1
|
Ow-Wing K, Barbano DM, Drake M. Production of low-lactose and low-serum-protein milk protein beverages using microfiltration. J Dairy Sci 2024; 107:5481-5495. [PMID: 38642659 DOI: 10.3168/jds.2024-24776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/14/2024] [Indexed: 04/22/2024]
Abstract
Our objective was to determine the effect of simultaneous removal of lactose plus low-molecular weight solutes and milk serum proteins from skim milk by microfiltration (MF) on the chemical, physical, and sensory properties of 3.4%, 7.5%, and 10.5% milk protein-based beverages before and after a direct steam injection thermal process. Skim milk was microfiltered at 50°C using 0.1-μm ceramic membranes with a diafiltration ratio of water to milk of about 2.5. Milk lactose, serum proteins, and soluble minerals were removed simultaneously to produce protein beverages containing from 3.4% to 10.5% true protein from skim milk and this process was replicated twice with different skim milks. The soluble mineral plus lactose content was very low and the aqueous phase of the beverages had a freezing point very close to water (i.e., -0.02°C). Beverage pH ranged from 7.19 to 7.41, with pH decreasing with increasing protein concentration. Overall, the beverages were whiter and blander than skim milk. When UHT processed with direct steam injection at a holding temp of 140°C for 2 to 3 s, there was some protein aggregation detected by particle size analysis (volume mean diameter of protein particles was 0.16 μm before and 22 μm after UHT). No sulfur or eggy flavor was detected, and no browning was observed, due to the UHT thermal treatment. Both apparent viscosity and sensory viscosity increased with increasing protein concentration and heat treatment.
Collapse
Affiliation(s)
- Kai Ow-Wing
- Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC 27695
| | - David M Barbano
- Northeast Dairy Foods Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - MaryAnne Drake
- Southeast Dairy Foods Research Center, North Carolina State University, Raleigh, NC 27695.
| |
Collapse
|
2
|
Lott TT, Martin NH, Dumpler J, Wiedmann M, Moraru CI. Microbacterium represents an emerging microorganism of concern in microfiltered extended shelf-life milk products. J Dairy Sci 2023; 106:8434-8448. [PMID: 37678790 DOI: 10.3168/jds.2023-23734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/13/2023] [Indexed: 09/09/2023]
Abstract
Growing interest in the manufacture of extended shelf-life (ESL) milk, which is typically achieved by a high-temperature treatment called ultra-pasteurization (UP), is driven by distribution challenges, efforts to reduce food waste, and more. Even though high-temperature, short-time (HTST) pasteurized milk has a substantially shorter shelf life than UP milk, HTST milk is preferred in the United States because consumers tend to perceive UP milk as less desirable due to the "cooked" flavor associated with high-temperature processing. While ESL beyond 21 d may be possible for HTST, the survival and outgrowth of psychrotolerant aerobic spore-forming bacteria can still be a limitation to extending shelf life of HTST milk. Microfiltration (MF) is effective for reducing vegetative microorganisms and spores in raw milk, but it is unclear what the effects of membrane pore size, storage temperature, and milk type (i.e., skim vs. whole) are on the microbial shelf life of milk processed by both MF and HTST pasteurization. To investigate these factors, raw skim milk was MF using different pore sizes (0.8 or 1.2 μm), and then MF skim milk and standardized whole milk (MF skim with heat-treated [85°C for 20 s] cream) were HTST pasteurized at 75°C for 20 s. Subsequently, milk was stored at 3°C, 6.5°C, or 10°C and total bacteria counts were measured for up to 63 d. An ANOVA indicated that mean bacterial concentrations between storage temperatures were significantly different from each other, with mean maximum observed concentrations of 3.67, 5.33, and 8.08 log10 cfu/mL for storage temperatures 3°C, 6.5°C, and 10°C, respectively. Additionally, a smaller difference in mean maximum bacterial concentrations throughout shelf life was identified between pore sizes (<1 log cfu/mL), but no significant difference was attributed to milk type. An unexpected outcome of this study was the identification of Microbacterium as a major contributor to the bacterial population in MF ESL milk. Microbacterium is a psychrotolerant, thermoduric gram-positive, non-spore-forming rod with a small cell size (∼0.9 μm length and ∼0.3 μm width), which our data suggest was able to permeate the membranes used in this study, survive HTST pasteurization, and then grow at refrigeration temperatures. While spores continue to be a key concern for the manufacture of MF, ESL milk, our study demonstrates the importance of other psychrotolerant, thermoduric bacteria such as Microbacterium to these products.
