1
|
Zhang T, Pichpol D, Boonyayatra S. Application of MALDI-TOF MS to Identify and Detect Antimicrobial-Resistant Streptococcus uberis Associated with Bovine Mastitis. Microorganisms 2024; 12:1332. [PMID: 39065100 PMCID: PMC11278855 DOI: 10.3390/microorganisms12071332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Streptococcus uberis is a common bovine mastitis pathogen in dairy cattle. The rapid identification and characterization of antimicrobial resistance (AMR) in S. uberis plays an important role in its diagnosis, treatment, and prevention. In this study, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify S. uberis and screen for potential AMR biomarkers. Streptococcus uberis strains (n = 220) associated with bovine mastitis in northern Thailand were identified using the conventional microbiological methods and compared with the results obtained from MALDI-TOF MS. Streptococcus uberis isolates were also examined for antimicrobial susceptibility using a microdilution method. Principal component analysis (PCA) and the Mann-Whitney U test were used to analyze the MALDI-TOF mass spectrum of S. uberis and determine the difference between antimicrobial-resistant and -susceptible strains. Using MALDI-TOF MS, 73.18% (161/220) of the sampled isolates were identified as S. uberis, which conformed to the identifications obtained using conventional microbiological methods and PCR. Using PCR, antimicrobial-resistant strains could not be distinguished from antimicrobial-susceptible strains for all three antimicrobial agents, i.e., tetracycline, ceftiofur, and erythromycin. The detection of spectral peaks at 7531.20 m/z and 6804.74 m/z was statistically different between tetracycline- and erythromycin-resistant and susceptible strains, respectively. This study demonstrates a proteomic approach for the diagnosis of bovine mastitis and potentially for the surveillance of AMR among bovine mastitis pathogens.
Collapse
Affiliation(s)
- Tingrui Zhang
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Veterinary Public Health, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 100191, China
| | - Duangporn Pichpol
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sukolrat Boonyayatra
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY 11548, USA
| |
Collapse
|
2
|
Svennesen L, Skarbye AP, Farre M, Astrup LB, Halasa T, Krömker V, Denwood M, Kirkeby C. Treatment of mild to moderate clinical bovine mastitis caused by gram-positive bacteria: A noninferiority randomized trial of local penicillin treatment alone or combined with systemic treatment. J Dairy Sci 2023; 106:5696-5714. [PMID: 37331876 DOI: 10.3168/jds.2022-22993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/14/2023] [Indexed: 06/20/2023]
Abstract
Bovine mastitis is one of the most important diseases in modern dairy farming, as it leads to reduced welfare and milk production and increased need for antibiotic use. Clinical mastitis in Denmark is most often treated with a combination of local and systemic treatment with penicillin. The objective of this randomized clinical trial was to assess whether worse results could be expected with local intramammary treatment with penicillin compared with a combination of local and systemic treatment with penicillin in terms of the bacteriological cure of mild and moderate clinical mastitis cases caused by gram-positive bacteria. We carried out a noninferiority trial with a noninferiority margin set to a relative reduction in bacteriological cure of 15% between these 2 treatment groups to assess the effect of reducing the total antibiotic use by a factor of 16 for each treated case. Clinical mastitis cases from 12 Danish dairy farms were considered for enrollment. On-farm selection of gram-positive cases was carried out by the farm personnel within the first 24 h after a clinical mastitis case was detected. A single farm used bacterial culture results from the on-farm veterinarian, whereas the other 11 farms were provided with an on-farm test to distinguish gram-positive bacteria from gram-negative or samples without bacterial growth. Cases with suspected gram-positive bacteria were allocated to a treatment group: either local or combination. Bacteriological cure was assessed based on the bacterial species identified in the milk sample from the clinical mastitis case and 2 follow-up samples collected approximately 2 and 3 wk after ended treatment. Identification of bacteria was carried out using MALDI-TOF on bacterial culture growth. Noninferiority was assessed using unadjusted cure rates and adjusted cure rates from a multivariable mixed logistic regression model. Of the 1,972 clinical mastitis cases registered, 345 (18%) met all criteria for inclusion (full data). The data set was further reduced to 265 cases for the multivariable analysis to include only complete registrations. Streptococcus uberis was the most commonly isolated pathogen. Noninferiority was demonstrated for both unadjusted and adjusted cure rates. The unadjusted cure rates were 76.8% and 83.1% for the local and combined treatments, respectively (full data). The pathogen and somatic cell count before the clinical case had an effect on the efficacy of treatment; thus efficient treatment protocols should be herd- and case-specific. The effect of pathogen and somatic cell count on treatment efficacy was similar irrespective of the treatment protocol. We conclude that bacteriological cure of local penicillin treatment for mild and moderate clinical mastitis cases was noninferior to the combination of local and systemic treatment using a 15% noninferiority margin. This suggests that a potential 16-fold reduction in antimicrobial use per mastitis treatment can be achieved with no adverse effect on cure rate.
