1
|
R Jen BA, Storm AC, Larsen M, Kristensen NB. Effects of sodium chloride intake on urea-N recycling and renal urea-N kinetics in lactating Holstein cows. J Dairy Sci 2024:S0022-0302(24)00954-8. [PMID: 38908713 DOI: 10.3168/jds.2024-24921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024]
Abstract
The effects of high (2.5% of DM) versus normal dietary sodium chloride (NaCl) intake on renal urea-N kinetics and urea-N metabolism were investigated in 9 rumen-cannulated and multi-catheterized lactating dairy cows in a crossover design with 21-d periods. It was hypothesized that urinary urea-N excretion would be greater, and blood urea-N concentration lower in response to greater diuresis induced by high NaCl intake. Also, urea-N transport across ruminal and portal drained viscera (PDV) tissues was hypothesized to be affected by dietary sodium intake. A second experiment was conducted using 8 lactating cows in a crossover design with 14-d periods to test high NaCl (2.5% of DM) versus high KCl (3.2% of DM) intake on milk yield and milk urea-N concentrations. Experiment 1 showed that despite greater diuresis there was no effect of high NaCl intake on urinary urea-N excretion or blood urea-N concentration. The high NaCl intake did not affect rumen ammonia concentrations, total rumen VFA concentrations, ruminal venous - arterial concentration differences for ammonia, or ammonia absorption indicating that high NaCl did not adversely affect ruminal fermentation and microbial protein synthesis. High NaCl intake did not affect the total amount of urea-N transport from blood to gut, but ruminal venous - arterial concentration differences for urea-N were lower with high NaCl and ruminal extraction of arterial urea-N was numerically smaller, indicating that the ruminal epithelial urea-N transport was lower with high NaCl. Energy corrected milk yield was greater with high NaCl (3.2 ± 1.5 kg/d); however, milk urea-N concentrations were not affected by treatment. In experiment 2, ECM was greater with NaCl (1.4 ± 0.31 kg/d) compared with KCl (30.2 and 28.8 ± 0.91 kg ECM / d, respectively). Milk urea-N concentration was lower with KCl, suggesting a urea-N lowering effect in milk not evident with high NaCl intake. In conclusion, the present data show that dietary Na intake of 12-13 g/kg DM was followed by greater diuresis but did not impact urea-N excretion or blood urea-N concentration. High NaCl intake did not affect the total amount of urea-N transfer across PDV tissues. Energy corrected milk yield was greater with high NaCl compared with both control and feeding KCl, however, with KCl milk urea-N decreased.
Collapse
Affiliation(s)
- B A R Jen
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - A C Storm
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - M Larsen
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark
| | - N B Kristensen
- Department of Animal and Veterinary Sciences, Aarhus University, DK-8830 Tjele, Denmark.
| |
Collapse
|
2
|
Nichols K, Rauch R, Lippens L, Seymour DJ, Martín-Tereso J. Dose response to postruminal urea in lactating dairy cattle. J Dairy Sci 2023; 106:8694-8709. [PMID: 37641248 DOI: 10.3168/jds.2023-23402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2023] [Indexed: 08/31/2023]
Abstract
Inclusion of urea in dairy cattle diets is often limited by negative effects of high levels of feed urea on dry matter intake (DMI) and efficiency of rumen N utilization. We hypothesized that supplying urea postruminally would mitigate these limitations and allow greater inclusion of urea in dairy cattle diets. Four rumen-fistulated Holstein-Friesian dairy cows (7 ± 2.1 lactations, 110 ± 30.8 d in milk; mean ± standard deviation) were randomly assigned to a 4 × 4 Latin square design to examine DMI, milk production and composition, digestibility, rumen fermentation, N balance, and plasma constituents in response to 4 levels of urea continuously infused into the abomasum (0, 163, 325, and 488 g/d). Urea doses were targeted to linearly increase the crude protein (CP) content of total DMI (diet plus infusion) by 0%, 2%, 4%, and 6% and equated to 0%, 0.7%, 1.4%, and 2.1% of expected DMI, respectively. Each 28-d infusion period consisted of a 7-d dose step-up period, 14 d of adaptation, and a 7-d measurement period. The diet was fed ad libitum as a total mixed ration [10.9% CP, 42.5% corn silage, 3.5% grass hay, 3.5% wheat straw, and 50.5% concentrate (dry matter basis)] and was formulated to meet 100%, 82%, and 53% of net energy, metabolizable protein, and rumen-degradable protein requirements, respectively. Linear, quadratic, and cubic effects of urea dose were assessed using polynomial regression assuming the fixed effect of treatment and random effects of period and cow. Dry matter intake and energy-corrected milk yield responded quadratically to urea dose, and milk urea content increased linearly with increasing urea dose. Apparent total-tract digestibility of CP increased linearly with increasing urea dose and ruminal NH3-N concentration responded quadratically to urea dose. Mean total VFA concentration was not affected by urea dose. The proportion of N intake excreted in feces decreased linearly and that excreted in urine increased linearly in response to increasing urea dose. The proportion of N intake excreted in milk increased linearly with increasing urea dose. Urinary urea excretion increased linearly with increasing urea dose. Microbial N flow responded cubically to urea dose, but the efficiency of microbial protein synthesis was not affected. Plasma urea concentration increased linearly with increasing urea dose. Regression analysis estimated that when supplemented on top of a low-CP diet, 179 g/d of postruminal urea would maximize DMI at 23.4 kg/d, corresponding to a dietary urea inclusion level of 0.8% of DMI, which is in line with the current recommendations for urea inclusion in dairy cattle diets. Overall, these results indicate that postruminal delivery of urea does not mitigate DMI depression as urea dose increases.
Collapse
Affiliation(s)
- K Nichols
- Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands.
| | - R Rauch
- Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | - L Lippens
- Trouw Nutrition R&D, Puslinch, Ontario, N0B 2J0 Canada
| | - D J Seymour
- Trouw Nutrition R&D, 3800 AG Amersfoort, the Netherlands
| | | |
Collapse
|
3
|
Hernández-Castellano LE, Santos LP, Weisbjerg MR, Larsen M. Daily alternation of the dietary starch level in Holstein dairy cows. J Dairy Sci 2021; 104:9735-9751. [PMID: 34176630 DOI: 10.3168/jds.2020-19989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/14/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate the effect of controlled daily alternations in dietary starch level on changes in rumen environment, blood, urine, and milk metabolites of dairy cows. Six multiparous mid-lactation Holstein cows were used in a replicated 3 × 3 Latin square design with 14-d periods and 3 alternating levels of dietary starch as treatments. Each 14-d period consisted of a 7-d baseline period and 7-d alternating period where diets alternated day to day. During the baseline period, all cows were fed a control diet containing 21% starch (dry matter basis). During the alternating period, the control diet was replaced with 1 of the 3 experimental diets on d 8, 10, 12, and 14. The 3 experimental diets contained 28% (low), 35% (medium), and 42% (high) starch (dry matter basis). At d 7 (baseline), 8 (ALT1), and 14 (ALT4) of each period, rumen fluid, blood, urine, and quarter milk (i.e., back right quarter) samples were collected at -0.5, 1, 2.5, 4, 5.5, and 7 h relative to morning feeding (0800 h). No differences were observed in dry matter intake, milk yield, and milk chemical composition. Rumen medial pH was lower in the high alternation level compared with the low or medium alternation levels at ALT1 but did not differ among starch alternation levels at ALT4. Similarly, the difference between rumen pH in medial and ventral contents was reduced at ALT1 with high alternation level but was not affected at ALT4. Total volatile fatty acid (VFA) concentrations were higher in the rumen medial fluid of the high alternation level at 7 h relative to morning feeding compared with those from the low and medium alternation levels. Similarly, total VFA concentrations constantly increased and were the highest in the ventral rumen fluid at 7 h relative to morning feeding, although no differences were detected among starch alternation levels. In both rumen medial and ventral fluids, the high alternation level showed higher propionate and lower acetate proportions compared with low and medium alternation levels. No differences in blood pH were detected among starch alternation levels. However, glucose concentrations tended to be higher in cows from the high alternation level. l-Lactate concentrations in blood were higher in ALT1 than in ALT4 but were not affected by the starch alternation level. In urine, no differences in pH or l-lactate concentrations were detected among alternation levels (i.e., low, medium, and high). Similarly, no differences in milk pH were detected among alternation levels. According to these results, it seems that the daily dietary starch alternation from 21% up to 42% (dry matter basis) is able to affect the ruminal fluid, especially during the first alternation. However, these changes in rumen fluid did not cause any effect on the variables measured in blood, urine, or milk. This study indicates that cows can cope with day-to-day alternations in type of rumen fermentable organic matter; however, longer-term effects on performance and health should be addressed in future studies.
Collapse
Affiliation(s)
| | - L P Santos
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark; Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 13409-017 Lisbon, Portugal
| | - M R Weisbjerg
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - M Larsen
- Department of Animal Science, Aarhus University, AU-Foulum, 8830 Tjele, Denmark.
| |
Collapse
|
4
|
Hristov AN, Bannink A, Crompton LA, Huhtanen P, Kreuzer M, McGee M, Nozière P, Reynolds CK, Bayat AR, Yáñez-Ruiz DR, Dijkstra J, Kebreab E, Schwarm A, Shingfield KJ, Yu Z. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J Dairy Sci 2019; 102:5811-5852. [PMID: 31030912 DOI: 10.3168/jds.2018-15829] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/27/2019] [Indexed: 01/17/2023]
Abstract
Nitrogen is a component of essential nutrients critical for the productivity of ruminants. If excreted in excess, N is also an important environmental pollutant contributing to acid deposition, eutrophication, human respiratory problems, and climate change. The complex microbial metabolic activity in the rumen and the effect on subsequent processes in the intestines and body tissues make the study of N metabolism in ruminants challenging compared with nonruminants. Therefore, using accurate and precise measurement techniques is imperative for obtaining reliable experimental results on N utilization by ruminants and evaluating the environmental impacts of N emission mitigation techniques. Changeover design experiments are as suitable as continuous ones for studying protein metabolism in ruminant animals, except when changes in body weight or carryover effects due to treatment are expected. Adaptation following a dietary change should be allowed for at least 2 (preferably 3) wk, and extended adaptation periods may be required if body pools can temporarily supply the nutrients studied. Dietary protein degradability in the rumen and intestines are feed characteristics determining the primary AA available to the host animal. They can be estimated using in situ, in vitro, or in vivo techniques with each having inherent advantages and disadvantages. Accurate, precise, and inexpensive laboratory assays for feed protein availability are still needed. Techniques used for direct determination of rumen microbial protein synthesis are laborious and expensive, and data variability can be unacceptably large; indirect approaches have not shown the level of accuracy required for widespread adoption. Techniques for studying postruminal digestion and absorption of nitrogenous compounds, urea recycling, and mammary AA metabolism are also laborious, expensive (especially the methods that use isotopes), and results can be variable, especially the methods based on measurements of digesta or blood flow. Volatile loss of N from feces and particularly urine can be substantial during collection, processing, and analysis of excreta, compromising the accuracy of measurements of total-tract N digestion and body N balance. In studying ruminant N metabolism, nutritionists should consider the longer term fate of manure N as well. Various techniques used to determine the effects of animal nutrition on total N, ammonia- or nitrous oxide-emitting potentials, as well as plant fertilizer value, of manure are available. Overall, methods to study ruminant N metabolism have been developed over 150 yr of animal nutrition research, but many of them are laborious and impractical for application on a large number of animals. The increasing environmental concerns associated with livestock production systems necessitate more accurate and reliable methods to determine manure N emissions in the context of feed composition and ruminant N metabolism.
Collapse
Affiliation(s)
- A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| | - A Bannink
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - L A Crompton
- School of Agriculture, Policy and Development, Centre for Dairy Research, University of Reading, PO Box 237 Earley Gate, Reading RG6 6AR, United Kingdom
| | - P Huhtanen
- Department of Agricultural Science, Swedish University of Agricultural Sciences, S-90, Umeå, Sweden
| | - M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - M McGee
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland C15 PW93
| | - P Nozière
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - C K Reynolds
- School of Agriculture, Policy and Development, Centre for Dairy Research, University of Reading, PO Box 237 Earley Gate, Reading RG6 6AR, United Kingdom
| | - A R Bayat
- Milk Production Solutions, Production Systems, Natural Resources Institute Finland (Luke), FI 31600 Jokioinen, Finland
| | - D R Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, 18008, Granada, Spain
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - E Kebreab
- Department of Animal Science, University of California, Davis 95616
| | - A Schwarm
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - K J Shingfield
- Milk Production Solutions, Production Systems, Natural Resources Institute Finland (Luke), FI 31600 Jokioinen, Finland; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, United Kingdom
| | - Z Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|
5
|
The effect of CP concentration in the diet on urea kinetics and microbial usage of recycled urea in cattle: a meta-analysis. Animal 2017; 11:1303-1311. [DOI: 10.1017/s1751731116002822] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Berends H, van den Borne JJGC, Røjen BA, van Baal J, Gerrits WJJ. Urea recycling contributes to nitrogen retention in calves fed milk replacer and low-protein solid feed. J Nutr 2014; 144:1043-9. [PMID: 24812069 DOI: 10.3945/jn.114.191353] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Urea recycling, with urea originating from catabolism of amino acids and hepatic detoxification of ammonia, is particularly relevant for ruminant animals, in which microbial protein contributes substantially to the metabolizable protein supply. However, the quantitative contribution of urea recycling to protein anabolism in calves during the transition from preruminants (milk-fed calves) to ruminants [solid feed (SF)-fed calves] is unknown. The aim of this study was to quantify urea recycling in milk-fed calves when provided with low-protein SF. Forty-eight calves [164 ± 1.6 kg body weight (BW)] were assigned to 1 of 4 SF levels [0, 9, 18, and 27 g of dry matter (DM) SF · kg BW(-0.75) · d⁻¹] provided in addition to an identical amount of milk replacer. Urea recycling was quantified after a 24-h intravenous infusion of [¹⁵N₂]urea by analyzing urea isotopomers in 68-h fecal and urinary collections. Real-time qPCR was used to measure gene expression levels of bovine urea transporter B (bUTB) and aquaglyceroporin-3 and aquaglyceroporin-7 in rumen wall tissues. For every incremental gram of DM SF intake (g DM · kg(0.75)), nitrogen intake increased by 0.70 g, and nitrogen retention increased by 0.55 g (P < 0.01). Of this increase in nitrogen retention, 19% could be directly explained by urea recycling. Additionally, part of the observed increase in nitrogen retention could be explained by the extra protein provided by the SF and likely by a greater efficiency of postabsorptive use of nitrogen for gain. Ruminal bUTB abundance increased (P < 0.01) with SF provision. Aquaglyceroporin-3 expression increased (P < 0.01) with SF intake, but aquaglyceroporin-7 expression did not. We conclude that in addition to the increase in digested nitrogen, urea recycling contributes to the observed increase in nitrogen retention with increasing SF intake in milk-fed calves. Furthermore, ruminal bUTB and aquaglyceroporin-3 expression are upregulated with SF intake, which might be associated with urea recycling.
Collapse
Affiliation(s)
- Harma Berends
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands; and
| | | | - Betina A Røjen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Jürgen van Baal
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands; and
| | - Walter J J Gerrits
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands; and
| |
Collapse
|
7
|
Recktenwald EB, Ross DA, Fessenden SW, Wall CJ, Van Amburgh ME. Urea-N recycling in lactating dairy cows fed diets with 2 different levels of dietary crude protein and starch with or without monensin. J Dairy Sci 2013; 97:1611-22. [PMID: 24377801 DOI: 10.3168/jds.2013-7162] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/02/2013] [Indexed: 11/19/2022]
Abstract
Rumensin (monensin; Elanco Animal Health, Greenfield, IN) has been shown to reduce ammonia production and microbial populations in vitro; thus, it would be assumed to reduce ruminal ammonia production and subsequent urea production and consequently affect urea recycling. The objective of this experiment was to determine the effects of 2 levels of dietary crude protein (CP) and 2 levels of starch, with and without Rumensin on urea-N recycling in lactating dairy cattle. Twelve lactating Holstein dairy cows (107 ± 21 d in milk, 647 kg ± 37 kg of body weight) were fed diets characterized as having high (16.7%) or low (15.3%) CP with or without Rumensin, while dietary starch levels (23 vs. 29%) were varied between 2 feeding periods with at least 7d of adaptation between measurements. Cows assigned to high or low protein and to Rumensin or no Rumensin remained on those treatments to avoid carryover effects. The diets consisted of approximately 40% corn silage, 20% alfalfa hay, and 40% concentrate mix specific to the treatment diets, with 0.5 kg of wheat straw added to the high starch diets to enhance effective fiber intake. The diets were formulated using Cornell Net Carbohydrate and Protein System (version 6.1), and the low-protein diets were formulated to be deficient for rumen ammonia to create conditions that should enhance the demand for urea recycling. The high-protein diets were formulated to be positive for both rumen ammonia and metabolizable protein. Rumen fluid, urine, feces, and milk samples were collected before and after a 72-h continuous jugular infusion of (15)N(15)N-urea. Total urine and feces were collected during the urea infusions for N balance measurements. Milk yield and dry matter intake were improved in cows fed the higher level of dietary CP and by Rumensin. Ruminal ammonia and milk and plasma urea nitrogen concentrations corresponded to dietary CP concentration. As has been shown in vitro, Rumensin reduced rumen ammonia concentration by approximately 23% but did not affect urea entry rate or gastrointestinal entry rate. Urea entry rate averaged approximately 57% of total N intake for cattle with and without Rumensin, and gastrointestinal rate was similar at 43 and 42% of N intake for cattle fed and not fed Rumensin, respectively. The cattle fed the high-protein diet had a 25% increase in urea entry rate and no effect of starch level was observed for any recycling parameters. Contrary to our hypothesis, Rumensin did not alter urea production and recycling.