Collapse
Affiliation(s)
- T T Lott
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | - N H Martin
- Department of Food Science, Cornell University, Ithaca, NY 14853.
| | - J Dumpler
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | - M Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853
| | - C I Moraru
- Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
3
|
Yang S, Piao Y, Li X, Mu D, Ji S, Wu R, Wu J. A new decontamination method for Bacillus subtilisin pasteurized milk: Thermosonication treatment. Food Res Int 2023; 163:112291. [PMID: 36596196 DOI: 10.1016/j.foodres.2022.112291] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Thermosonication (TS) is a novel and viable technique employed to replace conventional thermal processing. TS treatment combined with pasteurization was used to kill the residual heat-resistant Bacillus in pasteurized milk and extend the shelf life of pasteurized milk and compared with High Temperture Shoort Time (HTST) pasteurization to study its decontamination effect on Bacillus subtilis and the quality of treated milk. The results showed that after 40 kHz, 240 W, 25 min ultrasonic treatment and 50 °C heating decontamination treatment, the number of B. subtilis in the medium and milk medium decreased by 4.17 log CFU/mL and 4.09 log CFU/mL respectively. The results of cell membrane permeability showed that the leakage of DNA and protein in the HTST-TS group increased by 52.3 % and 34 %, respectively, when compared to that in the HTST group. In addition, transmission electron microscopy (TEM) analysis showed that the bacterial cell membrane of the HTST-TS group swelled up, the cell wall was ruptured, and the cell content was accumulated in the cells. The results showed that HTST-TS treatment significantly inhibited the activities of ATPase (47 %), succinate dehydrogenase (SDH) (68.6 %), and malate dehydrogenase (MDH) (54.4 %). The physical and chemical sensory evaluation of milk treated with HTST-TS showed that HTST-TS treatment could improve the L* value (2.24 %), zeta potential (64.19 %), and colloidal particle size (14.49 %) of milk but had no significant effect on oral sensitivity. In conclusion, this study provides new insights, which may be helpful in implementing this new combined decontamination method in the dairy industry to improve the quality of pasteurized milk and extend the its shelf life.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Yuqiong Piao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Xinfei Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, Liaoning Province, PR China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, Liaoning Province, PR China.
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, Liaoning Province; Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, PR China.
| |
Collapse
|
4
|
Thermal degradation characteristics of amino acids in rainbow trout fillets during traditional high temperature short time processing and microwave processing. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Neoκleous I, Tarapata J, Papademas P. Non-thermal Processing Technologies for Dairy Products: Their Effect on Safety and Quality Characteristics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.856199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thermal treatment has always been the processing method of choice for food treatment in order to make it safe for consumption and to extend its shelf life. Over the past years non-thermal processing technologies are gaining momentum and they have been utilized especially as technological advancements have made upscaling and continuous treatment possible. Additionally, non-thermal treatments are usually environmentally friendly and energy-efficient, hence sustainable. On the other hand, challenges exist; initial cost of some non-thermal processes is high, the microbial inactivation needs to be continuously assessed and verified, application to both to solid and liquid foods is not always available, some organoleptic characteristics might be affected. The combination of thermal and non-thermal processing methods that will produce safe foods with minimal effect on nutrients and quality characteristics, while improving the environmental/energy fingerprint might be more plausible.
Collapse
|
6
|
|
7
|
Role of Pascalization in Milk Processing and Preservation: A Potential Alternative towards Sustainable Food Processing. PHOTONICS 2021. [DOI: 10.3390/photonics8110498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Renewed technology has created a demand for foods which are natural in taste, minimally processed, and safe for consumption. Although thermal processing, such as pasteurization and sterilization, effectively limits pathogenic bacteria, it alters the aroma, flavor, and structural properties of milk and milk products. Nonthermal technologies have been used as an alternative to traditional thermal processing technology and have the ability to provide safe and healthy dairy products without affecting their nutritional composition and organoleptic properties. Other than nonthermal technologies, infrared spectroscopy is a nondestructive technique and may also be used for predicting the shelf life and microbial loads in milk. This review explains the role of pascalization or nonthermal techniques such as high-pressure processing (HPP), pulsed electric field (PEF), ultrasound (US), ultraviolet (UV), cold plasma treatment, membrane filtration, micro fluidization, and infrared spectroscopy in milk processing and preservation.