Collapse
Affiliation(s)
- Line Svennesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark.
| | - Alice P Skarbye
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | | | - Lærke B Astrup
- Center for Diagnostics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tariq Halasa
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Volker Krömker
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Matthew Denwood
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Carsten Kirkeby
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
3
|
de Jong E, McCubbin KD, Speksnijder D, Dufour S, Middleton JR, Ruegg PL, Lam TJGM, Kelton DF, McDougall S, Godden SM, Lago A, Rajala-Schultz PJ, Orsel K, De Vliegher S, Krömker V, Nobrega DB, Kastelic JP, Barkema HW. Invited review: Selective treatment of clinical mastitis in dairy cattle. J Dairy Sci 2023; 106:3761-3778. [PMID: 37080782 DOI: 10.3168/jds.2022-22826] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/01/2023] [Indexed: 04/22/2023]
Abstract
Treatment of clinical mastitis (CM) and use of antimicrobials for dry cow therapy are responsible for the majority of animal-defined daily doses of antimicrobial use (AMU) on dairy farms. However, advancements made in the last decade have enabled excluding nonsevere CM cases from antimicrobial treatment that have a high probability of cure without antimicrobials (no bacterial causes or gram-negative, excluding Klebsiella spp.) and cases with a low bacteriological cure rate (chronic cases). These advancements include availability of rapid diagnostic tests and improved udder health management practices, which reduced the incidence and infection pressure of contagious CM pathogens. This review informed an evidence-based protocol for selective CM treatment decisions based on a combination of rapid diagnostic test results, review of somatic cell count and CM records, and elucidated consequences in terms of udder health, AMU, and farm economics. Relatively fast identification of the causative agent is the most important factor in selective CM treatment protocols. Many reported studies did not indicate detrimental udder health consequences (e.g., reduced clinical or bacteriological cures, increased somatic cell count, increased culling rate, or increased recurrence of CM later in lactation) after initiating selective CM treatment protocols using on-farm testing. The magnitude of AMU reduction following a selective CM treatment protocol implementation depended on the causal pathogen distribution and protocol characteristics. Uptake of selective treatment of nonsevere CM cases differs across regions and is dependent on management systems and adoption of udder health programs. No economic losses or animal welfare issues are expected when adopting a selective versus blanket CM treatment protocol. Therefore, selective CM treatment of nonsevere cases can be a practical tool to aid AMU reduction on dairy farms.
Collapse
Affiliation(s)
- Ellen de Jong
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1; One Health at UCalgary, University of Calgary, AB, Canada T2N 4N1; Mastitis Network, Saint-Hyacinthe, QC, Canada J25 2M2
| | - Kayley D McCubbin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1; One Health at UCalgary, University of Calgary, AB, Canada T2N 4N1; Mastitis Network, Saint-Hyacinthe, QC, Canada J25 2M2
| | - David Speksnijder
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; University Animal Health Clinic ULP, 3481 LZ Harmelen, the Netherlands
| | - Simon Dufour
- Mastitis Network, Saint-Hyacinthe, QC, Canada J25 2M2; Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada J2S 2M2
| | - John R Middleton
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia 65211
| | - Pamela L Ruegg
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Theo J G M Lam
- Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; GD Animal Health, 7400 AA Deventer, the Netherlands
| | - David F Kelton
- Mastitis Network, Saint-Hyacinthe, QC, Canada J25 2M2; Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Scott McDougall
- Cognosco, Anexa, Morrinsville 3340, New Zealand; School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Sandra M Godden
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108
| | | | - Päivi J Rajala-Schultz
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, 00014 University of Helsinki, Finland
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Sarne De Vliegher
- M-team and Mastitis and Milk Quality Research Unit, Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Volker Krömker
- Section for Animal Production, Nutrition and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Diego B Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1; One Health at UCalgary, University of Calgary, AB, Canada T2N 4N1
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1; One Health at UCalgary, University of Calgary, AB, Canada T2N 4N1; Mastitis Network, Saint-Hyacinthe, QC, Canada J25 2M2.
