1
|
Leishman EM, You J, Ferreira NT, Adams SM, Tulpan D, Zuidhof MJ, Gous RM, Jacobs M, Ellis JL. Review: When worlds collide - poultry modeling in the 'Big Data' era. Animal 2023; 17 Suppl 5:100874. [PMID: 37394324 DOI: 10.1016/j.animal.2023.100874] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Within poultry production systems, models have provided vital decision support, opportunity analysis, and performance optimization capabilities to nutritionists and producers for decades. In recent years, due to the advancement of digital and sensor technologies, 'Big Data' streams have emerged, optimally positioned to be analyzed by machine-learning (ML) modeling approaches, with strengths in forecasting and prediction. This review explores the evolution of empirical and mechanistic models in poultry production systems, and how these models may interact with new digital tools and technologies. This review will also examine the emergence of ML and Big Data in the poultry production sector, and the emergence of precision feeding and automation of poultry production systems. There are several promising directions for the field, including: (1) application of Big Data analytics (e.g., sensor-based technologies, precision feeding systems) and ML methodologies (e.g., unsupervised and supervised learning algorithms) to feed more precisely to production targets given a 'known' individual animal, and (2) combination and hybridization of data-driven and mechanistic modeling approaches to bridge decision support with improved forecasting capabilities.
Collapse
Affiliation(s)
- E M Leishman
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - J You
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - N T Ferreira
- Trouw Nutrition Canada, Puslinch, Ontario, Canada
| | - S M Adams
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - D Tulpan
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - M J Zuidhof
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - R M Gous
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - M Jacobs
- FR Analytics B.V., 7642 AP Wierden, The Netherlands
| | - J L Ellis
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Weiby KV, Krizsan SJ, Dønnem I, Østrem L, Eknæs M, Steinshamn H. Effect of grassland cutting frequency, species mixture, wilting and fermentation pattern of grass silages on in vitro methane yield. Sci Rep 2023; 13:4806. [PMID: 36959499 PMCID: PMC10036558 DOI: 10.1038/s41598-023-31964-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
Mitigating enteric methane (CH4) emissions is crucial as ruminants account for 5% of global greenhouse gas emissions. We hypothesised that less frequent harvesting, use of crops with lower WSC concentration, ensiling at low crop dry matter (DM) and extensive lactic acid fermentation would reduce in vitro CH4 production. Timothy (T), timothy + red clover mixture (T + RC) or perennial ryegrass (RG), cut either two or three times per season, was wilted to 22.5% or 37.5% DM and ensiled with or without formic acid-based additive. Silages were analysed for chemical composition and fermentation products. In vitro CH4 production was measured using an automated gas in vitro system. Methane production was, on average, 2.8 mL/g OM lower in the two-cut system than in the three-cut system (P < 0.001), and 1.9 mL/g OM lower in T than in RG (P < 0.001). Silage DM did not affect CH4 production (P = 0.235), but formic acid increased CH4 production by 1.2 mL/g OM compared to the untreated silage (P = 0.003). In conclusion, less frequent harvesting and extensive silage fermentation reduce in vitro CH4 production, while RG in comparison to T resulted in higher production of CH4.
Collapse
Affiliation(s)
- Kim Viggo Weiby
- Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Ås, Norway
- TINE SA, BTB-NMBU, PO Box 5003, 1432, Ås, Norway
| | - Sophie J Krizsan
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Ingjerd Dønnem
- Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Liv Østrem
- Division of Food Production and Society, Department of Grassland and Livestock, Norwegian Institute of Bioeconomy Research (NIBIO), 6967, Hellevik i Fjaler, Norway
| | - Margrete Eknæs
- Faculty of Biosciences, Norwegian University of Life Sciences, 1432, Ås, Norway
| | - Håvard Steinshamn
- Division of Food Production and Society, Department of Grassland and Livestock, Norwegian Institute of Bioeconomy Research (NIBIO), 6630, Tingvoll, Norway.
| |
Collapse
|
3
|
Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E. Invited review: Current enteric methane mitigation options. J Dairy Sci 2022; 105:9297-9326. [DOI: 10.3168/jds.2022-22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 11/06/2022]
|
4
|
Giller K, Bossut L, Eggerschwiler L, Terranova M. In vitro ruminal fermentation, methane production and nutrient degradability as affected by fruit and vegetable pomaces in differing concentrations. J Anim Physiol Anim Nutr (Berl) 2022; 106:957-967. [PMID: 34704301 PMCID: PMC10286642 DOI: 10.1111/jpn.13656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
Pomaces are food industry by-products and may serve as animal feed to increase sustainability of meat and milk production. The aim of the present study was to evaluate fermentation characteristics of dried fruit and vegetable pomaces in a short-term in vitro experiment using the Hohenheim Gas Test. A selection of six fruit (apple, aronia, orange, pomegranate, red, white grape) and three vegetable (beetroot, carrot, tomato) pomaces was tested in three concentrations (150, 300, 500 g kg-1 of dry matter (DM)) as supplement to the basal diet (hay, used as control). Three runs were performed, using rumen fluid from one of three different rumen-cannulated cows in each run. Per run, each compound was tested in duplicate. After 24 h incubation, total gas production, methane and CO2 concentration, short-chain fatty acids, in vitro organic matter digestibility as well as microbial counts were determined. In addition, the pomaces' polyphenol content including the fractions non-tannin phenols, condensed tannins and hydrolysable tannins were analysed. Most pomaces did not significantly affect rumen fermentation characteristics in any of the tested dosages and may thus be applied in ruminant nutrition without adverse effects. Aronia significantly decreased (-14.5%) the organic matter digestibility in the highest concentration whereas apple (+12%), carrot (+10%) and beetroot (+8%) increased gas formation related to digestible organic matter. The 500 g kg-1 dosage of pomegranate significantly decreased methane formation by about 28% without impairing digestibility. Pomegranate was the only pomace of those high in total tannins that contained exceptionally high amounts of hydrolysable (90% of total tannins) and proportionally low amounts of condensed tannins (10% of total tannins), indicating that the hydrolysable tannins most likely reduced the methane production. Therefore, pomegranate pomace may be an interesting option for a methane mitigating feed supplement in ruminants and should be considered for following in vivo testing.
