1
|
Pranata J, Hoyt H, Drake M, Barbano DM. Effect of dipotassium phosphate addition and heat on proteins and minerals in milk protein beverages. J Dairy Sci 2024; 107:695-710. [PMID: 37709031 DOI: 10.3168/jds.2023-23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Our objective was to determine the effects of dipotassium phosphate (DKP) addition, heat treatments (no heat, high temperature, short time [HTST]: 72°C for 15 s, and direct steam injection UHT: 142°C for 2.3 s), and storage time on the soluble protein composition and mineral (P, Ca, K) concentration of the aqueous phase around casein micelles in 7.5% milk protein-based beverages made with liquid skim milk protein concentrate (MPC) and micellar casein concentrate (MCC). Milk protein concentrate was produced using a spiral wound polymeric membrane, and MCC was produced using a 0.1-µm ceramic membrane by filtration at 50°C. Two DKP concentrations were used (0% and 0.15% wt/wt) within each of the 3 heat treatments. All beverages had no other additives and ran through heat treatment without coagulation. Ultracentrifugation (2-h run at 4°C) supernatants of the beverages were collected at 1, 5, 8, 12, and 15-d storage at 4°C. Phosphorus, Ca, and K concentrations in the beverages and supernatants were measured using inductively coupled plasma spectrometry. Protein composition of supernatants was measured using Kjeldahl and sodium dodecyl sulfate-PAGE. Micellar casein concentrate and MPC beverages with 0.15% DKP had higher concentrations of supernatant protein, Ca, and P than beverages without DKP. Protein, Ca, and P concentrations were higher in MCC supernatant than in MPC supernatant when DKP was added, and these concentrations increased over storage time, especially when lower heat treatments (HTST or no heat treatment) had been applied. Dipotassium phosphate addition caused the dissociation of αS-, β-, and κ-casein, and casein proteolysis products out of the casein micelles, and DKP addition explained over 70% of the increase in supernatant protein, P, and Ca concentrations. Dipotassium phosphate could be removed from 7.5% of protein beverages made with fresh liquid MCC and MPC (containing a residual lactose concentration of 0.6% to 0.7% and the proportional amount of soluble milk minerals), as these beverages maintain heat-processing stability without DKP addition.
Collapse
Affiliation(s)
- Joice Pranata
- Northeast Dairy Food Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - Hayden Hoyt
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing and Nutritional Sciences, North Carolina State University, Raleigh, NC 27695
| | - MaryAnne Drake
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing and Nutritional Sciences, North Carolina State University, Raleigh, NC 27695
| | - David M Barbano
- Northeast Dairy Food Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
2
|
Applications of micellar casein concentrate in 3D-printed food structures. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Physical, chemical and microbiological changes in liquid micellar casein concentrates induced by high-pressure treatments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Wilbanks D, Lee M, Rahimi Y, Lucey J. Comparison of micellar casein isolate and nonfat dry milk for use in the production of high-protein cultured milk products. J Dairy Sci 2022; 106:61-74. [DOI: 10.3168/jds.2022-22400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
|
5
|
Highly concentrated micellar casein: Impact of its storage stability on the functional characteristics of process cheese products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Galarza U, Iturmendi N, García A, Fernández T, Maté JI. Evolution of microbial and protein qualities of fractions of milk protein processed by microfiltration. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Effect of β-casein reduction and high heat treatment of micellar casein concentrate on the rennet coagulation properties, composition and yield of Emmental cheese made therefrom. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
García A, Iturmendi N, Maté JI, Fernández-García T. Combined effect of nisin addition and high pressure processing on the stability of liquid micellar casein concentrates. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Kaplan M, Arslan A, Duman H, Karyelioğlu M, Baydemir B, Günar BB, Alkan M, Bayraktar A, Tosun Hİ, Ertürk M, Eskici G, Duar RM, Henrick BM, Frese SA, Karav S. Production of Bovine Colostrum for Human Consumption to Improve Health. Front Pharmacol 2022; 12:796824. [PMID: 35046820 PMCID: PMC8762312 DOI: 10.3389/fphar.2021.796824] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Colostrum contains all essential nutrients for the neonate during the first days of life, with impacts that continue far beyond these first days. Bovine colostrum has been used for human consumption due to the high concentrations of bioactive proteins, vitamins, minerals, growth factors, as well as free and conjugated oligosaccharides. Processes involved in the preparation of bovine colostrum for human consumption play a pivotal role in preserving and maintaining the activity of the bioactive molecules. As bovine colostrum is a multifunctional food that offers a myriad of benefits for human health, assessing the main processes used in preparing it with both advantages and disadvantages is a crucial point to discuss. We discuss major processes effects for colostrum production on the nutritional value, some advanced technologies to preserve processed bovine colostrum and the end-product forms consumed by humans whether as dairy products or dietary supplements.