| |
Collapse
|
4
|
Pangprasit N, Srithanasuwan A, Intanon M, Suriyasathaporn W, Chaisri W. Clinical field trial of parenteral amoxicillin for the treatment of clinical and subclinical mastitis in smallholder dairy farms in the upper region of Northern Thailand. Vet World 2023; 16:792-798. [PMID: 37235160 PMCID: PMC10206963 DOI: 10.14202/vetworld.2023.792-798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim Mastitis, primarily caused by intramammary bacterial infection, is the most expensive disease in the global dairy industry due to its negative impact on milk composition and manufacturing properties. This study aimed to evaluate the efficacy of parenteral amoxicillin in the treatment of clinical and subclinical mastitis in smallholder dairy farms in Northern Thailand. Materials and Methods A total of 51 cows with clinical and subclinical mastitis from dairy cooperatives in Lamphun and Chiang Mai provinces, Northern Thailand, were enrolled in this study. Conventional bacteriological procedures were applied to identify the causative bacteria in milk samples from these cows before and 7 days after treatment, and antibiotic susceptibility tests were conducted using the disk diffusion method for all bacteria isolated before treatment. All cows with mastitis were administered 15 mg/kg of amoxicillin (LONGAMOX®, Syva Laboratories SA, Spain) intramuscularly every other day for 3 days. Results Environmental streptococcal bacteria (Streptococcus uberis and Streptococcus spp.) were commonly isolated from infected quarters and were highly susceptible to amoxicillin (100%). The clinical efficacy of amoxicillin treatment for clinical mastitis cases was 80.43%, and the bacteriological efficacy was 47.82%, with opportunistic staphylococcal bacteria (coagulase-negative staphylococci) and contagious streptococcal bacteria (Streptococcus agalactiae) being the most sensitive microorganisms (100%). In subclinical mastitis cases, the bacteriological efficacy of parenteral amoxicillin was 70.45%, with environmental streptococcal bacteria (S. uberis) being the most (100%) sensitive microorganisms. Conclusion Amoxicillin is highly efficacious and can be used to treat clinical and subclinical mastitis in dairy cows, particularly mastitis caused by environmental Streptococcus spp. These findings could be used to guide treatment regimens in veterinary practice in smallholder dairy farms in Thailand.
Collapse
Affiliation(s)
- Noppason Pangprasit
- Department of Livestock Clinics, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thamarat 80160, Thailand
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anyaphat Srithanasuwan
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Montira Intanon
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Witaya Suriyasathaporn
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wasana Chaisri
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Research Center of Producing and Development of Products and Innovations for Animal Health, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
5
|
Hayashi M, Shinozuka Y, Kurumisawa T, Yagisawa T, Suenaga N, Shimizu Y, Suzuki N, Kawai K. Effects of Intramammary Antimicrobial Treatment on the Milk Microbiota Composition in Mild Clinical Bovine Mastitis Caused by Gram-Positive Bacteria. Animals (Basel) 2023; 13:ani13040713. [PMID: 36830498 PMCID: PMC9952509 DOI: 10.3390/ani13040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The purpose of this study was to clarify the effects of antimicrobial treatment for mild mastitis caused by Gram-positive bacteria on the milk microbiota in dairy cattle. Sixteen quarters of sixteen cows with mild clinical mastitis from the same herd were included in the study. On the day of onset (day 0), the cows were randomly allocated to a no-treatment (NT; n = 10) group or an intramammary antimicrobial treatment (AMT) group that received AMT starting on day 0 (AMT-AMT group; n = 6). The next day (day 1), the cows in the NT group were randomly allocated into an NT group (NT-NT group; n = 3) that received no treatment or an AMT group that received AMT starting on day 1 (NT-AMT group; n = 7). Milk samples were collected on days 0, 1, 3 and 7, and the milk microbiota of each sample was comprehensively analyzed via 16S rRNA gene amplicon sequencing of the milk DNA. During the treatment period, the milk microbiota of the NT-NT group did not change, but those of the NT-AMT and AMT-AMT groups changed significantly on days three and seven. Thus, the use of antimicrobials for mild mastitis caused by Gram-positive bacteria changes the milk microbiota composition.