Collapse
Affiliation(s)
- Katrin Giller
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| | - Laura Bossut
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
- Present address:
ONIRISNantes‐Atlantic National College of Veterinary Medicine, Food Science and EngineeringNantesFrance
| | | | - Melissa Terranova
- Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
| |
Collapse
|
5
|
Batalha CDA, Franklin de Souza Congio G, Chiavegato MB, Berndt A, Frighetto RTS, Santos FAP, Da Silva SC. Effect of timing of paddock allocation in tropical grass on performance, nitrogen excretion, and enteric methane emissions from dairy cows. Anim Sci J 2022; 93:e13734. [PMID: 35537860 DOI: 10.1111/asj.13734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate the influence of timing of paddock allocation (AM or PM) in tropical grass on nutritive value of the herbage, dry matter intake (DMI), milk yield and composition, ruminal fermentation, nitrogen excretion, and enteric CH4 emissions of dairy cows. Twenty cows were grouped in pairs and randomly distributed within pair to one of two treatments. PM herbage had greater contents of dry matter (DM), soluble carbohydrates, starch, and nonfibrous carbohydrate to protein ratio and lower contents of neutral detergent fiber and acid detergent fiber. There was no treatment effect on DMI, N excretion, milk yield, and CH4 emissions. However, milk protein and casein yields tended to be greater for PM than AM, while milk urea nitrogen concentration was lower for PM than AM. The increase in nutritive value of the afternoon relative to the morning herbage within the framework of this study was not large enough to increase DMI and milk yield or to decrease CH4 emission intensity by the dairy cows as hypothesized. The findings indicate that PM treatment can be a simple and useful grazing strategy that results in an herbage harvest with greater nutritional value and in lower excretion of urea N into milk.
Collapse
Affiliation(s)
- Camila Delveaux Araujo Batalha
- Animal Science Department, "Luiz de Queiroz" College of Agriculture (USP/ESALQ), University of São Paulo, Piracicaba, Brazil
| | | | | | | | | | - Flávio Augusto Portela Santos
- Animal Science Department, "Luiz de Queiroz" College of Agriculture (USP/ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Sila Carneiro Da Silva
- Animal Science Department, "Luiz de Queiroz" College of Agriculture (USP/ESALQ), University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
6
|
Weiby KV, Krizsan SJ, Eknæs M, Schwarm A, Whist AC, Schei I, Steinshamn H, Lund P, Beauchemin KA, Dønnem I. Animal Feed Science and TechnologyAssociations among nutrient concentration, silage fermentation products, in vivo organic matter digestibility, rumen fermentation and in vitro methane yield in 78 grass silages. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Villalba JJ, Ates S, MacAdam JW. Non-fiber Carbohydrates in Forages and Their Influence on Beef Production Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.566338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Forages can provide a complete diet for ruminant animals, increasing the sustainability of beef production systems worldwide while reducing competition with humans for agricultural land or grain crops. Much of the emphasis on the nutritional characteristics of forages has been on the fiber, sugars, starch, and protein they supply to the rumen, despite the fact that other less-explored constituents, i.e., neutral detergent soluble fiber (NDSF) and other non-structural or non-fiber carbohydrates (NFC) also play a key role in the nutrition of ruminants. This paper explores the less investigated potential of temperate legumes to accumulate levels of NFC comparable to corn silage or beet pulp in cool, dry environments under irrigation, and its implications for forage-based beef production systems. We conclude that genetic or managerial interventions (i.e., breeding programs, defoliation frequency) or ecological conditions (i.e., climate, elevation) that increase concentrations of NFC in legumes can enhance beef production, meat quality, and the efficiency of nitrogen utilization by ruminants while reducing environmental impacts.
Collapse
|
8
|
Gaviria-Uribe X, Bolivar DM, Rosenstock TS, Molina-Botero IC, Chirinda N, Barahona R, Arango J. Nutritional Quality, Voluntary Intake and Enteric Methane Emissions of Diets Based on Novel Cayman Grass and Its Associations With Two Leucaena Shrub Legumes. Front Vet Sci 2020; 7:579189. [PMID: 33195587 PMCID: PMC7606858 DOI: 10.3389/fvets.2020.579189] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Methane (CH4) emissions from enteric fermentation in cattle are an important source of greenhouse gases, accounting for about 40% of all agricultural emissions. Diet quality plays a fundamental role in determining the magnitude of CH4 emissions. Specifically, the inclusion of feeds with high digestibility and nutritional value have been reported to be a viable option for reducing CH4 emissions and, simultaneously, increase animal productivity. The present study aimed to evaluate the effect of the nutritional composition and voluntary intake of diets based on tropical forages upon CH4 emissions from zebu steers. Five treatments (diets) were evaluated: Cay1: Urochloa hybrid cv. Cayman (harvested after 65 days of regrowth: low quality); Cay2: cv. Cayman harvested after 45 days of regrowth; CayLl: cv. Cayman + Leucaena leucocephala; CayLd: cv. Cayman + Leucaena diversifolia; Hay: Dichantium aristatum hay as a comparator of common naturalized pasture. For each diet representing different levels of intensification (naturalized pasture, improved pasture, and silvopastoral systems), CH4 emissions were measured using the polytunnel technique with four zebu steers housed in individual chambers. The CH4 accumulated was monitored using an infrared multigas analyzer, and the voluntary forage intake of each animal was calculated. Dry matter intake (DMI, % of body weight) ranged between 0.77 and 2.94 among diets offered. Emissions of CH4 per kg of DMI were significantly higher (P < 0.0001) in Cay1 (60.4 g), compared to other treatments. Diets that included Leucaena forage legumes had generally higher crude protein contents and higher DMI. Cay1 and Hay which had low protein content and digestibility had a higher CH4 emission intensity (per unit live weight gain) compared to Cay2, CayLl and CayLd. Our results suggest that grass consumed after a regrowth period of 45 days results in lower CH4 emissions intensities compared to those observed following a regrowth period of 65 days. Diets with Leucaena inclusion showed advantages in nutrient intake that are reflected in greater live weight gains of cattle. Consequently, the intensity of the emissions generated in the legume-based systems were lower suggesting that they are a good option for achieving the emission reduction goals of sustainable tropical cattle production.