Collapse
Affiliation(s)
- Merve Kaplan
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ayşenur Arslan
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Melda Karyelioğlu
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Barış Baydemir
- Department of Coaching Education, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Bilgetekin Burak Günar
- Department of Physical Education and Sports Teaching, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Merve Alkan
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
- Uluova Dairy, Canakkale, Turkey
| | - Ayşe Bayraktar
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
- Uluova Dairy, Canakkale, Turkey
| | | | | | - Günay Eskici
- Department of Coaching Education, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | | | - Bethany M. Henrick
- Evolve Biosystems, Inc., Davis, CA, United States
- Department of Food Science and Technology, University of Nebraska Lincoln, Lincoln, NE, United States
| | - Steven A. Frese
- Department of Nutrition, University of Nevada Reno, Reno, NV, United States
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
10
|
Nasralla NN, Gomah NH, Aly MM, Abdel-Aleem JA, Hammam AR, Osman DM, El-Derwy YM. Compositional characteristics of dairy products and their potential nondairy applications after shelf-life. Curr Res Food Sci 2022; 5:150-156. [PMID: 35059646 PMCID: PMC8760486 DOI: 10.1016/j.crfs.2021.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/30/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Abstract
Many dairy products are discarded and useless after end of shelf-life, which causes economic and environmental challenges. The objective of this study was to study the compositional characteristics of some dairy products before and after shelf-life, and develop a process to utilize those dairy products after end of shelf-life in non dairy applications (cosmetic cream and soap). Several dairy products, such as sterilized milk, yogurt, soft cheese, hard cheese, cream, and butter were collected from markets in Egypt before shelf-life and after three months of shelf-life. Electrophoresis analysis was conducted to estimate the changes in the protein fractions of protein products (sterilized milk, yogurt, and cheese) before and after expiration. Also, gas chromatography (GS) was performed to compare the fatty acids of fat products (cream and butter) before and after end of shelf-life. Sterilized milk, yogurt, soft, and hard cheese were turned into powder (Expired dairy products powder; EDPP) to be used as a raw material in manufacturing of cosmetic creams. The fat was separated from cream, butter, and hard cheese (Expired dairy products fat; EDPF) to be utilized in making soap. The formulated cosmetic creams were examined in vitro. Functional properties of cream were determined, such as appearance, spreadability, irritancy, and pH. Additionally, the soap quality was tested after manufacture. We found that dairy products, such as milk, yogurt, and cheese after shelf-life can be utilized as raw materials for the production of cosmetic creams, as well as production of soap from butter and cream. The produced products were similar to those in commercial markets. This study is an endeavor to conquer the dairy industry challenges, which are considered a huge loss from the economic and environmental aspects. Several dairy products were collected from markets before and after shelf-life. The protein fractions were estimated in those dairy products before and after expiration. Sterilized milk, yogurt, soft, and hard cheese after end of shelf-life were turned into powder. This powder can be used as a raw material in manufacturing of cosmetic creams. The fat of expired dairy products was used in making soap.
Collapse
|
11
|
Hammam ARA, Beckman SL, Metzger LE. Production and storage stability of concentrated micellar casein. J Dairy Sci 2021; 105:1084-1098. [PMID: 34955256 DOI: 10.3168/jds.2021-21200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Concentrated micellar casein (CMC) is a high-protein ingredient that can be used in process cheese product formulations. The objectives of this study were to develop a process to produce CMC and to evaluate the effect of sodium chloride and sodium citrate on its storage stability. Skim milk was pasteurized at 76°C for 16 s and cooled to ≤4°C. The skim milk was heated to 50°C using a plate heat exchanger and microfiltered with a graded permeability (GP) ceramic microfiltration (MF) membrane system (0.1 μm) in a continuous feed-and-bleed mode (flux of 71.43 L/m2 per hour) using a 3× concentration factor (CF) to produce a 3× MF retentate. Subsequently, the retentate of the first stage was diluted 2× with soft water (2 kg of water: 1 kg of retentate) and again MF at 50°C using a 3× CF. The retentate of the second stage was then cooled to 4°C and stored overnight. The following day, the retentate was heated to 63°C and MF in a recirculation mode until the total solids (TS) reached approximately 22% (wt/wt). Subsequently, the MF system temperature was increased to 74°C and MF until the permeate flux was <3 L/m2 per hour. The CMC was then divided into 3 aliquots (approximately 10 kg each) at 74°C. The first portion was a control, whereas 1% of sodium chloride was added to the second portion (T1), and 1% of sodium chloride plus 1% of sodium citrate were added to the third portion (T2). The CMC retentates were transferred hot to sterilized vials and stored at 4°C. This trial was repeated 3 times using separate lots of skim milk. The CMC at d 0 (immediately after manufacturing) contained 25.41% TS, 21.65% true protein (TP), 0.09% nonprotein nitrogen (NPN), and 0.55% noncasein nitrogen (NCN). Mean total aerobic bacterial counts (TBC) in control, T1, and T2 at d 0 were 2.6, 2.5, and 2.8 log cfu/mL, respectively. The level of proteolysis (NCN and NPN values) increased with increasing TBC during 60 d of storage at 4°C. This study determined that CMC with >25% TS and >95% casein as percentage of TP can be manufactured using GP MF ceramic membranes and could be stored up to 60 d at 4°C. The effects of the small increase in NCN and NPN, as well as the addition of sodium chloride or sodium citrate in CMC during 60 d of storage on process cheese characteristics, will be evaluated in subsequent studies.
Collapse
Affiliation(s)
- Ahmed R A Hammam
- Dairy and Food Science Department, South Dakota State University, Brookings 57007.
| | - Steven L Beckman
- Dairy and Food Science Department, South Dakota State University, Brookings 57007
| | - Lloyd E Metzger
- Dairy and Food Science Department, South Dakota State University, Brookings 57007
| |
Collapse
|
12
|
Xia X, Tobin JT, Fenelon MA, Mcsweeney PLH, Sheehan JJ. Production, composition and preservation of micellar casein concentrate and its application in cheesemaking: A review. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaofeng Xia
- Teagasc Food Research Centre Moorepark Fermoy Co. Cork P61 C996
- School of Food and Nutritional Sciences University College Cork Cork T12 YN60 Ireland
| | - John T Tobin
- Teagasc Food Research Centre Moorepark Fermoy Co. Cork P61 C996
| | - Mark A Fenelon
- Teagasc Food Research Centre Moorepark Fermoy Co. Cork P61 C996
| | - Paul L H Mcsweeney
- School of Food and Nutritional Sciences University College Cork Cork T12 YN60 Ireland
| | | |
Collapse
|
13
|
McCarthy NA, Magan JB, Kelleher CM, Kelly AL, O’Mahony JA, Murphy EG. Heat treatment of milk: effect on concentrate viscosity, powder manufacture and end-product functionality. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Effect of heat treatment on whey protein-reduced micellar casein concentrate: A study of texture, proteolysis levels and volatile profiles of Cheddar cheeses produced therefrom. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Goulder DM, Harte FM. Prevention of low-temperature gelation in milk protein concentrates by calcium-binding salts. J Dairy Sci 2021; 105:32-39. [PMID: 34600713 DOI: 10.3168/jds.2021-20264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022]
Abstract
The objective of this study was to determine the effect of adding low concentrations of calcium-binding salts on the prevention of low-temperature gelation in milk protein concentrates (MPC). The MPC were created by a combination of ultrafiltration and diafiltration, standardized from 14 to 17% (wt/vol) protein content and mixed with one of 5 calcium-binding salts (sodium citrate, sodium hexametaphosphate, sodium polyphosphate, sodium pyrophosphate, and sodium monophosphate) adjusted to a pH of 6.75. The flow properties, apparent viscosity, and gel strength were determined for MPC containing a wide range of calcium-binding salt concentrations. Low-temperature gelation occurred in MPC with 16.0% and higher protein content. Low-temperature gelation at 16.0% protein content was prevented by the addition of any of the 5 salts tested at low concentrations (0.30 mM or less; sodium citrate, sodium hexametaphosphate, sodium polyphosphate, sodium pyrophosphate or sodium monophosphate), with sodium polyphosphate and sodium monophosphate being the most consistent in preventing low-temperature gels. All MPC samples exhibited shear-thinning behavior (n = 0.52-0.72), which increased (lower n values) as the protein content increased and decreased by addition of salt. At concentrations of salt above 1.00 mM, thermally irreversible gels were observed with relative strength dependent on the salt and protein content.