Collapse
Affiliation(s)
- Mayu Hayashi
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara 252-5201, Japan
| | - Yasunori Shinozuka
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara 252-5201, Japan
- Mastitis Research Center, Azabu University, 1-17-71 Fuchinobe, Sagamihara 252-5201, Japan
- Correspondence: ; Tel./Fax: +81-42-769-1641
| | - Tomomi Kurumisawa
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara 252-5201, Japan
| | - Takuya Yagisawa
- Hokkaido Agriculture Mutual Aid Association, 4-1-1, Sapporo 060-0004, Japan
| | - Nagomu Suenaga
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara 252-5201, Japan
| | - Yuko Shimizu
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara 252-5201, Japan
| | - Naoki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Kazuhiro Kawai
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara 252-5201, Japan
- Mastitis Research Center, Azabu University, 1-17-71 Fuchinobe, Sagamihara 252-5201, Japan
| |
Collapse
|
6
|
Kober AKMH, Saha S, Islam MA, Rajoka MSR, Fukuyama K, Aso H, Villena J, Kitazawa H. Immunomodulatory Effects of Probiotics: A Novel Preventive Approach for the Control of Bovine Mastitis. Microorganisms 2022; 10:2255. [PMID: 36422325 PMCID: PMC9692641 DOI: 10.3390/microorganisms10112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
Bovine mastitis (BM) is one of the most common diseases of dairy cattle, causing economic and welfare problems in dairy farming worldwide. Because of the predominant bacterial etiology, the treatment of BM is mostly based on antibiotics. However, the antimicrobial resistance (AMR), treatment effectiveness, and the cost of mastitis at farm level are linked to limitations in the antibiotic therapy. These scenarios have prompted the quest for new preventive options, probiotics being one interesting alternative. This review article sought to provide an overview of the recent advances in the use of probiotics for the prevention and treatment of BM. The cellular and molecular interactions of beneficial microbes with mammary gland (MG) cells and the impact of these interactions in the immune responses to infections are revised. While most research has demonstrated that some probiotics strains can suppress mammary pathogens by competitive exclusion or the production of antimicrobial compounds, recent evidence suggest that other probiotic strains have a remarkable ability to modulate the response of MG to Toll-like receptor (TLR)-mediated inflammation. Immunomodulatory probiotics or immunobiotics can modulate the expression of negative regulators of TLR signaling in the MG epithelium, regulating the expression of pro-inflammatory cytokines and chemokines induced upon pathogen challenge. The scientific evidence revised here indicates that immunobiotics can have a beneficial role in MG immunobiology and therefore they can be used as a preventive strategy for the management of BM and AMR, the enhancement of animal and human health, and the improvement of dairy cow milk production.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Sudeb Saha
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy Science, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md. Aminul Islam
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Kohtaro Fukuyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hisashi Aso
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Animal Health Science, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- The Cattle Museum, Maesawa, Oshu 029-4205, Japan
| | - Julio Villena
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
7
|
Timonen A, Sammul M, Taponen S, Kaart T, Mõtus K, Kalmus P. Antimicrobial Selection for the Treatment of Clinical Mastitis and the Efficacy of Penicillin Treatment Protocols in Large Estonian Dairy Herds. Antibiotics (Basel) 2021; 11:antibiotics11010044. [PMID: 35052922 PMCID: PMC8772812 DOI: 10.3390/antibiotics11010044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Clinical mastitis (CM) is the most common microbial disease treated in dairy cows. We analyzed the antimicrobial usage in cows with CM (n = 11,420) in large dairy herds (n = 43) in Estonia. CM treatment data were collected during a 12-month study period. The antimicrobial usage was observed during the 21 days from the initiation of treatment, and the incidence of antimicrobial-treated CM was calculated for each study herd. The effect of intramammary (IMM), systemic, and combined (systemic and IMM) penicillin treatment of CM on the post-treatment somatic cell count (SCC) was analyzed using the treatment records of 2222 cows from 24 herds with a mixed multivariable linear regression model. The median incidence of antimicrobial-treated CM was 35.8 per 100 cow-years. Procaine benzylpenicillin and marbofloxacin were used in 6103 (35.5%, 95% CI 34.8-36.2) and 2839 (16.5%, 95% CI 16.0-17.1) CM treatments, respectively. Post-treatment SCC was higher after IMM penicillin therapy compared to systemic or combination therapy. Treatment of CM usually included first-choice antimicrobials, but different antimicrobial combinations were also widely used. The effect of procaine benzylpenicillin to post-treatment SCC was dependent on the administration route, cow parity, and days in milk. Further studies should evaluate the factors affecting veterinarians' choice of antimicrobial used in the treatment of CM.