Collapse
|
8
|
Effects of pasteurization, microfiltration, and ultraviolet-c treatments on microorganisms and bioactive proteins in bovine skim milk. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Ultraviolet-C inactivation and hydrophobicity of Bacillus subtilis and Bacillus velezensis spores isolated from extended shelf-life milk. Int J Food Microbiol 2021; 349:109231. [PMID: 34022614 DOI: 10.1016/j.ijfoodmicro.2021.109231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 03/31/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022]
Abstract
Bacterial spores are important in food processing due to their ubiquity, resistance to high temperature and chemical inactivation. This work aims to study the effect of ultraviolet C (UVC) on the spores of Bacillus subtilis and Bacillus velezensis at a molecular and individual level to guide in deciding on the right parameters that must be applied during the processing of liquid foods. The spores were treated with UVC using phosphate buffer saline (PBS) as a suspension medium and their lethality rate was determined for each sample. Purified spore samples of B. velezensis and B. subtilis were treated under one pass in a UVC reactor to inactivate the spores. The resistance pattern of the spores to UVC treatment was determined using dipicolinic acid (Ca-DPA) band of spectral analysis obtained from Raman spectroscopy. Flow cytometry analysis was also done to determine the effect of the UVC treatment on the spore samples at the molecular level. Samples were processed for SEM and the percentage spore surface hydrophobicity was also determined using the Microbial Adhesion to Hydrocarbon (MATH) assay to predict the adhesion strength to a stainless-steel surface. The result shows the maximum lethality rate to be 6.5 for B. subtilis strain SRCM103689 (B47) and highest percentage hydrophobicity was 54.9% from the sample B. velezensis strain LPL-K103 (B44). The difference in surface hydrophobicity for all isolates was statistically significant (P < 0.05). Flow cytometry analysis of UVC treated spore suspensions clarifies them further into sub-populations unaccounted for by plate counting on growth media. The Raman spectroscopy identified B4002 as the isolate possessing the highest concentration of Ca-DPA. The study justifies the critical role of Ca-DPA in spore resistance and the possible sub-populations after UVC treatment that may affect product shelf-life and safety. UVC shows a promising application in the inactivation of resistant spores though there is a need to understand the effects at the molecular level to design the best parameters during processing.
Collapse
|
10
|
SHABBIR MA, AHMED H, MAAN AA, REHMAN A, AFRAZ MT, IQBAL MW, KHAN IM, AMIR RM, ASHRAF W, KHAN MR, AADIL RM. Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.05820] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Abid Aslam MAAN
- University of Agriculture, Pakistan; University of Agriculture, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bellassi P, Cappa F, Fontana A, Morelli L. Phenotypic and Genotypic Investigation of Two Representative Strains of Microbacterium Species Isolated From Micro-Filtered Milk: Growth Capacity and Spoilage-Potential Assessment. Front Microbiol 2020; 11:554178. [PMID: 33193134 PMCID: PMC7642513 DOI: 10.3389/fmicb.2020.554178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022] Open
Abstract
The microbiota that spoil long-life micro-filtered milk generally includes species of the genus Microbacterium. The metabolic properties of this of microorganisms that could potentially modify the quality of micro-filtered milk are still unexplored when compared to better-known microorganisms, such as the spore-forming Bacillus and Paenibacillus spp., and Gram-negative contaminants, such as species of the genera Pseudomonas and Acinetobacter. In this preliminary study, two strains of Microbacterium (M. lacticum 18H and Microbacterium sp. 2C) isolated from micro-filtered milk were characterized in depth, both phenotypically and genotypically, to better understand their role in long-term milk spoilage. The study highlights the ability of these strains to produce high cell numbers and low acidification in micro-filtered milk under storage and shelf-life conditions. Phenotypic analyses of the two Microbacterium sp. isolates revealed that both strains have low proteolytic and lipolytic activity. In addition, they have the ability to form biofilms. This study aims to be a preliminary investigation of milk-adapted strains of the Microbacterium genus, which are able to grow to high cellular levels and perform slight but not negligible acidification that could pose a potential risk to the final quality of micro-filtered milk. Furthermore, M. lacticum 18H and Microbacterium sp. 2C were genotypically characterized in relation to the characteristics of interest in the milk environment. Some protein-encoding genes involved in lactose metabolism were found in the genomes, such as β-galactosidase, lactose permease, and L-lactate dehydrogenase. The phenotypically verified proteolytic ability was supported in the genomes by several genes that encode for proteases, peptidases, and peptide transferases.
Collapse
Affiliation(s)
- Paolo Bellassi
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabrizio Cappa
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy.,Biotechnology Research Centre (CRB), Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy.,Biotechnology Research Centre (CRB), Cremona, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy.,Biotechnology Research Centre (CRB), Cremona, Italy
| |
Collapse
|
12
|
Ceja‐Medina LI, Jiménez‐Fernández M, Andrade‐González I, Navarrete‐Guzmán A, Chacón‐López MA, García‐Magaña ML, Bonilla‐Cárdenas JA, Ortiz‐Basurto RI. Microbiological stability and general sensory acceptance of microfiltered skim milk with agave fructans of a high degree of polymerization added. J Food Saf 2020. [DOI: 10.1111/jfs.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luis I. Ceja‐Medina
- Laboratorio Integral de Investigación en Alimentos, TecNM/Instituto Tecnológico de Tepic Tepic Mexico
| | | | - Isaac Andrade‐González
- Departamento de Estudios de Posgrado e Investigación. TecNM/Instituto Tecnológico de Tlajomulco Tlajomulco de Zúñiga Mexico
| | - Antonio Navarrete‐Guzmán
- Laboratorio Integral de Investigación en Alimentos, TecNM/Instituto Tecnológico de Tepic Tepic Mexico
| | - Martina A. Chacón‐López
- Laboratorio Integral de Investigación en Alimentos, TecNM/Instituto Tecnológico de Tepic Tepic Mexico
| | - María L. García‐Magaña
- Laboratorio Integral de Investigación en Alimentos, TecNM/Instituto Tecnológico de Tepic Tepic Mexico
| | - Jorge A. Bonilla‐Cárdenas
- Centro de Investigación Regional del Pacífico El Verdineño, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias Santiago Ixcuintla Mexico
| | - Rosa I. Ortiz‐Basurto
- Laboratorio Integral de Investigación en Alimentos, TecNM/Instituto Tecnológico de Tepic Tepic Mexico
| |
Collapse
|
13
|
Comparative study on quality of whole milk processed by high hydrostatic pressure or thermal pasteurization treatment. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109370] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Wang D, Fritsch J, Moraru CI. Shelf life and quality of skim milk processed by cold microfiltration with a 1.4-μm pore size membrane, with or without heat treatment. J Dairy Sci 2019; 102:8798-8806. [DOI: 10.3168/jds.2018-16050] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 11/19/2022]
|
15
|
Rankin SA, Bradley RL, Miller G, Mildenhall KB. A 100-Year Review: A century of dairy processing advancements-Pasteurization, cleaning and sanitation, and sanitary equipment design. J Dairy Sci 2018; 100:9903-9915. [PMID: 29153179 DOI: 10.3168/jds.2017-13187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022]
Abstract
Over the past century, advancements within the mainstream dairy foods processing industry have acted in complement with other dairy-affiliated industries to produce a human food that has few rivals with regard to safety, nutrition, and sustainability. These advancements, such as milk pasteurization, may appear commonplace in the context of a modern dairy processing plant, but some consideration of how these advancements came into being serve as a basis for considering what advancements will come to bear on the next century of processing advancements. In the year 1917, depending on where one resided, most milk was presented to the consumer through privately owned dairy animals, small local or regional dairy farms, or small urban commercial dairies with minimal, or at best nascent, processing capabilities. In 1917, much of the retail milk in the United States was packaged and sold in returnable quart-sized clear glass bottles fitted with caps of various design and composition. Some reports suggest that the cost of that quart of milk was approximately 9 cents-an estimated $2.00 in 2017 US dollars. Comparing that 1917 quart of milk to a quart of milk in 2017 suggests several differences in microbiological, compositional, and nutritional value as well as flavor characteristics. Although a more comprehensive timeline of significant processing advancements is noted in the AppendixTable A1 to this paper, we have selected 3 advancements to highlight; namely, the development of milk pasteurization, cleaning and sanitizing technologies, and sanitary specifications for processing equipment. Finally, we provide some insights into the future of milk processing and suggest areas where technological advancements may need continued or strengthened attention and development as a means of securing milk as a food of high safety and value for the next century to come.
Collapse
Affiliation(s)
- S A Rankin
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Drive, Madison 53706.
| | - R L Bradley
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Drive, Madison 53706
| | | | - K B Mildenhall
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Drive, Madison 53706
| |
Collapse
|
16
|
Barbano DM. A 100-Year Review: The production of fluid (market) milk. J Dairy Sci 2018; 100:9894-9902. [PMID: 29153178 DOI: 10.3168/jds.2017-13561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/05/2017] [Indexed: 11/19/2022]
Abstract
During the first 100 years of the Journal of Dairy Science, dairy foods and dairy production dairy scientists have partnered to publish new data and research results that have fostered the development of new knowledge. This knowledge has been the underpinning of both the commercial development of the fluid milk processing industry and regulations and marketing policies for the benefit of dairy farmers, processors, and consumers. During the first 50 years, most of the focus was on producing and delivering high-quality raw milk to factories and improving the shelf life of pasteurized fluid milk. During the second 50 years, raw milk quality was further improved through the use of milk quality payment incentives. Due to changing demographics and lifestyle, whole fluid milk consumption declined and processing technologies were developed to increase the range of fluid milk products (skim and low-fat milks, flavored milks, lactose-reduced milk, long-shelf-life milks, and milks with higher protein and calcium contents) offered to the consumer. In addition, technology to produce specialty high-protein sports beverages was developed, which expanded the milk-based beverage offerings to the consumer.
Collapse
Affiliation(s)
- David M Barbano
- Northeast Dairy Foods Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
17
|
Sadhu SP. Effect of cold chain interruptions on the shelf-life of fluid pasteurised skim milk at the consumer stage. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2018. [DOI: 10.1590/1981-6723.06417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract This study aimed to verify the effect of time and temperature abuse on bacterial numbers in fluid pasteurized skim milk by simulating the real-life scenario, which usually occurs when cold chain is interrupted by consumers prior to consumption that affect the shelf-life of milk. Total three trials were carried out in this study. Thermal abuse was simulated with temperature fluctuations from 5 °C. In the first trial, the information about holding the milk samples for 8 hours at three different temperatures of 15 °C, 20 °C and 25 °C was obtained using a data logger to predict the effect of temperature abuse on the milk microbial quality. Further, in the second and third trial, the effect of temperature abuse on bacterial numbers was examined by holding milk at 5 °C and then shifts temperature to 25 °C for 8 h and 6 h. The pH was monitored during storage. The total bacterial count was examined by the Standard Plate Count (SPC). The mean air temperature had the greatest impact on milk temperature. It took 3.0 h, 3.9 h and 4.2 h to warm up when exposed to the temperatures of 15 °C, 20 °C and 25 °C, respectively. The holding time of 8 h at 25 °C showed that bacterial numbers (1 x 105 CFU mL-1) were higher after 14 days of storage, but control samples at 5 °C (< 1 x 104 CFU mL-1) were still within the acceptable level (5 x 104 CFU mL-1). A holding time of 6 h at 25 oC showed much higher bacterial numbers (1 x 109 CFU mL-1) compared to control samples (1 x 107 CFU mL-1) which were held at 5 °C for 11 days. The pH of the milk decreased with increasing bacterial growth during the extended storage time. The results show that temperature abuse has a significant effect on milk microbial stability and shelf life. It is important to maintain the milk temperature at 5 °C or less as the bacterial growth directly depend on increasing temperature and holding time, which pose the potential risk of microbial hazards leading to foodborne illness. Thus, consumers must understand the factors associated with the safe handling of milk to keep it safe to use before the expiry date.
Collapse
|
18
|
Jo Y, Benoist DM, Barbano DM, Drake MA. Flavor and flavor chemistry differences among milks processed by high-temperature, short-time pasteurization or ultra-pasteurization. J Dairy Sci 2018; 101:3812-3828. [PMID: 29501345 DOI: 10.3168/jds.2017-14071] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/03/2018] [Indexed: 11/19/2022]
Abstract
Typical high-temperature, short-time (HTST) pasteurization encompasses a lower heat treatment and shorter refrigerated shelf life compared with ultra-pasteurization (UP) achieved by direct steam injection (DSI-UP) or indirect heat (IND-UP). A greater understanding of the effect of different heat treatments on flavor and flavor chemistry of milk is required to characterize, understand, and identify the sources of flavors. The objective of this study was to determine the differences in the flavor and volatile compound profiles of milk subjected to HTST, DSI-UP, or IND-UP using sensory and instrumental techniques. Raw skim and raw standardized 2% fat milks (50 L each) were processed in triplicate and pasteurized at 78°C for 15 s (HTST) or 140°C for 2.3 s by DSI-UP or IND-UP. Milks were cooled and stored at 4°C, then analyzed at d 0, 3, 7, and 14. Sensory attributes were determined using a trained panel, and aroma active compounds were evaluated by solid-phase micro-extraction or stir bar sorptive extraction followed by gas chromatography-mass spectrometry, gas chromatography-olfactometry, and gas chromatography-triple quad mass spectrometry. The UP milks had distinct cooked and sulfur flavors compared with HTST milks. The HTST milks had less diversity in aroma active compounds compared with UP milks. Flavor intensity of all milks decreased by d 14 of storage. Aroma active compound profiles were affected by heat treatment and storage time in both skim and 2% milk. High-impact aroma active compounds were hydrogen sulfide, dimethyl trisulfide, and methional in DSI-UP and 2 and 3-methylbutanal, furfural, 2-heptanone, 2-acetyl-1-pyrroline, 2-aminoacetophenone, benzaldehyde, and dimethyl sulfide in IND-UP. These results provide a foundation knowledge of the effect of heat treatments on flavor development and differences in sensory quality of UP milks.
Collapse
Affiliation(s)
- Y Jo
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - D M Benoist
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695
| | - D M Barbano
- Northeast Dairy Research Center, Department of Food Science, Cornell University, Ithaca, NY 14850
| | - M A Drake
- Department of Food, Bioprocessing and Nutrition Sciences, Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695.
| |
Collapse
|
19
|
Mugadza DT, Buys E. BacillusandPaenibacillusspecies associated with extended shelf life milk during processing and storage. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Desmond Tichaona Mugadza
- Department of Food Science; University of Pretoria; Private Bag X20 Hatfield Pretoria Gauteng 0028 South Africa
| | - Elna Buys
- Department of Food Science; University of Pretoria; Private Bag X20 Hatfield Pretoria Gauteng 0028 South Africa
| |
Collapse
|
20
|
Lee A, Barbano D, Drake M. The influence of ultra-pasteurization by indirect heating versus direct steam injection on skim and 2% fat milks. J Dairy Sci 2017; 100:1688-1701. [DOI: 10.3168/jds.2016-11899] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022]
|
21
|
Doll EV, Scherer S, Wenning M. Spoilage of Microfiltered and Pasteurized Extended Shelf Life Milk Is Mainly Induced by Psychrotolerant Spore-Forming Bacteria that often Originate from Recontamination. Front Microbiol 2017; 8:135. [PMID: 28197147 PMCID: PMC5281617 DOI: 10.3389/fmicb.2017.00135] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/19/2017] [Indexed: 01/28/2023] Open
Abstract
Premature spoilage and varying product quality due to microbial contamination still constitute major problems in the production of microfiltered and pasteurized extended shelf life (ESL) milk. Spoilage-associated bacteria may enter the product either as part of the raw milk microbiota or as recontaminants in the dairy plant. To identify spoilage-inducing bacteria and their routes of entry, we analyzed end products for their predominant microbiota as well as the prevalence and biodiversity of psychrotolerant spores in bulk tank milk. Process analyses were performed to determine the removal of psychrotolerant spores at each production step. To detect transmission and recontamination events, strain typing was conducted with isolates obtained from all process stages. Microbial counts in 287 ESL milk packages at the end of shelf life were highly diverse ranging from <1 to 7.9 log cfu/mL. In total, 15% of samples were spoiled. High G+C Gram-positive bacteria were the most abundant taxonomic group, but were responsible for only 31% of spoilage. In contrast, psychrotolerant spores were isolated from 55% of spoiled packages. In 90% of samples with pure cultures of Bacillus cereus sensu lato and Paenibacillus spp., counts exceeded 6 log cfu/mL. In bulk tank milk, the concentration of psychrotolerant spores was low, accounting for merely 0.5 ± 0.8 MPN/mL. Paenibacillus amylolyticus/xylanexedens was by far the most dominant species in bulk tank milk (48% of all isolates), but was never detected in ESL milk, pointing to efficient removal during manufacturing. Six large-scale process analyses confirmed a high removal rate for psychrotolerant spores (reduction by nearly 4 log-units). B. cereus sensu lato, on the contrary, was frequently found in spoiled end products, but was rarely detected in bulk tank milk. Due to low counts in bulk tank samples and efficient spore removal during production, we suggest that shelf life is influenced only to a minor extent by raw-milk-associated factors. In contrast, recontamination with spores, particularly from the B. cereus complex, seems to occur. To enhance milk quality throughout the entire shelf life, improved plant sanitation and disinfection that target the elimination of spores are necessary.
Collapse
Affiliation(s)
| | | | - Mareike Wenning
- Chair of Microbial Ecology, Institute for Food and Health, Technische Universität MünchenFreising, Germany
| |
Collapse
|
22
|
Lee A, Barbano D, Drake M. Short communication: The effect of raw milk cooling on sensory perception and shelf life of high-temperature, short-time (HTST)–pasteurized skim milk. J Dairy Sci 2016; 99:9659-9667. [DOI: 10.3168/jds.2016-11771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 09/03/2016] [Indexed: 11/19/2022]
|
23
|
Murphy SC, Martin NH, Barbano DM, Wiedmann M. Influence of raw milk quality on processed dairy products: How do raw milk quality test results relate to product quality and yield? J Dairy Sci 2016; 99:10128-10149. [DOI: 10.3168/jds.2016-11172] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022]
|
24
|
Di Marzo L, Barbano DM. Effect of homogenizer performance on accuracy and repeatability of mid-infrared predicted values for major milk components. J Dairy Sci 2016; 99:9471-9482. [PMID: 27743661 DOI: 10.3168/jds.2016-11618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022]
Abstract
Our objective was to determine the effect of mid-infrared (MIR) homogenizer efficiency on accuracy and repeatability of Fourier transform MIR predicted fat, true protein, and anhydrous lactose determination given by traditional filter and partial least squares (PLS) prediction models. Five homogenizers with different homogenization performance based on laser light-scattering particle size analysis were used. Repeatability and accuracy were determined by conducting 17 sequential readings on milk homogenized externally to the instrument (i.e., control) and unhomogenized milk. Milk component predictions on externally homogenized milks were affected by variation in homogenizer performance, but the magnitude of effect were small (i.e., <0.025%) when milks were pumped through both efficient and inefficient homogenizers within a MIR milk analyzer. Variation in the in-line MIR homogenizer performance on unhomogenized milks had a much larger effect on accuracy of component testing than on repeatability. The increase of particle size distribution [d(0.9)] from 1.35 to 3.03μm (i.e., fat globule diameter above which 10% of the volume of fat is contained) due to poor homogenization affected fat tests the most; traditional filter based fat B (carbon hydrogen stretch; -0.165%), traditional filter-based fat A (carbonyl stretch; -0.074%), and fat PLS (-0.078%) at a d(0.9) of 3.03μm. Variation in homogenization efficiency also affected traditional filter-based true protein test (+0.012%), true protein PLS prediction (-0.107%), and traditional filter-based anhydrous lactose test (+0.027%) at a d(0.9) of 3.03μm. Effects of variation in homogenization on anhydrous lactose PLS predictions were small. The accuracy of both traditional filter models and PLS models were influenced by poor homogenization. The value of 1.7µm for a d(0.9) used by the USDA Federal Milk Market laboratories as a criterion to make the decision to replace the homogenizer in a MIR milk analyzer appears to be a reasonable limit, given the magnitude of effect on the accuracy of fat tests. In the future, as new PLS models are developed to measure other components in milk, the sensitivity of the accuracy of the predictions of these models to factors such as variation of homogenizer performance should be determined as part of the ruggedness testing during PLS model development.
Collapse
Affiliation(s)
- Larissa Di Marzo
- Northeast Dairy Food Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - David M Barbano
- Northeast Dairy Food Research Center, Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
25
|
Yue J, Zheng Y, Liu Z, Deng Y. Effects of Microfiltration and Storage Time on Cholesterol, Cis-9, Trans-11 and Trans-10, Cis-12 Conjugated Linoleic Acid Levels, and Fatty Acid Compositions in Pasteurized Milk. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1019627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Zhang S, Liu L, Pang X, Lu J, Kong F, Lv J. Use of Microfiltration to Improve Quality and Shelf Life of Ultra-High Temperature Milk. J FOOD PROCESS PRES 2015. [DOI: 10.1111/jfpp.12651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuwen Zhang
- Institute of Agro-Products Processing Science and Technology; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Lu Liu
- Institute of Agro-Products Processing Science and Technology; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Xiaoyang Pang
- Institute of Agro-Products Processing Science and Technology; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Jing Lu
- Institute of Agro-Products Processing Science and Technology; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Fanpi Kong
- Institute of Agro-Products Processing Science and Technology; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| | - Jiaping Lv
- Institute of Agro-Products Processing Science and Technology; Chinese Academy of Agricultural Sciences; Beijing 100193 China
| |
Collapse
|
27
|
Verwijst T, Baggerman J, Liebermann F, van Rijn CJ. High-frequency flow reversal for continuous microfiltration of milk with microsieves. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.07.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Silva e Alves AT, Antunes AEC, Trento FKHS, Zacarchenco PB, Ormenese RCSC, Spadoti LM. Pasteurised, microfiltered and lactose-hydrolysed skimmed milk with added probiotics: Development and storage stability. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Adriana T Silva e Alves
- TECNOLAT/ITAL - Centro de Pesquisa e Desenvolvimento de Laticínios (Center of Dairy Research and Development); Instituto de Tecnologia de Alimentos (Institute of Food Technology); Av. Brasil 2880 Campinas SP Brazil
| | - Adriane E C Antunes
- FCA/UNICAMP - Faculdade de Ciências Aplicadas (School of Applied Sciences); Universidade Estadual de Campinas (University of Campinas); R. Pedro Zaccaria 1300 Limeira SP Brazil
| | - Fabiana K H S Trento
- TECNOLAT/ITAL - Centro de Pesquisa e Desenvolvimento de Laticínios (Center of Dairy Research and Development); Instituto de Tecnologia de Alimentos (Institute of Food Technology); Av. Brasil 2880 Campinas SP Brazil
| | - Patricia B Zacarchenco
- TECNOLAT/ITAL - Centro de Pesquisa e Desenvolvimento de Laticínios (Center of Dairy Research and Development); Instituto de Tecnologia de Alimentos (Institute of Food Technology); Av. Brasil 2880 Campinas SP Brazil
| | - Rita C S C Ormenese
- CCQA/ITAL - Centro de Ciência e Qualidade de Alimentos (Food Science and Quality Center); Instituto de Tecnologia de Alimentos (Institute of Food Technology); Av. Brasil 2880 Campinas SP Brazil
| | - Leila M Spadoti
- TECNOLAT/ITAL - Centro de Pesquisa e Desenvolvimento de Laticínios (Center of Dairy Research and Development); Instituto de Tecnologia de Alimentos (Institute of Food Technology); Av. Brasil 2880 Campinas SP Brazil
| |
Collapse
|