Collapse
Affiliation(s)
- Xiomara Gaviria-Uribe
- Grupo de Investigación BIOGEM, Departamento de Producción Animal, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, Colombia
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Diana M. Bolivar
- Grupo de Investigación BIOGEM, Departamento de Producción Animal, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Todd S. Rosenstock
- World Agroforestry Centre (ICRAF), Kinshasa, Democratic Republic of Congo
- Consortium of International Agricultural Research Centers (CGIAR) Research Program on Climate Change, Agriculture and Food Security, Kinshasa, Democratic Republic of Congo
| | | | | | - Rolando Barahona
- Grupo de Investigación BIOGEM, Departamento de Producción Animal, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Jacobo Arango
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
9
|
Wang C, Hou F, Wanapat M, Yan T, Kim EJ, Scollan ND. Assessment of cutting time on nutrient values, in vitro fermentation and methane production among three ryegrass cultivars. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1242-1251. [PMID: 32054228 PMCID: PMC7322649 DOI: 10.5713/ajas.19.0369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/19/2019] [Accepted: 09/10/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The 3×3 factorial arrangement was used to investigate if either high watersoluble carbohydrates (WSC) cultivars or suitable time of day that the grass cut could improve nutrient values and in vitro fermentation characteristics. METHODS The 3 cultivars were mowed at 3 diurnal time points and included a benchmark WSC ryegrass cultivar 'Premium', and 2 high WSC cultivars AberAvon and AberMagic, which contained, on average, 157, 173, and 193 g/kg dry matter (DM) of WSC, and 36.0, 36.5, and 34.1 g/kg DM of N during 7th regrowth stage, respectively. The fermentation jars were run at 39°C with gas production recorded and sampled at 2, 5, 8, 11, 14, 17, 22, 28, 36, and 48 h. The rumen liquid was collected from 3 rumen fistulated cows grazing on ryegrass pasture. RESULTS High WSC cultivars had significantly greater WSC content, in vitro DM digestibility (IVDMD) and total gas production (TGP), and lower lag time than Premium cultivar. Methane production for AberMagic cultivar containing lower N concentration was marginally lower than that for AberAvon and Premium cultivars. Grass cut at Noon or PM contained greater WSC concentration, IVDMD and TGP, and lower N and neutral detergent fiber (NDF) contents, but CH4 production was also increased, compared to grass cut in AM. Meanwhile, the effects of diurnal cutting time were influenced by cultivars, such as in vitro CH4 production for AberMagic was not affected by cutting time. The IVDMD and gas production per unit of DM incubated were positively related to WSC concentration, WSC/N and WSC/NDF, respectively, and negatively related to N and NDF concentrations. CONCLUSION These results imply either grass cut in Noon or PM or high WSC cultivars could improve nutrient values, IVDMD and in vitro TGP, and that AberMagic cultivar has a slightly lower CH4 production compared to AberAvon and Premium. Further study is necessary to determine whether the increase of CH4 production response incurred by shifting from AM cutting to Noon and/or PM cutting could be compensated for by high daily gain from increased WSC concentration and DM digestibility.
Collapse
Affiliation(s)
- Chunmei Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu,
China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu,
China
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002,
Thailand
| | - Tianhai Yan
- Agri-Food and Biosciences Institute, Hillsborough, Co Down BT26 6DR,
United Kingdom
| | - Eun Joong Kim
- Department of Animal Science, Kyungpook National University, Sangju 37222,
Korea
| | - Nigel David Scollan
- Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG,
United Kingdom
| |
Collapse
|
10
|
Szalanski M, Kristensen T, Difford G, Lassen J, Buitenhuis AJ, Pszczola M, Løvendahl P. Enteric methane emission from Jersey cows during the spring transition from indoor feeding to grazing. J Dairy Sci 2019; 102:6319-6329. [PMID: 31103308 DOI: 10.3168/jds.2018-15984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/15/2019] [Indexed: 11/19/2022]
Abstract
Organic dairy cows in Denmark are often kept indoors during the winter and outside at least part time in the summer. Consequently, their diet changes by the season. We hypothesized that grazing might affect enteric CH4 emissions due to changes in the nutrition, maintenance, and activity of the cows, and they might differentially respond to these factors. This study assessed the repeatability of enteric CH4 emission measurements for Jersey cattle in a commercial organic dairy herd in Denmark. It also evaluated the effects of a gradual transition from indoor winter feeding to outdoor spring grazing. Further, it assessed the individual-level correlations between measurements during the consecutive feeding periods (phenotype × environment, P × E) as neither pedigrees nor genotypes were available to estimate a genotype by environment effect. Ninety-six mixed-parity lactating Jersey cows were monitored for 30 d before grazing and for 24 d while grazing. The cows spent 8 to 11 h grazing each day and had free access to an in-barn automatic milking system (AMS). For each visit to the AMS, milk yield was recorded and logged along with date and time. Monitoring equipment installed in the AMS feed bins continuously measured enteric CH4 and CO2 concentrations (ppm) using a noninvasive "sniffer" method. Raw enteric CH4 and CO2 concentrations and their ratio (CH4:CO2) were derived from average concentrations measured during milking and per day for each cow. We used mixed models equations to estimate variance components and adjust for the fixed and random effects influencing the analyzed gas concentrations. Univariate models were used to precorrect the gas measurements for diurnal variation and to estimate the direct effect of grazing on the analyzed concentrations. A bivariate model was used to assess the correlation between the 2 periods (in-barn vs. grazing) for each gas concentration. Grazing had a weak P × E interaction for daily average CH4 and CO2 gas concentrations. Bivariate repeatability estimates for average CH4 and CO2 concentrations and CH4:CO2 were 0.77 to 0.78, 0.73 to 0.80, and 0.26, respectively. Repeatability for CH4:CO2 was low (0.26) but indicated some between-animal variation. In conclusion, grazing does not create significant shifts compared with indoor feeding in how animals rank for average CH4 and CO2 concentrations and CH4:CO2. We found no evidence that separate evaluation is needed to quantify enteric CH4 and CO2 emissions from Jersey cows during in-barn and grazing periods.
Collapse
Affiliation(s)
- Marcin Szalanski
- QGG-MBG, Dept. Molecular Biology and Genetics, Aarhus University, AU-Foulum, DK-8830 Tjele, Denmark.
| | - Troels Kristensen
- AGRO, Dept. Agroecology, Aarhus University, AU-Foulum, DK-8830 Tjele, Denmark
| | - Gareth Difford
- QGG-MBG, Dept. Molecular Biology and Genetics, Aarhus University, AU-Foulum, DK-8830 Tjele, Denmark; Wageningen University & Research Animal Breeding and Genomics, 6700 AH Wageningen, the Netherlands
| | - Jan Lassen
- QGG-MBG, Dept. Molecular Biology and Genetics, Aarhus University, AU-Foulum, DK-8830 Tjele, Denmark; Viking Genetics, Ebeltoftvej 16, 8960 Randers, Denmark
| | - Albert J Buitenhuis
- QGG-MBG, Dept. Molecular Biology and Genetics, Aarhus University, AU-Foulum, DK-8830 Tjele, Denmark
| | - Marcin Pszczola
- Department of Genetics and Animal Breeding, University of Life Sciences in Poznan, Wołyńska 33, 60-637 Poznań, Poland
| | - Peter Løvendahl
- QGG-MBG, Dept. Molecular Biology and Genetics, Aarhus University, AU-Foulum, DK-8830 Tjele, Denmark
| |
Collapse
|
11
|
Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Albores-Moreno S, Alayón-Gamboa JA, Miranda-Romero LA, Alarcón-Zúñiga B, Jiménez-Ferrer G, Ku-Vera JC, Piñeiro-Vázquez AT. Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants. Trop Anim Health Prod 2019; 51:893-904. [PMID: 30554366 DOI: 10.1007/s11250-018-1772-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/04/2018] [Indexed: 01/15/2023]
Abstract
The objective of this study was to evaluate the influence of tree foliage species supplemented in ruminant diets based on Pennisetum purpureum on the in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production. Seven experimental diets were evaluated, including a control treatment based on P. purpureum (PT) grass, and six additional treatments supplemented with 30.0% foliage from Neomillspaughia emargiata (NE), Tabernaemontana amygdalifolia (TA), Caesalpinia gaumeri (CG), Piscidia piscipula (PP), Leucaena leucocephala (LL) and Havardia albicans (HA). A randomised complete block design repeated in two periods (block) was used. The highest gas production (P < 0.05) was recorded in treatments TA and PT (237 and 228 mL g-1, respectively). The highest in vitro digestibility of dry matter (IVDMD) and organic matter (IVOMD) (P < 0.05) was recorded in the control treatment PT (57.9% and 66.1%, respectively). Treatments LL, NE, TA and PP promoted greater microbial biomass synthesis (290, 223, 220 and 213 mg g-1, respectively) (P < 0.05). The proportion of propionic acid also increased in these latter treatments and in treatments CG and HA (P < 0.05). Additionally, treatments LL, PP, NE and TA decreased methane production (25.8, 29.5, 30.6 and 31.8 L kg-1 of digested dry matter, respectively). In conclusion, supplementation with L. leucocephala, P. piscipula, N. emargiata and T. amygdalifolia in ruminant diets based on P. purpureum is one feed alternative that can promote greater efficiency and synthesis of microbial biomass, increase the proportions of propionic and butyric acid and decrease the production of enteric methane by 15.6 to 31.6%.
Collapse
Affiliation(s)
- S Albores-Moreno
- Southern Frontier College, Avenida Rancho, Polígono 2-A, Ciudad Industrial, Lerma, 24500, Campeche, Mexico
| | - J A Alayón-Gamboa
- Southern Frontier College, Avenida Rancho, Polígono 2-A, Ciudad Industrial, Lerma, 24500, Campeche, Mexico.
| | - L A Miranda-Romero
- Graduate Department of Animal Production, Autonomous University of Chapingo, Km. 38.5 Carretera Mexico-Texcoco, 56230, Chapingo, Mexico
| | - B Alarcón-Zúñiga
- Graduate Department of Animal Production, Autonomous University of Chapingo, Km. 38.5 Carretera Mexico-Texcoco, 56230, Chapingo, Mexico
| | - G Jiménez-Ferrer
- Southern Frontier College, Avenida Rancho, Polígono 2-A, Ciudad Industrial, Lerma, 24500, Campeche, Mexico
| | - J C Ku-Vera
- Department of Veterinary Medicine and Animal Science, Autonomous University of Yucatan, 97300, Merida, Yucatan, Mexico
| | - A T Piñeiro-Vázquez
- Technological Institute of Conkal, Division of Graduate Studies and Research, Avenida Tecnológico s/n, 97345, Conkal, Yucatan, Mexico
| |
Collapse
|
13
|
Climate Change and Goat Production: Enteric Methane Emission and Its Mitigation. Animals (Basel) 2018; 8:ani8120235. [PMID: 30544616 PMCID: PMC6316019 DOI: 10.3390/ani8120235] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/25/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Given that goats are considered more climate resilient than other ruminant species, research efforts are therefore needed to understand goat productivity during exposure to high ambient temperatures. Heat stress can affect the digestion and rumen fermentation pattern of goats, which contributes to the reduction in production performance in goats. Diet composition, breed and environmental stresses are common factors which negatively influence rumen function and enteric methane (CH4) emission. There are three mechanisms by which enteric CH4 can be reduced: targeting end product of digestion to propionate, providing alternate hydrogen sink and selectively inactivating rumen methanogens. The various strategies that can be implemented to mitigate enteric CH4 include nutritional interventions, management strategies and application of advanced biotechnological tools. Abstract The ability of an animal to cope and adapt itself to the changing climate virtually depends on the function of rumen and rumen inhabitants such as bacteria, protozoa, fungi, virus and archaea. Elevated ambient temperature during the summer months can have a significant influence on the basic physiology of the rumen, thereby affecting the nutritional status of the animals. Rumen volatile fatty acid (VFA) production decreases under conditions of extreme heat. Growing recent evidence suggests there are genetic variations among breeds of goats in the impact of heat stress on rumen fermentation pattern and VFA production. Most of the effects of heat stress on rumen fermentation and enteric methane (CH4) emission are attributed to differences in the rumen microbial population. Heat stress-induced rumen function impairment is mainly associated with an increase in Streptococcus genus bacteria and with a decrease in the bacteria of Fibrobactor genus. Apart from its major role in global warming and greenhouse effect, enteric CH4 is also considered as a dietary energy loss in goats. These effects warrant mitigating against CH4 production to ensure optimum economic return from goat farming as well as to reduce the impact on global warming as CH4 is one of the more potent greenhouse gases (GHG). The various strategies that can be implemented to mitigate enteric CH4 emission include nutritional interventions, different management strategies and applying advanced biotechnological tools to find solution to reduce CH4 production. Through these advanced technologies, it is possible to identify genetically superior animals with less CH4 production per unit feed intake. These efforts can help the farming community to sustain goat production in the changing climate scenario.
Collapse
|
14
|
Rotz CA. Modeling greenhouse gas emissions from dairy farms. J Dairy Sci 2018; 101:6675-6690. [DOI: 10.3168/jds.2017-13272] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/24/2017] [Indexed: 11/19/2022]
|
15
|
Joyce A, Ijaz UZ, Nzeteu C, Vaughan A, Shirran SL, Botting CH, Quince C, O’Flaherty V, Abram F. Linking Microbial Community Structure and Function During the Acidified Anaerobic Digestion of Grass. Front Microbiol 2018; 9:540. [PMID: 29619022 PMCID: PMC5871674 DOI: 10.3389/fmicb.2018.00540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Harvesting valuable bioproducts from various renewable feedstocks is necessary for the critical development of a sustainable bioeconomy. Anaerobic digestion is a well-established technology for the conversion of wastewater and solid feedstocks to energy with the additional potential for production of process intermediates of high market values (e.g., carboxylates). In recent years, first-generation biofuels typically derived from food crops have been widely utilized as a renewable source of energy. The environmental and socioeconomic limitations of such strategy, however, have led to the development of second-generation biofuels utilizing, amongst other feedstocks, lignocellulosic biomass. In this context, the anaerobic digestion of perennial grass holds great promise for the conversion of sustainable renewable feedstock to energy and other process intermediates. The advancement of this technology however, and its implementation for industrial applications, relies on a greater understanding of the microbiome underpinning the process. To this end, microbial communities recovered from replicated anaerobic bioreactors digesting grass were analyzed. The bioreactors leachates were not buffered and acidic pH (between 5.5 and 6.3) prevailed at the time of sampling as a result of microbial activities. Community composition and transcriptionally active taxa were examined using 16S rRNA sequencing and microbial functions were investigated using metaproteomics. Bioreactor fraction, i.e., grass or leachate, was found to be the main discriminator of community analysis across the three molecular level of investigation (DNA, RNA, and proteins). Six taxa, namely Bacteroidia, Betaproteobacteria, Clostridia, Gammaproteobacteria, Methanomicrobia, and Negativicutes accounted for the large majority of the three datasets. The initial stages of grass hydrolysis were carried out by Bacteroidia, Gammaproteobacteria, and Negativicutes in the grass biofilms, in addition to Clostridia in the bioreactor leachates. Numerous glycolytic enzymes and carbohydrate transporters were detected throughout the bioreactors in addition to proteins involved in butanol and lactate production. Finally, evidence of the prevalence of stressful conditions within the bioreactors and particularly impacting Clostridia was observed in the metaproteomes. Taken together, this study highlights the functional importance of Clostridia during the anaerobic digestion of grass and thus research avenues allowing members of this taxon to thrive should be explored.
Collapse
Affiliation(s)
- Aoife Joyce
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Umer Z. Ijaz
- Environmental Omics Laboratory, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Corine Nzeteu
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aoife Vaughan
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, University of St Andrews, Fife, United Kingdom
| | - Catherine H. Botting
- Biomedical Sciences Research Complex, University of St Andrews, Fife, United Kingdom
| | - Christopher Quince
- Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
16
|
Jonker A, Molano G, Sandoval E, Taylor PS, Antwi C, Olinga S, Cosgrove GP. Methane emissions differ between sheep offered a conventional diploid, a high-sugar diploid or a tetraploid perennial ryegrass cultivar at two allowances at three times of the year. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Elevated water-soluble carbohydrate (WSC) concentration in the diet may affect rumen fermentation and consequently reduce methane (CH4) emissions. The objective of the present study was to determine CH4 emissions from male sheep (8 per treatment) in respiration chambers for 48 h and fed either a conventional diploid (CRG), a high-sugar diploid (HSG) or a tetraploid (TRG) perennial ryegrass cultivar, each offered at 0.7 or 1.0 kg dry matter (DM)/day during periods in early spring 2013 (P1), early autumn 2014 (P2) and late spring 2014 (P3). There was a significant (P < 0.001) interaction between cultivar and period for CH4 yield (g/kg DM intake). In P1 yield was 9% lower (P = 0.007) for sheep fed HSG than for sheep fed CRG or TRG, in P2 yield was 16% lower (P < 0.001) for sheep fed TRG than that for sheep fed CRG or HSG, and in P3 yield was 15% lower (P < 0.001) for sheep fed TRG than that for sheep fed CRG, with HSG-fed sheep being intermediate and not significantly different from either CRG or TRG. Despite there being a cultivar × period interaction, overall, CH4 yield was lower for sheep fed HSG or TRG than for sheep fed CRG (P < 0.001). There were no cultivar × level of feed offer interactions and, overall, yield of CH4 was 9% higher (P = 0.003) for sheep offered 0.7 than for sheep offered 1.0 kg DM/day. In each period, one or other of the high-WSC diploid (HSG) or tetraploid cultivars (TRG) gave lower CH4 yields than did the control diploid (CRG), suggesting that CH4 yield is reduced by characteristics of these cultivars. However, the effect was not consistently associated with either cultivar and could not be attributed to higher forage water-soluble carbohydrate concentrations.
Collapse
|
17
|
Singer SD, Weselake RJ, Acharya S. Molecular Enhancement of Alfalfa: Improving Quality Traits for Superior Livestock Performance and Reduced Environmental Impact. CROP SCIENCE 2018; 58:55-71. [PMID: 0 DOI: 10.2135/cropsci2017.07.0434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Stacy D. Singer
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| | - Randall J. Weselake
- Dep. of Agricultural, Food and Nutritional Science; Univ. of Alberta; Edmonton AB Canada T6G 2P5
| | - Surya Acharya
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| |
Collapse
|
18
|
Kaur P, Appels R, Bayer PE, Keeble-Gagnere G, Wang J, Hirakawa H, Shirasawa K, Vercoe P, Stefanova K, Durmic Z, Nichols P, Revell C, Isobe SN, Edwards D, Erskine W. Climate Clever Clovers: New Paradigm to Reduce the Environmental Footprint of Ruminants by Breeding Low Methanogenic Forages Utilizing Haplotype Variation. FRONTIERS IN PLANT SCIENCE 2017; 8:1463. [PMID: 28928752 PMCID: PMC5591941 DOI: 10.3389/fpls.2017.01463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/07/2017] [Indexed: 05/15/2023]
Abstract
Mitigating methane production by ruminants is a significant challenge to global livestock production. This research offers a new paradigm to reduce methane emissions from ruminants by breeding climate-clever clovers. We demonstrate wide genetic diversity for the trait methanogenic potential in Australia's key pasture legume, subterranean clover (Trifolium subterraneum L.). In a bi-parental population the broadsense heritability in methanogenic potential was moderate (H2 = 0.4) and allelic variation in a region of Chr 8 accounted for 7.8% of phenotypic variation. In a genome-wide association study we identified four loci controlling methanogenic potential assessed by an in vitro fermentation system. Significantly, the discovery of a single nucleotide polymorphism (SNP) on Chr 5 in a defined haplotype block with an upstream putative candidate gene from a plant peroxidase-like superfamily (TSub_g18548) and a downstream lectin receptor protein kinase (TSub_g18549) provides valuable candidates for an assay for this complex trait. In this way haplotype variation can be tracked to breed pastures with reduced methanogenic potential. Of the quantitative trait loci candidates, the DNA-damage-repair/toleration DRT100-like protein (TSub_g26967), linked to avoid the severity of DNA damage induced by secondary metabolites, is considered central to enteric methane production, as are disease resistance (TSub_g26971, TSub_g26972, and TSub_g18549) and ribonuclease proteins (TSub_g26974, TSub_g26975). These proteins are good pointers to elucidate the genetic basis of in vitro microbial fermentability and enteric methanogenic potential in subterranean clover. The genes identified allow the design of a suite of markers for marker-assisted selection to reduce rumen methane emission in selected pasture legumes. We demonstrate the feasibility of a plant breeding approach without compromising animal productivity to mitigate enteric methane emissions, which is one of the most significant challenges to global livestock production.
Collapse
Affiliation(s)
- Parwinder Kaur
- Centre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, Australia
- School of Agriculture and Environment, The University of Western Australia, CrawleyWA, Australia
- Institute of Agriculture, The University of Western Australia, CrawleyWA, Australia
- Centre for Personalised Medicine for Children, Telethon Kids Institute, SubiacoWA, Australia
- *Correspondence: Parwinder Kaur,
| | | | - Philipp E. Bayer
- School of Biological Sciences, The University of Western Australia, CrawleyWA, Australia
| | | | - Jiankang Wang
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural SciencesBeijing, China
| | | | | | - Philip Vercoe
- School of Agriculture and Environment, The University of Western Australia, CrawleyWA, Australia
- Institute of Agriculture, The University of Western Australia, CrawleyWA, Australia
| | - Katia Stefanova
- Institute of Agriculture, The University of Western Australia, CrawleyWA, Australia
- Department of Agriculture and Food Western Australia, South PerthWA, Australia
| | - Zoey Durmic
- School of Agriculture and Environment, The University of Western Australia, CrawleyWA, Australia
- Institute of Agriculture, The University of Western Australia, CrawleyWA, Australia
| | - Phillip Nichols
- Centre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, Australia
- Department of Agriculture and Food Western Australia, South PerthWA, Australia
| | - Clinton Revell
- Centre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, Australia
- Department of Agriculture and Food Western Australia, South PerthWA, Australia
| | | | - David Edwards
- Institute of Agriculture, The University of Western Australia, CrawleyWA, Australia
- School of Biological Sciences, The University of Western Australia, CrawleyWA, Australia
| | - William Erskine
- Centre for Plant Genetics and Breeding, The University of Western Australia, CrawleyWA, Australia
- School of Agriculture and Environment, The University of Western Australia, CrawleyWA, Australia
- Institute of Agriculture, The University of Western Australia, CrawleyWA, Australia
| |
Collapse
|
19
|
Sutter F, Schwarm A, Kreuzer M. Development of nitrogen and methane losses in the first eight weeks of lactation in Holstein cows subjected to deficiency of utilisable crude protein under restrictive feeding conditions. Arch Anim Nutr 2016; 71:1-20. [DOI: 10.1080/1745039x.2016.1258880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Bannink A, Warner D, Hatew B, Ellis JL, Dijkstra J. Quantifying effects of grassland management on enteric methane emission. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an15594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Data on the effect of grassland management on the nutritional characteristics of fresh and conserved grass, and on enteric methane (CH4) emission in dairy cattle, are sparse. In the present study, an extant mechanistic model of enteric fermentation was evaluated against observations on the effect of grassland management on CH4 emission in three trials conducted in climate-controlled respiration chambers. Treatments were nitrogen fertilisation rate, stage of maturity of grass and level of feed intake, and mean data of a total of 18 treatments were used (4 grass herbage treatments and 14 grass silage treatments). There was a wide range of observed organic matter (OM) digestibility (from 68% to 84%) and CH4 emission intensity (from 5.6% to 7.3% of gross energy intake; from 27.4 to 36.9 g CH4/kg digested OM; from 19.7 to 24.6 g CH4/kg dry matter) among treatment means. The model predicted crude protein, fibre and OM digestibility with reasonable accuracy (root of mean square prediction errors as % of observed mean, RMSPE, 6.8%, 7.5% and 3.9%, respectively). For grass silages only, the model-predicted CH4 correlated well (Pearson correlation coefficient 0.73) with the observed CH4 (which varied from 5.7% to 7.2% of gross energy intake), after predicted CH4 was corrected for nitrate consumed with grass silage, acting as hydrogen sink in the rumen. After nitrate correction, there was a systematic under-prediction of 18%, which reduced to 9% when correcting the erroneously predicted rumen volatile fatty acid (VFA) profile (RMSPE 15%). Although a small over-prediction of 3% was obtained for the grass herbages, this increased to 14% when correcting VFA profile. The model predictions showed a systematic difference in CH4 emission from grass herbages and grass silages, which was not supported by the observed data. This is possibly related to the very high content of soluble carbohydrates in grass herbage (an extra 170 g/kg dry matter compared with grass silages) and an erroneous prediction of its fate and contribution to CH4 in the rumen. Erroneous prediction of the VFA profile is likely to be due to different types of diets included in the empirical database used to parameterise VFA yield in the model from those evaluated here. Model representations of feed digestion and VFA profile are key elements to predict enteric CH4 accurately, and with further evaluations, the latter aspect should be emphasised in particular.
Collapse
|
21
|
Alfonso-Ávila ÁR, Charbonneau E, Lafrenière C, Berthiaume R. Effect of glycerol in combination with alfalfa on in vitro gas production and microbial protein synthesis. CANADIAN JOURNAL OF ANIMAL SCIENCE 2015. [DOI: 10.4141/cjas-2014-125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alfonso-Ávila, Á. R., Charbonneau, E., Lafrenière, C. and Berthiaume, R. 2015. Effect of glycerol in combination with alfalfa on in vitro gas production and microbial protein synthesis. Can. J. Anim. Sci. 95: 577–588. This study sought to determine the effect of added glycerol on microbial protein synthesis, ruminal degradation and utilization of alfalfa at different concentrations of nonstructural carbohydrates (NSC), using in vitro gas production. The 2×3 factorial plus one treatment consisted of oven-dried alfalfa with two NSC levels [high: 17.9 (HNSC) or low: 7.4% dry matter (DM) (LNSC)] and three glycerol treatments [control without glycerol, 15% crude glycerol (CG) and 15% pure glycerol (PG)], the additional treatment was LNSC+exogenous sugars (LNSC+ES: LNSC with 5% sucrose+5% starch). Five pre-planned contrasts were evaluated from the seven treatments: (1) HNSC vs. LNSC alfalfa; (2) with glycerol vs. without; (3) interaction of alfalfa and glycerol; (4) CG vs. PG, and; (5) LNSC+ES vs. HNSC. Gas production over 24 h was higher for HNSC than LNSC (202 vs. 179 mL g−1 DM) and with glycerol than without glycerol (202.2 vs. 168 mL g−1 DM). A decrease in the acetate:propionate ratio was observed for HNSC compared with LNSC (2.87 vs. 3.27) and for the addition of glycerol vs. no glycerol (2.78 vs. 3.65). Reduced microbial mass (185.5 vs. 240.5 mg g−1 DM) was observed for CG compared with PG. The LNSC+ES treatment had lower microbial protein synthesis and propionic acid production in relation to HNSC. No significant interaction was observed between the effect of NSC content of alfalfa and glycerol utilization. When effects were studied separately, results indicate that increasing NSC in alfalfa stimulates the synthesis of microbial protein. Also, the addition of glycerol promotes the synthesis of glucose precursors. Finally, the type of glycerol has an impact on results obtained suggesting caution when extrapolating results for PG to CG.
Collapse
Affiliation(s)
- Á. R. Alfonso-Ávila
- Département des Sciences animales, Université Laval, Quebec City, Quebec, Canada G1V 0A6
| | - E. Charbonneau
- Département des Sciences animales, Université Laval, Quebec City, Quebec, Canada G1V 0A6
| | - C. Lafrenière
- Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada J9X 5E4
| | - R. Berthiaume
- Valacta, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3R4
| |
Collapse
|
22
|
A mathematical model to describe the diurnal pattern of enteric methane emissions from non-lactating dairy cows post-feeding. ACTA ACUST UNITED AC 2015; 1:329-338. [PMID: 29767065 PMCID: PMC5941002 DOI: 10.1016/j.aninu.2015.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 11/24/2022]
Abstract
Enteric methane emission is not only a source of energy loss in ruminants, but also a potent contributor to greenhouse gas production. To identify the nature and timing of interventions to reduce methane emissions requires knowledge of temporal kinetics of methane emissions during animal husbandry. Accordingly, a mathematical model was developed to investigate the pattern of enteric methane emissions after feeding in dairy cows. The model facilitated estimation of total enteric methane emissions (V, g) produced by the residual substrate (V1, g) and newly ingested feed (V2, g). The model was fitted to the 10 h methane emission patterns after morning feeding of 16 non-lactating dairy cows with various body weights (BW), and the obtained parameters were used to predict the kinetics of 24 h methane emission for each animal. The rate of methane emission (g/h) reached a maximum within 1 to 2 h after feeding, followed by a gradual post-prandial decline to a basal value before the next feeding. The model satisfactorily fitted curves for each cow according to the criterion of goodness-of-fit, and provided biological descriptions for fluctuations in methane emissions based on basal V1 and feeding V2 in response to the changes in BW and dry matter intake (DMI) of different dairy cows. The basal V1 and feeding V2 are probably maintained by slow- and readily-degradable substrates, respectively. The former contributed at least 0.6 of methane production. In summary, the model provides a means to separate basal V1 and feeding V2 within V, and can be used to predict 24 h emission from a single feeding period.
Collapse
|
23
|
Is there a relationship between genetic merit and enteric methane emission rate of lactating Holstein-Friesian dairy cows? Animal 2015; 9:1807-12. [PMID: 26264038 DOI: 10.1017/s1751731115001445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The present study was undertaken to examine the effect of cow genetic merit on enteric methane (CH4) emission rate. The study used a data set from 32 respiration calorimeter studies undertaken at this Institute between 1992 and 2010, with all studies involving lactating Holstein-Friesian dairy cows. Cow genetic merit was defined as either profit index (PIN) or profitable lifetime index (PLI), with these two United Kingdom genetic indexes expressing the expected improvement in profit associated with an individual cow, compared with the population average. While PIN is based solely on milk production, PLI includes milk production and a number of other functional traits including health, fertility and longevity. The data set had a large range in PIN (n=736 records, -£30 to +£63) and PLI (n=548 records, -£131 to +£184), days in milk (18 to 354), energy corrected milk yield (16.0 to 45.6 kg/day) and CH(4) emission (138 to 598 g/day). The effect of cow genetic merit (PIN or PLI) was evaluated using ANOVA and linear mixed modelling techniques after removing the effects of a number of animal and diet factors. The ANOVA was undertaken by dividing each data set of PIN and PLI into three sub-groups (PIN:£15, PLI:£67) with these being categorised as low, medium and high genetic merit. Within the PIN and PLI data sets there was no significant differences among the three sub-groups in terms of CH(4) emission per kg feed intake or per kg energy corrected milk yield, or CH(4) energy (CH(4)-E) output as a proportion of energy intake. Linear regression using the whole PIN and PLI data sets also demonstrated that there was no significant relationship between either PIN or PLI, and CH(4) emission per kg of feed intake or CH(4)-E output as a proportion of energy intake. These results indicate that cow genetic merit (PIN or PLI) has little effect on enteric CH(4) emissions as a proportion of feed intake. Instead enteric CH(4) production may mainly relate to total feed intake and dietary nutrient composition.
Collapse
|
24
|
Warner D, Podesta S, Hatew B, Klop G, van Laar H, Bannink A, Dijkstra J. Effect of nitrogen fertilization rate and regrowth interval of grass herbage on methane emission of zero-grazing lactating dairy cows. J Dairy Sci 2015; 98:3383-93. [DOI: 10.3168/jds.2014-9068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/31/2015] [Indexed: 12/19/2022]
|
25
|
Methane emission of Blackbelly rams consuming whole sugarcane forage compared with Dichanthium sp. hay. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2014.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Canul-Solis JR, Piñeiro-Vázquez AT, Briceño-Poot EG, Chay-Canul AJ, Alayón-Gamboa JA, Ayala-Burgos AJ, Aguilar-Pérez CF, Solorio-Sánchez FJ, Castelán-Ortega OA, Ku-Vera JC. Effect of supplementation with saponins from Yucca schidigera on ruminal methane production by Pelibuey sheep fed Pennisetum purpureum grass. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an14296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the work was to determine the effect of increasing concentrations of saponins from Yucca schidigera in the diet on voluntary intake, rumen fermentation and methane (CH4) production in Pelibuey sheep fed a tropical grass Pennisetum purpureum. Five male sheep (32.2 ± 1.1 kg liveweight) were fed chopped P. purpureum grass in a 5 × 5 Latin square design. Sheep were supplemented with 0.0, 1.5, 3.0, 4.5 or 6.0 g per day of saponins from Y. schidigera mixed with ground corn, before the grass was offered. Feed intake, feed refusal and total faecal output were recorded for 20 days of the adaptation period and 5 days of the experimental period. Apparent digestibility of dry matter (DMD), organic matter (OMD), neutral detergent fibre (NDFD) and acid detergent fibre (ADFD) were determined. Ruminal methane emission was estimated using stoichiometric balance and the molar proportion of volatile fatty acids was determined by gas chromatography. Voluntary intake, DMD, OMD, NDFD, ADFD, volatile fatty acids and CH4 emission were not affected (P > 0.05) by increasing inclusion levels of saponins in the ration of sheep. Nonetheless, CH4 production increased as the voluntary intake of NDF augmented. Addition of 6 g of saponins per day as a supplement to Pelibuey sheep fed a tropical grass did not affect voluntary intake and digestibility of DM, OM, NDF and ADF, or ruminal methane production.
Collapse
|
27
|
Abstract
Ruminant production contributes to emissions of nitrogen (N) to the environment, principally ammonia (NH3), nitrous oxide (N2O) and di-nitrogen (N2) to air, nitrate (NO3 -) to groundwater and particulate N to surface waters. Variation in dietary N intake will particularly affect excretion of urinary N, which is much more vulnerable to losses than is faecal N. Our objective is to review dietary effects on the level and form of N excreted in cattle urine, as well as its consequences for emissions of N2O. The quantity of N excreted in urine varies widely. Urinary N excretion, in particular that of urea N, is decreased upon reduction of dietary N intake or an increase in the supply of energy to the rumen microorganisms and to the host animal itself. Most of the N in urine (from 50% to well over 90%) is present in the form of urea. Other nitrogenous components include purine derivatives (PD), hippuric acid, creatine and creatinine. Excretion of PD is related to rumen microbial protein synthesis, and that of hippuric acid to dietary concentration of degradable phenolic acids. The N concentration of cattle urine ranges from 3 to 20 g/l. High-dietary mineral levels increase urine volume and lead to reduced urinary N concentration as well as reduced urea concentration in plasma and milk. In lactating dairy cattle, variation in urine volume affects the relationship between milk urea and urinary N excretion, which hampers the use of milk urea as an accurate indicator of urinary N excretion. Following its deposition in pastures or in animal houses, ubiquitous microorganisms in soil and waters transform urinary N components into ammonium (NH4 +), and thereafter into NO3 - and ultimately in N2 accompanied with the release of N2O. Urinary hippuric acid, creatine and creatinine decompose more slowly than urea. Hippuric acid may act as a natural inhibitor of N2O emissions, but inhibition conditions have not been defined properly yet. Environmental and soil conditions at the site of urine deposition or manure application strongly influence N2O release. Major dietary strategies to mitigating N2O emission from cattle operations include reducing dietary N content or increasing energy content, and increasing dietary mineral content to increase urine volume. For further reduction of N2O emission, an integrated animal nutrition and excreta management approach is required.
Collapse
|
28
|
Cerrone F, Choudhari SK, Davis R, Cysneiros D, O’Flaherty V, Duane G, Casey E, Guzik MW, Kenny ST, Babu RP, O’Connor K. Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass. Appl Microbiol Biotechnol 2013; 98:611-20. [DOI: 10.1007/s00253-013-5323-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/29/2022]
|
29
|
Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci 2013; 91:5045-69. [PMID: 24045497 DOI: 10.2527/jas.2013-6583] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The goal of this review was to analyze published data related to mitigation of enteric methane (CH4) emissions from ruminant animals to document the most effective and sustainable strategies. Increasing forage digestibility and digestible forage intake was one of the major recommended CH4 mitigation practices. Although responses vary, CH4 emissions can be reduced when corn silage replaces grass silage in the diet. Feeding legume silages could also lower CH4 emissions compared to grass silage due to their lower fiber concentration. Dietary lipids can be effective in reducing CH4 emissions, but their applicability will depend on effects on feed intake, fiber digestibility, production, and milk composition. Inclusion of concentrate feeds in the diet of ruminants will likely decrease CH4 emission intensity (Ei; CH4 per unit animal product), particularly when inclusion is above 40% of dietary dry matter and rumen function is not impaired. Supplementation of diets containing medium to poor quality forages with small amounts of concentrate feed will typically decrease CH4 Ei. Nitrates show promise as CH4 mitigation agents, but more studies are needed to fully understand their impact on whole-farm greenhouse gas emissions, animal productivity, and animal health. Through their effect on feed efficiency and rumen stoichiometry, ionophores are likely to have a moderate CH4 mitigating effect in ruminants fed high-grain or mixed grain-forage diets. Tannins may also reduce CH4 emissions although in some situations intake and milk production may be compromised. Some direct-fed microbials, such as yeast-based products, might have a moderate CH4-mitigating effect through increasing animal productivity and feed efficiency, but the effect is likely to be inconsistent. Vaccines against rumen archaea may offer mitigation opportunities in the future although the extent of CH4 reduction is likely to be small and adaptation by ruminal microbes and persistence of the effect is unknown. Overall, improving forage quality and the overall efficiency of dietary nutrient use is an effective way of decreasing CH4 Ei. Several feed supplements have a potential to reduce CH4 emission from ruminants although their long-term effect has not been well established and some are toxic or may not be economically feasible.
Collapse
Affiliation(s)
- A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gregorini P, Beukes P, Hanigan M, Waghorn G, Muetzel S, McNamara J. Comparison of updates to the Molly cow model to predict methane production from dairy cows fed pasture. J Dairy Sci 2013; 96:5046-52. [DOI: 10.3168/jds.2012-6288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/23/2013] [Indexed: 11/19/2022]
|
31
|
Soltan YA, Morsy AS, Sallam SM, Lucas RC, Louvandini H, Kreuzer M, Abdalla AL. Contribution of condensed tannins and mimosine to the methane mitigation caused by feedingLeucaena leucocephala. Arch Anim Nutr 2013; 67:169-84. [DOI: 10.1080/1745039x.2013.801139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Rasmussen S, Thornley JHM, Parsons AJ, Harrison SJ. Mathematical model of fructan biosynthesis and polymer length distribution in plants. ANNALS OF BOTANY 2013; 111:1219-31. [PMID: 23644360 PMCID: PMC3662526 DOI: 10.1093/aob/mct087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/05/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS There are many unresolved issues concerning the biochemistry of fructan biosynthesis. The aim of this paper is to address some of these by means of modelling mathematically the biochemical processes. METHODS A model has been constructed for the step-by-step synthesis of fructan polymers. This is run until a steady state is achieved for which a polymer distribution is predicted. It is shown how qualitatively different distributions can be obtained. KEY RESULTS It is demonstrated how a set of experimental results on polymer distribution can by simulated by a simple parameter adjustments. CONCLUSIONS Mathematical modelling of fructan biosynthesis can provide a useful tool for helping elucidate the details of the biosynthetic processes.
Collapse
Affiliation(s)
- Susanne Rasmussen
- AgResearch Grasslands, Private Bag 11008, Palmerston North, New Zealand
| | - John H. M. Thornley
- Centre for Nutrition Modelling, Department of Animal & Poultry Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Anthony J. Parsons
- Institute of Natural Resources, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Scott J. Harrison
- AgResearch Grasslands, Private Bag 11008, Palmerston North, New Zealand
- Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Fremtidsvej 3, Hørsholm, Denmark-2970
| |
Collapse
|
33
|
Staerfl S, Amelchanka S, Kälber T, Soliva C, Kreuzer M, Zeitz J. Effect of feeding dried high-sugar ryegrass (‘AberMagic’) on methane and urinary nitrogen emissions of primiparous cows. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Briceño-Poot E, Ruiz-González A, Chay-Canul A, Ayala-Burgos A, Aguilar-Pérez C, Solorio-Sánchez F, Ku-Vera J. Voluntary intake, apparent digestibility and prediction of methane production by rumen stoichiometry in sheep fed pods of tropical legumes. Anim Feed Sci Technol 2012. [DOI: 10.1016/j.anifeedsci.2012.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Ellis JL, Dijkstra J, Bannink A, Kebreab E, Hook SE, Archibeque S, France J. Quantifying the effect of monensin dose on the rumen volatile fatty acid profile in high-grain-fed beef cattle1. J Anim Sci 2012; 90:2717-26. [DOI: 10.2527/jas.2011-3966] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. L. Ellis
- Animal Nutrition Group, Wageningen University, Wageningen 6708 WD, the Netherlands
- Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - J. Dijkstra
- Animal Nutrition Group, Wageningen University, Wageningen 6708 WD, the Netherlands
| | - A. Bannink
- Wageningen UR Livestock Research, Wageningen University Research Centre, Lelystad 8200 AB, the Netherlands
| | - E. Kebreab
- Department of Animal Science, University of California, Davis 95616
| | - S. E. Hook
- Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - S. Archibeque
- Animal Sciences, Colorado State University, Fort Collins 80523
| | - J. France
- Centre for Nutrition Modelling, Department of Animal and Poultry Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|