Collapse
Affiliation(s)
- Anri Timonen
- Faculty of Veterinary Medicine, University of Helsinki, Yliopistonkatu 3, 00014 Helsinki, Finland;
- Correspondence:
| | - Marju Sammul
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (M.S.); (T.K.); (K.M.); (P.K.)
- State Agency of Medicines, Nooruse 1, 50411 Tartu, Estonia
| | - Suvi Taponen
- Faculty of Veterinary Medicine, University of Helsinki, Yliopistonkatu 3, 00014 Helsinki, Finland;
| | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (M.S.); (T.K.); (K.M.); (P.K.)
| | - Kerli Mõtus
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (M.S.); (T.K.); (K.M.); (P.K.)
| | - Piret Kalmus
- Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (M.S.); (T.K.); (K.M.); (P.K.)
| |
Collapse
|
8
|
Veterinary Treatment Approach and Antibiotic Usage for Clinical Mastitis in Danish Dairy Herds. Antibiotics (Basel) 2021; 10:antibiotics10020189. [PMID: 33671911 PMCID: PMC7918953 DOI: 10.3390/antibiotics10020189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Danish veterinarians’ treatment approach and use of antibiotics for clinical mastitis were investigated through a web-based questionnaire. The objective of the study was to describe and evaluate how the clinical mastitis treatment practice in Danish dairy herds corresponds to evidence from the literature and legislative requirements, in order to suggest directions for improvements and approaches encouraging the prudent use of antibiotics. In total, 174 veterinarians working with cattle received the questionnaire and 85 (48.9%) completed it. Their answers suggested that the Danish treatment approach for clinical mastitis generally relies on combined systemic and intramammary antibiotic administration (92% would use this often or always) and almost always includes supportive treatment with nonsteroidal anti-inflammatory drugs (99% would use it often or always in combination with antibiotic therapy). While collecting milk samples in order to target treatment towards pathogens is a priority in the legislation and for veterinarians, the direct application seems hindered due to the waiting time with the currently used analysis practice. Consequently, 91% reported that they would start treatment immediately after clinical examination often or always. The results of this investigation show that there is a potential for improvement in targeting treatments towards the causative pathogen by encouraging methods that allow for a more rapid reliable pathogen determination. When this issue has been addressed, the available evidence on the best treatment practice of Gram-negative-caused mastitis cases can be applied properly, reducing the volume of antibiotic treatments with limited expected effect. Additionally, investigating the potential of reducing combined administration to only intramammary treatment in Gram-positive cases could be a further step towards a more prudent antibiotic strategy.
Collapse
|
9
|
Zhang Q, Yang N, Mao R, Hao Y, Ma X, Teng D, Fan H, Wang J. A recombinant fungal defensin-like peptide-P2 combats Streptococcus dysgalactiae and biofilms. Appl Microbiol Biotechnol 2021; 105:1489-1504. [PMID: 33534018 DOI: 10.1007/s00253-021-11135-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Streptococcus dysgalactiae, considered one of the main pathogens that causes bovine mastitis, is a serious threat to humans and animals. However, the excessive use of antibiotics and the characteristic of S. dysgalactiae forming biofilms in mastitic teat canal have serious clinical implications. In this study, in vivo and in vitro multiple mechanisms of action of P2, a mutant of fungal defensin plectasin, against S. dysgalactiae were systematically and comprehensively investigated for the first time. P2 showed potent antibacterial activity against S. dysgalactiae (minimum inhibitory concentration, MIC = 0.23-0.46 μM) and rapid bactericidal action by 3.0 lg units reduction in 2-4 h. No resistant mutants appeared after 30-d serial passage of S. dysgalactiae in the presence of P2. The results of electron microscopy and flow cytometer showed that P2 induced membrane damage of S. dysgalactiae, causing the leakage of cellular content and eventually cell death. Besides, P2 effectively inhibited early biofilm formation, eradicated mature biofilms, and killed 99.9% persisters which were resistant to 100 × MIC vancomycin; and confocal laser scanning microscopy (CLSM) also revealed the potent antibacterial and antibiofilm activity of P2 (the thickness of biofilm reduced from 18.82 to 7.94 μm). The in vivo therapeutic effect of P2 in mouse mastitis model showed that it decreased the number of mammary bacteria and alleviated breast inflammation by regulating cytokines and inhibiting bacterial proliferation, which were superior to vancomycin. These data indicated that P2 maybe a potential candidate peptide for mastitis treatment of S. dysgalactiae infections. KEY POINTS: •P2 showed potential in vitro antibacterial characteristics towards S. dysgalactiae. •P2 eradicated biofilms, killed persisters, and induced cell death of S. dysgalactiae. •P2 could effectively protect mice from S. dysgalactiae infection in gland.
Collapse
Affiliation(s)
- Qingjuan Zhang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.,Tianjin Animal Science and Veterinary Research Institute, Tianjin, 300381, China.,College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Na Yang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ruoyu Mao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Ya Hao
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xuanxuan Ma
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Da Teng
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Huan Fan
- Tianjin Animal Science and Veterinary Research Institute, Tianjin, 300381, China.
| | - Jianhua Wang
- Team of AMP & Alternatives to Antibiotics, Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
10
|
Ruegg PL. What Is Success? A Narrative Review of Research Evaluating Outcomes of Antibiotics Used for Treatment of Clinical Mastitis. Front Vet Sci 2021; 8:639641. [PMID: 33604368 PMCID: PMC7884469 DOI: 10.3389/fvets.2021.639641] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Treatment of clinical mastitis is the most common reason that antimicrobials are given to adult dairy cows and careful consideration of treatment protocols is necessary to ensure responsible antimicrobial stewardship. Clinical mastitis is caused by a variety of bacteria which stimulate an immune response that often results in spontaneous bacteriological clearance but can develop into long-term subclinical infections. Use of antimicrobial therapy is most beneficial for cases that are caused by pathogens that have a low rate of spontaneous cure but high rate of therapeutic cure. The purpose of this paper is to review studies that evaluated outcomes of antimicrobial therapy of clinical mastitis. Few studies reported differences in bacteriological cure among treatments and this outcome was rarely associated with clinical outcomes. Return to normal milk appearance was evaluated in most studies but demonstrated little variation and is not a reliable indicator of therapeutic success. Somatic cell count should be measured at quarter-level and will decline gradually after bacteriological clearance. Few researchers have evaluated important clinical outcomes such as post-treatment milk yield or culling. Few differences among approved antimicrobial therapies have been demonstrated and selection of antimicrobial therapy should consider the spectrum of activity relative to etiology.
Collapse
Affiliation(s)
- Pamela L Ruegg
- David J. Ellis Chair in Antimicrobial Resistance & Professor of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Nobrega DB, Naqvi SA, Dufour S, Deardon R, Kastelic JP, De Buck J, Barkema HW. Critically important antimicrobials are generally not needed to treat nonsevere clinical mastitis in lactating dairy cows: Results from a network meta-analysis. J Dairy Sci 2020; 103:10585-10603. [PMID: 32896405 DOI: 10.3168/jds.2020-18365] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/24/2020] [Indexed: 12/09/2022]
Abstract
There is ongoing debate regarding whether critically important antimicrobials (CIA) should be used to treat infections in food-producing animals. In this systematic review, we determined whether CIA and non-CIA have comparable efficacy to treat nonsevere bovine clinical mastitis caused by the most commonly reported bacteria that cause mastitis worldwide. We screened CAB Abstracts, Web of Science, MEDLINE, Scopus, and PubMed for original epidemiological studies that assessed pathogen-specific bacteriological cure rates of antimicrobials used to treat nonsevere clinical mastitis in lactating dairy cows. Network models were fit using risk ratios of bacteriological cure as outcome. A total of 30 studies met inclusion criteria. Comparisons of cure rates demonstrated that CIA and non-CIA had comparable efficacy for treatment of nonsevere clinical mastitis in dairy cattle. Additionally, for cows with nonsevere clinical mastitis caused by Escherichia coli and Klebsiella spp., bacteriological cure rates were comparable for treated versus untreated cows; therefore, there was no evidence to justify treatment of these cases with CIA. Our findings supported that CIA in general are not necessary for treating nonsevere clinical mastitis in dairy cattle, the disease that accounts for the majority of antimicrobial usage in dairy herds worldwide. Furthermore, our findings support initiatives to reduce or eliminate use of CIA in dairy herds.
Collapse
Affiliation(s)
- Diego B Nobrega
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada; Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 7C6, Canada
| | - S Ali Naqvi
- Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 7C6, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Simon Dufour
- