOI: 10.3168/jds.2017-13608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022]
Abstract
Lactadherin is a peripheral glycoprotein of the milk fat globule membrane with several attributed biological activities. In this study, we developed an indirect competitive ELISA to determine lactadherin concentration by using a rabbit polyclonal antiserum. The ELISA was applied to quantify lactadherin in several dairy by-products. Of the products tested, raw and commercial buttermilk had the highest concentrations of lactadherin (6.79 and 5.27 mg/g of product, respectively), followed by commercial butter serum (4.86 mg/g), commercial skim milk (4.84 mg/g), and raw whey (1.20 mg/g). The concentration of immunoreactive lactadherin was also determined in dairy by-products after they were subjected to different technological treatments. Thus, raw products were heat treated at combinations of temperature and time typically used in the dairy industry, and commercial products were hydrolyzed using 3 proteolytic enzyme preparations. Heat treatments of whey and buttermilk resulted in a smaller decrease in lactadherin concentration than did hydrolysis as determined by ELISA and electrophoresis. At high temperatures for long durations, the loss of lactadherin was higher in whey than in buttermilk, with the maximal reduction of around 48% found after treating whey at 72°C for 60 min. Hydrolysis of commercial products with proteolytic enzymes resulted in a marked decrease of immunoreactivity within the first 5 min of treatment, which thereafter was constant throughout 4 h of hydrolysis. These results demonstrate that dairy by-products from milk fat processing are good natural sources of lactadherin, although technological processes have to be considered, because they have different effects on lactadherin content.
Collapse
Affiliation(s)
- Daniel Ripollés
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - José A Parrón
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Javier Fraguas
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Miguel Calvo
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - María D Pérez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Lourdes Sánchez
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
15
|
Ross SA, Gerlach JQ, Gill SK, Lane JA, Kilcoyne M, Hickey RM, Joshi L. Temporal alterations in the bovine buttermilk glycome from parturition to milk maturation. Food Chem 2016; 211:329-38. [DOI: 10.1016/j.foodchem.2016.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|
16
|
O'Riordan N, Kane M, Joshi L, Hickey RM. Structural and functional characteristics of bovine milk protein glycosylation. Glycobiology 2014; 24:220-36. [PMID: 24398766 DOI: 10.1093/glycob/cwt162] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Most secreted and cell membrane proteins in mammals are glycosylated. Many of these glycoproteins are also prevalent in milk and play key roles in the biomodulatory properties of milk and ultimately in determining milk's nutritional quality. Although a significant amount of information exists on the types and roles of free oligosaccharides in milk, very little is known about the glycans associated with milk glycoproteins, in particular, the biological properties that are linked to their presence. The main glycoproteins found in bovine milk are lactoferrin, the immunoglobulins, glycomacropeptide, a glycopeptide derived from κ-casein, and the glycoproteins of the milk fat globule membrane. Here, we review the glycoproteins present in bovine milk, the information currently available on their glycosylation and the biological significance of their oligosaccharide chains.
Collapse
Affiliation(s)
- Noelle O'Riordan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | | | | | | |
Collapse
|
17
|
Poon CE, Lecce L, Day ML, Murphy CR. Mucin 15 is lost but mucin 13 remains in uterine luminal epithelial cells and the blastocyst at the time of implantation in the rat. Reprod Fertil Dev 2014; 26:421-31. [DOI: 10.1071/rd12313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/18/2013] [Indexed: 01/28/2023] Open
Abstract
The glycocalyx of the uterine luminal epithelium in the rat undergoes considerable reduction before implantation. In particular, the reduction of some mucins is necessary to facilitate blastocyst adhesion and subsequent implantation. The present study investigated the localisation, abundance and hormonal control of two mucin proteins, Muc13 and Muc15, in rat uterine epithelial cells during early pregnancy to determine whether they are likely to play a role in uterine receptivity for implantation. Muc13 and Muc15 are localised to the uterine luminal epithelium but show a presence and an absence, respectively, at the apical cell surface at the time of implantation. This localisation corresponds to changes in the molecular weights of Muc13 and Muc15, as shown with western blotting analysis. Furthermore, the localisation of Muc13 and Muc15 was shown to be controlled by the ovarian hormones, oestrogen and progesterone, and they were also localised in preimplantation rat blastocysts. Our results suggest that Muc15 may operate in an anti-adhesive capacity to prevent implantation while Muc13 potentially functions in either an adhesive or cell-signalling role in the events of implantation.
Collapse
|
18
|
Chatterton DE, Nguyen DN, Bering SB, Sangild PT. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int J Biochem Cell Biol 2013; 45:1730-47. [DOI: 10.1016/j.biocel.2013.04.028] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 01/04/2023]
|
19
|
van Leeuwen SS, Schoemaker RJW, Timmer CJAM, Kamerling JP, Dijkhuizen L. N- and o-glycosylation of a commercial bovine whey protein product. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:12553-12564. [PMID: 23194161 DOI: 10.1021/jf304000b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine whey protein products are used as a base ingredient in infant formulas to optimize the amino acid pattern to a more human-like composition. Although the protein composition of bovine milk has been studied in detail, glycosylation details of commercial whey protein products are missing. To this end, both the N- and O-glycans of such a protein concentrate were sequentially released, the N-glycans enzymatically and the O-glycans chemically (reducing and nonreducing conditions). For the structural analysis of the N- and O-glycans a combination of MALDI-TOF-MS, one-dimensional (1)H NMR spectroscopy, Wisteria floribunda agglutinin affinity chromatography, HPAEC-PAD profiling, and HPLC-FD profiling (2-aminobenzamide derivatives), together with exoglycosidase treatments, were used. A mixture of over 60 N-glycans and 10 O-glycans was characterized, giving a detailed insight into the glycosylation of a bovine whey protein product, Deminal 90, which is applied as an ingredient for infant formulas.
Collapse
Affiliation(s)
- Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen , Nijenborgh 7, NL-9747 AG Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Moe KM, Porcellato D, Skeie S. Metabolism of milk fat globule membrane components by nonstarter lactic acid bacteria isolated from cheese. J Dairy Sci 2012. [PMID: 23182353 DOI: 10.3168/jds.2012-5497] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate how components present in the milk fat globule membrane (MFGM) may be used for growth and survival by cheese-ripening lactobacilli. This was achieved by analyzing metabolites produced during incubation on appropriate media. The lactobacilli investigated were able to utilize components from the MFGM throughout a 24-d incubation period. We observed an apparent connection between the higher proteolytic activity of Lactobacillus paracasei INF448 and its ability to grow in the MFGM media after depletion of readily available sugars. All the studied strains produced large amounts of acetate when grown on an acylated aminosugar, presumably from deacetylation of the monosaccharides. Growth of Lb. plantarum INF15D on D-galactose resulted in a metabolic shift, expressed as different fates of the produced pyruvate, compared with growth on the other monosaccharides. For Lb. plantarum INF15D, the presence of D-galactose also seemed to initiate degradation of some amino acids known to take part in energy production, specifically Arg and Tyr.
Collapse
Affiliation(s)
- K M Moe
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, NO-1432 Ås, Norway.
| | | | | |
Collapse
|
21
|
Growth and survival of cheese ripening bacteria on milk fat globule membrane isolated from bovine milk and its monosaccharides. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2011.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Smoczyński M, Staniewski B, Kiełczewska K. Composition and Structure of the Bovine Milk Fat Globule Membrane—Some Nutritional and Technological Implications. FOOD REVIEWS INTERNATIONAL 2012. [DOI: 10.1080/87559129.2011.595024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Sweet buttermilk intake reduces colonisation and translocation ofListeria monocytogenesin rats by inhibiting mucosal pathogen adherence. Br J Nutr 2012; 108:2026-33. [DOI: 10.1017/s0007114512000165] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The bovine milk fat globule membrane (MFGM) contains several antimicrobial components with proven efficacyin vitro, butin vivoevidence is scarce. The present study was performed to determine the efficacy of the bovine MFGMin vivo.Rats were fed diets based on bovine skimmed milk powder (low in MFGM) or bovine sweet buttermilk powder (high in MFGM). After dietary adaptation, rats were orally infected withSalmonella enteritidisorListeria monocytogenes.Whereas sweet buttermilk powder did not protect rats against infection withS. enteritidis, it protected againstL. monocytogenes, as shown by a lower colonisation and translocation of this pathogen. Protection coincided with higher listericidal capacity of gastric and caecal contents. The digestion products of phosphoglycerides and sphingomyelin are bactericidalin vitro.To study their role, rats were fed diets containing either 0·1 % phosphatidylcholine or sphingomyelin, or a control diet. After dietary adaptation, rats were infected withL. monocytogenes.SinceListeriacolonisation was not affected by these diets, phosphoglycerides and sphingomyelin are not involved in the protective effect of sweet buttermilk. Additionalin vitroexperiments were performed to further explore the mechanism of the beneficial effects of sweet buttermilk. Inhibition of the adherence ofL. monocytogenesto the intestinal mucosa is the most likely explanation, since sweet buttermilk powder inhibited the binding ofL. monocytogenesin both a haemagglutination assay and a Caco-2 cell adherence assay. In conclusion, sweet buttermilk powder, which is rich in MFGM, protects againstL. monocytogenesinfection in rats, probably by preventing adherence of this pathogen to the intestinal mucosa.
Collapse
|
24
|
Wickramasinghe S, Hua S, Rincon G, Islas-Trejo A, German JB, Lebrilla CB, Medrano JF. Transcriptome profiling of bovine milk oligosaccharide metabolism genes using RNA-sequencing. PLoS One 2011; 6:e18895. [PMID: 21541029 PMCID: PMC3081824 DOI: 10.1371/journal.pone.0018895] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/24/2011] [Indexed: 12/21/2022] Open
Abstract
This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk.
Collapse
Affiliation(s)
- Saumya Wickramasinghe
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Serenus Hua
- Department of Chemistry, University of California Davis, Davis, California, United States of America
| | - Gonzalo Rincon
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - Alma Islas-Trejo
- Department of Animal Science, University of California Davis, Davis, California, United States of America
| | - J. Bruce German
- Department of Food Science and Technology, University of California Davis, Davis, California, United States of America
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, United States of America
| | - Juan F. Medrano
- Department of Animal Science, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Hoorens PR, Rinaldi M, Li RW, Goddeeris B, Claerebout E, Vercruysse J, Geldhof P. Genome wide analysis of the bovine mucin genes and their gastrointestinal transcription profile. BMC Genomics 2011; 12:140. [PMID: 21385362 PMCID: PMC3056801 DOI: 10.1186/1471-2164-12-140] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 03/07/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mucins are large glycoproteins implicated in protection of all mucosal surfaces. In humans and rodents, the mucin gene family has been well described and previous studies have investigated the distribution and function of mucins in the gastrointestinal (GI) tract. In contrast, little data is available on the mucin gene family in polygastric species, such as cattle. The aim of the current study was to identify all members of the bovine mucin family by genome mining and subsequently investigate the transcription pattern of these mucins in the GI tract. RESULTS Nine bovine membrane-associated mucins (MUC1, MUC3A, MUC4, MUC12, MUC13, MUC15, MUC16, MUC20 and MUC21) and six secreted mucins (MUC2, MUC5AC, MUC5B, MUC6, MUC7 and MUC19) were identified in the bovine genome. No homologues could be identified for MUC3B, MUC8 and MUC17. In general, domain architecture of the membrane-associated mucins was found to be similar between humans and cattle, while the protein architecture of the gel-forming mucins appeared to be less conserved. Further analysis of the genomic organization indicated that the previously reported bovine submaxillary mucin (BSM) may be part of a larger gene encoding for MUC19. Analysis of the transcription profile showed that the secreted mucins were transcribed from the abomasum onwards, whereas the membrane associated mucins MUC1 and MUC20 were transcribed throughout the whole GI tract. In contrast to humans, MUC5B transcript was found in both the small and large intestine, but was absent in oesophageal tissue. CONCLUSIONS This study provides the first characterization of the mucin gene family in cattle and their transcriptional regulation in the GI tract. The data presented in this paper will allow further studies of these proteins in the physiology of the GI tract in ruminants and their interactions with pathogens.
Collapse
Affiliation(s)
- Prisca R Hoorens
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Manuela Rinaldi
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Robert W Li
- Bovine Functional Genomics Laboratory, Animal and Natural Resources Institute, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Bruno Goddeeris
- Department Biosystems, Division Gene Technology, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 30, 3001 Leuven, Belgium
| | - Edwin Claerebout
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jozef Vercruysse
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Peter Geldhof
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
26
|
A potent mitogenic lectin from the mycelia of a phytopathogenic fungus, Rhizoctonia bataticola, with complex sugar specificity and cytotoxic effect on human ovarian cancer cells. Glycoconj J 2010; 27:375-86. [DOI: 10.1007/s10719-010-9285-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
|
27
|
Fong BY, Norris CS. Quantification of milk fat globule membrane proteins using selected reaction monitoring mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6021-6028. [PMID: 19537729 DOI: 10.1021/jf900511t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although some of the physiological roles of milk fat globule membrane (MFGM) proteins are still unclear, there is increasing evidence that the consumption of bovine MFGM proteins has significant nutritional health benefits for humans; therefore, it may be important to be able to estimate the MFGM proteins in complex ingredients. In this study, the absolute quantification (AQUA) technique, which is typically used for the quantification of proteins in proteomic studies, was applied for the quantification of bovine MFGM proteins in butter milk protein concentrate. Six MFGM proteins (fatty acid binding protein, butyrophilin, PAS 6/7, adipophilin, xanthine oxidase, and mucin 1) were simultaneously quantified using high-resolution selected reaction monitoring mass spectrometry. Samples were rehydrated in 6.7 M urea buffer prior to dilution to 2.2 M before tryspin digestion. Direct rehydration in 2.2 M urea buffer or 2.2 M urea/20% acetonitilrile buffer reduced peptide yield digestion. Isotopically labeled peptides were used as internal standards. The coefficient of variation ranged from 5 to 15%, with a recovery of 84-105%. The limit of detection was in the range of 20-40 pg.
Collapse
Affiliation(s)
- Bertram Y Fong
- Fonterra Research Centre, Palmerston North 4412, New Zealand.
| | | |
Collapse
|
28
|
|
29
|
Pallesen LT, Pedersen LRL, Petersen TE, Knudsen CR, Rasmussen JT. Characterization of human mucin (MUC15) and identification of ovine and caprine orthologs. J Dairy Sci 2009; 91:4477-83. [PMID: 19038922 DOI: 10.3168/jds.2008-1204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glycoprotein MUC15 (mucin 15) was initially isolated from the bovine milk fat globule membrane. The present work demonstrates the existence of immunologically similar proteins ( approximately 130 kDa) in ovine, caprine, porcine, and buffalo milk samples. Purification and N-terminal amino acid sequencing confirmed the presence of ovine and caprine MUC15 orthologs in milk fat globule membranes. Expression of MUC15 in human milk was demonstrated by immunostaining ( approximately 150 kDa) as well as by mass spectrometry. Screening of a human multiple tissue expression array showed abundant MUC15 gene expression in placenta, salivary gland, thyroid gland, trachea, esophagus, kidney, testis, and the leukemia K-562 cell line. Furthermore, moderate expression was seen in the pancreas, adult and fetal lung, fetal kidney, lymph node, adult and fetal thymus, and parietal lobe. Structural motifs for interactions (epidermal growth factor receptor and Src homology 2 domains) are identified in the intracellular region. Implication of the mucin in signal transduction and the potential physiological function of MUC15 are discussed.
Collapse
Affiliation(s)
- L T Pallesen
- Department of Molecular Biology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
30
|
Menzies KK, Lefèvre C, Macmillan KL, Nicholas KR. Insulin regulates milk protein synthesis at multiple levels in the bovine mammary gland. Funct Integr Genomics 2008; 9:197-217. [PMID: 19107532 DOI: 10.1007/s10142-008-0103-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 01/24/2023]
Abstract
The role of insulin in milk protein synthesis is unresolved in the bovine mammary gland. This study examined the potential role of insulin in the presence of two lactogenic hormones, hydrocortisone and prolactin, in milk protein synthesis. Insulin was shown to stimulate milk protein gene expression, casein synthesis and (14)C-lysine uptake in mammary explants from late pregnant cows. A global assessment of changes in gene expression in mammary explants in response to insulin was undertaken using Affymetrix microarray. The resulting data provided insight into the molecular mechanisms stimulated by insulin and showed that the hormone stimulated the expression of 28 genes directly involved in protein synthesis. These genes included the milk protein transcription factor, ELF5, translation factors, the folate metabolism genes, FOLR1 and MTHFR, as well as several genes encoding enzymes involved in catabolism of essential amino acids and biosynthesis of non-essential amino acids. These data show that insulin is not only essential for milk protein gene expression, but stimulates milk protein synthesis at multiple levels within bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Karensa K Menzies
- Department of Zoology, University of Melbourne, Parkville, VIC, Australia.
| | | | | | | |
Collapse
|
31
|
Wilson NL, Robinson LJ, Donnet A, Bovetto L, Packer NH, Karlsson NG. Glycoproteomics of Milk: Differences in Sugar Epitopes on Human and Bovine Milk Fat Globule Membranes. J Proteome Res 2008; 7:3687-96. [DOI: 10.1021/pr700793k] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicole L. Wilson
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Leanne J. Robinson
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Anne Donnet
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Lionel Bovetto
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Nicolle H. Packer
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | - Niclas G. Karlsson
- Proteome Systems Limited, Locked Bag 2073, North Ryde, Sydney, NSW 1670, Australia, and Nestlé Research Center, P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| |
Collapse
|