Collapse
Affiliation(s)
- E B Recktenwald
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - D A Ross
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - S W Fessenden
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - C J Wall
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - M E Van Amburgh
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
8
|
Storm AC, Kristensen NB, Røjen BA, Larsen M. Technical note: A method for quantification of saliva secretion and salivary flux of metabolites in dairy cows1. J Anim Sci 2013; 91:5769-74. [DOI: 10.2527/jas.2013-6865] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- A. C. Storm
- Department of Animal Science, Aarhus University, Foulum, DK-8830, Tjele, Denmark
| | - N. B. Kristensen
- Department of Animal Science, Aarhus University, Foulum, DK-8830, Tjele, Denmark
| | - B. A. Røjen
- Department of Animal Science, Aarhus University, Foulum, DK-8830, Tjele, Denmark
| | - M. Larsen
- Department of Animal Science, Aarhus University, Foulum, DK-8830, Tjele, Denmark
| |
Collapse
|
9
|
Røjen BA, Larsen M, Kristensen NB. Effect of abomasal infusion of oligofructose on portal-drained visceral ammonia and urea-nitrogen fluxes in lactating Holstein cows. J Dairy Sci 2012; 95:7248-60. [PMID: 22999277 DOI: 10.3168/jds.2012-5558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/22/2012] [Indexed: 11/19/2022]
Abstract
The effects of abomasal infusion of oligofructose in lactating dairy cows on the relationship between hindgut fermentation and N metabolism, and its effects on NH(3) absorption and transfer of blood urea-N across the portal-drained viscera versus ruminal epithelia were investigated. Nine lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in major splanchnic blood vessels were used in an unbalanced crossover design with 14-d periods. Treatments were continuous abomasal infusion of water or 1,500 g/d of oligofructose. The same basal diet was fed with both treatments. Eight sample sets of arterial, portal, hepatic, and ruminal vein blood, ruminal fluid, and urine were obtained at 0.5h before the morning feeding and at 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, and 6.5 h after feeding. It was hypothesized that an increased supply of fermentable substrate to the hindgut would increase the uptake of urea-N from blood to the hindgut at the expense of urea-N uptake to the forestomach. The study showed that abomasal oligofructose infusion decreased the total amount of urea-N transferred from the blood to the gut, NH(3) absorption, and arterial blood urea-N concentration. Subsequently, hepatic NH(3) uptake and urea-N production also decreased with oligofructose infusion. Additionally, urea-N concentration in milk and urinary N excretion decreased with oligofructose treatment. The oligofructose infusion did not affect ruminal NH(3) concentrations or any other ruminal variables, nor did it affect ruminal venous - arterial concentration differences for urea-N and NH(3). The oligofructose treatment did not affect milk yield, but did decrease apparent digestibility of OM, N, and starch. Nitrogen excreted in the feces was greater with the oligofructose infusion. In conclusion, the present data suggest that increased hindgut fermentation did not upregulate urea-N transfer to the hindgut at the expense of urea-N uptake by the rumen, and the observed reduction in arterial blood urea-N concentration appeared not to be due to increased urea-N transport, but rather could be explained by reduced NH(3) input to hepatic urea-N synthesis caused by increased sequestration of NH(3) in the hindgut and excretion in feces. Increasing the hindgut fermentation in lactating dairy cows by abomasal infusion of 1,500 g/d of oligofructose shifted some N excretion from the urine to feces and possibly reduced manure NH(3) volatilization without impairing rumen fermentation.
Collapse
Affiliation(s)
- B A Røjen
- Department of Animal Science, Aarhus University, Foulum, DK-8830 Tjele, Denmark.
| | | | | |
Collapse
|