Collapse
Affiliation(s)
- D M Goulder
- Department of Food Science, The Pennsylvania State University, University Park 16802
| | - F M Harte
- Department of Food Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
16
|
Dunn M, Barbano DM, Drake M. Viscosity changes and gel formation during storage of liquid micellar casein concentrates. J Dairy Sci 2021; 104:12263-12273. [PMID: 34531054 DOI: 10.3168/jds.2021-20658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
Our objective was to determine the effects of temperature and protein concentration on viscosity increase and gelation of liquid micellar casein concentrate (MCC) at protein concentrations from 6 to 20% during refrigerated storage. Skim milk (~350 kg) was pasteurized (72°C for 16 s) and filtered through a ceramic microfiltration system to make MCC and replicated 3 times. The liquid MCC was immediately concentrated via a plate ultrafiltration system to 18% protein (wt/wt). The MCC was then diluted to various protein concentrations (6-18%, wt/wt). The highest protein concentrations of MCC formed gels almost immediately on cooling to 4°C, whereas lower concentrations of MCC were viscous liquids. Apparent viscosity (AV) determination using a rotational viscometer, gel strength using a compression test, and protein analysis of supernatants from ultracentrifugation by the Kjeldahl method were performed. The AV data were collected from MCC (6.54, 8.75, 10.66, and 13.21% protein) at 4, 20, and 37°C, and compression force test data were collected for MCC (15.6, 17.9, and 20.3% protein) over a period of 2-wk storage at 4°C. The maximum compressive load was compared at each time point to determine the changes in gel strength over time. Supernatants from MCC of 6.96 and 11.61% protein were collected after ultracentrifugation (100,605 × g for 2 h at 4, 20, and 37°C) and the nitrogen distributions (total, noncasein, casein, and nonprotein nitrogen) were determined. The protein and casein as a percent of true protein concentration in the liquid phase around casein micelles in MCC increased with increasing total MCC protein concentration and with decreasing temperature. Casein as a percent of true protein at 4°C in the liquid phase around casein micelles increased from about 16% for skim milk to about 78% for an MCC containing 11.6% protein. This increase was larger than expected, and this may promote increased viscosity. The AV of MCC solutions in the range of 6 to 13% casein increased with increasing casein concentration and decreasing temperature. We observed a temperature by protein concentration interaction, with AV increasing more rapidly with decreasing temperature at high protein concentration. The increase in AV with decreasing temperature may be due to the increase in protein concentration in the aqueous phase around the casein micelles. The MCC containing about 16 and 18% casein gelled upon cooling to form a gel that was likely a particle jamming gel. These gels increased in strength over 10 d of storage at 4°C, likely due either to the migration of casein (CN) out of the micelles and interaction of the nonmicellar CN to form a network that further strengthened the random loose jamming gel structure or to a gradual increase in voluminosity of the casein micelles during storage at 4°C.
Collapse
Affiliation(s)
- Marshall Dunn
- Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - David M Barbano
- Northeast Dairy Foods Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853.
| | - MaryAnne Drake
- Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| |
Collapse
|
17
|
Marella C, Sunkesula V, Hammam ARA, Kommineni A, Metzger LE. Optimization of Spiral-Wound Microfiltration Process Parameters for the Production of Micellar Casein Concentrate. MEMBRANES 2021; 11:656. [PMID: 34564473 PMCID: PMC8466260 DOI: 10.3390/membranes11090656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022]
Abstract
A systematic selection of different transmembrane pressures (TMP) and levels of diafiltration (DF) was studied to optimize these critical process parameters during the manufacturing of micellar casein concentrate (MCC) using spiral-wound polymeric membrane filtration. Three TMPs (34.5, 62.1, and 103.4 kPa) and four DF levels (0, 70, 100, and 150%) were applied in the study. The effect of the TMP and DF level on flux rates, serum protein (SP) removal, the casein-to-total-protein ratio, the casein-to-true-protein ratio, and the rejection of casein and SP were evaluated. At all transmembrane pressures, the overall flux increased with increases in the DF level. The impact of DF on the overall flux was more pronounced at lower pressures than at higher pressures. With controlled DF, the instantaneous flux was maintained within 80% of the initial flux for the entire process run. The combination of 34.5 kPa and a DF level of 150% resulted in 81.45% SP removal, and a casein-to-true-protein ratio of 0.96. SP removal data from the lab-scale experiments were fitted into a mathematical model using DF levels and the square of TMPs as factors. The model developed in this study could predict SP removal within 90-95% of actual SP removal achieved from the pilot plant experiments.
Collapse
Affiliation(s)
- Chenchaiah Marella
- Midwest Dairy Foods Research Center, Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA; (V.S.); (A.R.A.H.); (A.K.); (L.E.M.)
- Idaho Milk Products, Jerome, ID 83338, USA
| | - Venkateswarlu Sunkesula
- Midwest Dairy Foods Research Center, Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA; (V.S.); (A.R.A.H.); (A.K.); (L.E.M.)
- Idaho Milk Products, Jerome, ID 83338, USA
| | - Ahmed R. A. Hammam
- Midwest Dairy Foods Research Center, Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA; (V.S.); (A.R.A.H.); (A.K.); (L.E.M.)
| | - Anil Kommineni
- Midwest Dairy Foods Research Center, Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA; (V.S.); (A.R.A.H.); (A.K.); (L.E.M.)
| | - Lloyd E. Metzger
- Midwest Dairy Foods Research Center, Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA; (V.S.); (A.R.A.H.); (A.K.); (L.E.M.)
| |
Collapse
|
18
|
Vogel KG, Carter BG, Cheng N, Barbano DM, Drake MA. Ready-to-drink protein beverages: Effects of milk protein concentration and type on flavor. J Dairy Sci 2021; 104:10640-10653. [PMID: 34304878 DOI: 10.3168/jds.2021-20522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/09/2021] [Indexed: 11/19/2022]
Abstract
This study evaluated the role of protein concentration and milk protein ingredient [serum protein isolate (SPI), micellar casein concentrate (MCC), or milk protein concentrate (MPC)] on sensory properties of vanilla ready-to-drink (RTD) protein beverages. The RTD beverages were manufactured from 5 different liquid milk protein blends: 100% MCC, 100% MPC, 18:82 SPI:MCC, 50:50 SPI:MCC, and 50:50 SPI:MPC, at 2 different protein concentrations: 6.3% and 10.5% (wt/wt) protein (15 or 25 g of protein per 237 mL) with 0.5% (wt/wt) fat and 0.7% (wt/wt) lactose. Dipotassium phosphate, carrageenan, cellulose gum, sucralose, and vanilla flavor were included. Blended beverages were preheated to 60°C, homogenized (20.7 MPa), and cooled to 8°C. The beverages were then preheated to 90°C and ultrapasteurized (141°C, 3 s) by direct steam injection followed by vacuum cooling to 86°C and homogenized again (17.2 MPa first stage, 3.5 MPa second stage). Beverages were cooled to 8°C, filled into sanitized bottles, and stored at 4°C. Initial testing of RTD beverages included proximate analyses and aerobic plate count and coliform count. Volatile sulfur compounds and sensory properties were evaluated through 8-wk storage at 4°C. Astringency and sensory viscosity were higher and vanillin flavor was lower in beverages containing 10.5% protein compared with 6.3% protein, and sulfur/eggy flavor, astringency, and viscosity were higher, and sweet aromatic/vanillin flavor was lower in beverages with higher serum protein as a percentage of true protein within each protein content. Volatile compound analysis of headspace vanillin and sulfur compounds was consistent with sensory results: beverages with 50% serum protein as a percentage of true protein and 10.5% protein had the highest concentrations of sulfur volatiles and lower vanillin compared with other beverages. Sulfur volatiles and vanillin, as well as sulfur/eggy and sweet aromatic/vanillin flavors, decreased in all beverages with storage time. These results will enable manufacturers to select or optimize protein blends to better formulate RTD beverages to provide consumers with a protein beverage with high protein content and desired flavor and functional properties.
Collapse
Affiliation(s)
- Kenneth G Vogel
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh 27695
| | - B G Carter
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh 27695
| | - N Cheng
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh 27695
| | - D M Barbano
- Northeast Dairy Foods Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - M A Drake
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh 27695.
| |
Collapse
|
19
|
Hammam ARA, Martínez-Monteagudo SI, Metzger LE. Progress in micellar casein concentrate: Production and applications. Compr Rev Food Sci Food Saf 2021; 20:4426-4449. [PMID: 34288367 DOI: 10.1111/1541-4337.12795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 01/11/2023]
Abstract
Micellar casein concentrate (MCC) is a novel ingredient with high casein content. Over the past decade, MCC has emerged as one of the most promising dairy ingredients having applications in beverages, yogurt, cheese, and process cheese products. Industrially, MCC is manufactured by microfiltration (MF) of skim milk and is commercially available as a liquid, concentrated, or dried containing ≥9, ≥22, and ≥80% total protein, respectively. As an ingredient, MCC not only imparts a bland flavor but also offers unique functionalities such as foaming, emulsifying, wetting, dispersibility, heat stability, and water-binding ability. The high protein content of MCC represents a valuable source of fortification in a number of food formulations. For the last 20 years, MCC is utilized in many applications due to the unique physiochemical and functional characteristics. It also has promising applications to eliminate the cost of drying by producing concentrated MCC. This work aims at providing a succinct overview of the historical progress of the MCC, a review on the manufacturing methods, a discussion of MCC properties, varieties, and applications.
Collapse
Affiliation(s)
- Ahmed R A Hammam
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota.,Dairy Science Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Sergio I Martínez-Monteagudo
- Department of Family and Consumer Sciences, New Mexico State University, Las Cruces, New Mexico.,Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, New Mexico
| | - Lloyd E Metzger
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
20
|
Xia X, Tobin JT, Subhir S, Fenelon MA, McSweeney PL, Sheehan JJ. Effect of thermal treatment on serum protein reduced micellar casein concentrate: An evaluation of rennet coagulability, cheese composition and yield. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Carter B, Cheng N, Kapoor R, Meletharayil G, Drake M. Invited review: Microfiltration-derived casein and whey proteins from milk. J Dairy Sci 2021; 104:2465-2479. [DOI: 10.3168/jds.2020-18811] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/05/2020] [Indexed: 01/26/2023]
|
22
|
Effect of thawing procedures on the properties of frozen and subsequently thawed casein concentrate. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Production of Liquid Milk Protein Concentrate with Antioxidant Capacity, Angiotensin Converting Enzyme Inhibitory Activity, Antibacterial Activity, and Hypoallergenic Property by Membrane Filtration and Enzymatic Modification of Proteins. Processes (Basel) 2020. [DOI: 10.3390/pr8070871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Liquid milk protein concentrate with different beneficial values was prepared by membrane filtration and enzymatic modification of proteins in a sequential way. In the first step, milk protein concentrate was produced from ultra-heat-treated skimmed milk by removing milk serum as permeate. A tubular ceramic-made membrane with filtration area 5 × 10−3 m2 and pore size 5 nm, placed in a cross-flow membrane house, was adopted. Superior operational strategy in filtration process was herein: trans-membrane pressure 3 bar, retention flow rate 100 L·h−1, and implementation of a static turbulence promoter within the tubular membrane. Milk with concentrated proteins from retentate side was treated with the different concentrations of trypsin, ranging from 0.008–0.064 g·L−1 in individual batch-mode operations at temperature 40 °C for 10 min. Subsequently, inactivation of trypsin in reaction was done at a temperature of 70 °C for 30 min of incubation. Antioxidant capacity in enzyme-treated liquid milk protein concentrate was measured with the Ferric reducing ability of plasma assay. The reduction of angiotensin converting enzyme activity by enzyme-treated liquid milk protein concentrate was measured with substrate (Abz-FRK(Dnp)-P) and recombinant angiotensin converting enzyme. The antibacterial activity of enzyme-treated liquid milk protein concentrate towards Bacillus cereus and Staphylococcus aureus was tested. Antioxidant capacity, anti-angiotensin converting enzyme activity, and antibacterial activity were increased with the increase of trypsin concentration in proteolytic reaction. Immune-reactive proteins in enzyme-treated liquid milk protein concentrate were identified with clinically proved milk positive pooled human serum and peroxidase-labelled anti-human Immunoglobulin E. The reduction of allergenicity in milk protein concentrate was enzyme dose-dependent.
Collapse
|
24
|
|
25
|
Lu Y, McMahon D, Vollmer A. Investigating cold gelation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making. J Dairy Sci 2016; 99:5132-5143. [DOI: 10.3168/jds.2015-10791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
|
26
|
Adams MC, Barbano DM. Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration. J Dairy Sci 2015; 99:167-82. [PMID: 26519975 DOI: 10.3168/jds.2015-9897] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/01/2015] [Indexed: 11/19/2022]
Abstract
Our objective was to determine the effect of retentate flow channel diameter (4 or 6mm) of nongraded permeability 100-nm pore size ceramic membranes operated in nonuniform transmembrane pressure mode on the limiting retentate protein concentration (LRPC) while microfiltering (MF) skim milk at a temperature of 50°C, a flux of 55 kg · m(-2) · h(-1), and an average cross-flow velocity of 7 m · s(-1). At the above conditions, the retentate true protein concentration was incrementally increased from 7 to 11.5%. When temperature, flux, and average cross-flow velocity were controlled, ceramic membrane retentate flow channel diameter did not affect the LRPC. This indicates that LRPC is not a function of the Reynolds number. Computational fluid dynamics data, which indicated that both membranes had similar radial velocity profiles within their retentate flow channels, supported this finding. Membranes with 6-mm flow channels can be operated at a lower pressure decrease from membrane inlet to membrane outlet (ΔP) or at a higher cross-flow velocity, depending on which is controlled, than membranes with 4-mm flow channels. This implies that 6-mm membranes could achieve a higher LRPC than 4-mm membranes at the same ΔP due to an increase in cross-flow velocity. In theory, the higher LRPC of the 6-mm membranes could facilitate 95% serum protein removal in 2 MF stages with diafiltration between stages if no serum protein were rejected by the membrane. At the same flux, retentate protein concentration, and average cross-flow velocity, 4-mm membranes require 21% more energy to remove a given amount of permeate than 6-mm membranes, despite the lower surface area of the 6-mm membranes. Equations to predict skim milk MF retentate viscosity as a function of protein concentration and temperature are provided. Retentate viscosity, retentate recirculation pump frequency required to maintain a given cross-flow velocity at a given retentate viscosity, and retentate protein determination by mid-infrared spectrophotometry were all useful tools for monitoring the retentate protein concentration to ensure a sustainable MF process. Using 6-mm membranes instead of 4-mm membranes would be advantageous for processors who wish to reduce energy costs or maximize the protein concentration of a MF retentate.
Collapse
Affiliation(s)
- Michael C Adams
- Northeast Dairy Foods Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - David M Barbano
- Northeast Dairy Foods Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
27
|
Lu Y, McMahon D, Metzger L, Kommineni A, Vollmer A. Solubilization of rehydrated frozen highly concentrated micellar casein for use in liquid food applications. J Dairy Sci 2015; 98:5917-30. [DOI: 10.3168/jds.2015-9482] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/02/2015] [Indexed: 11/19/2022]
|
28
|
Thermal inactivation of Bacillus cereus spores in micellar casein concentrates–effect of protein content and pH development. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13594-014-0178-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|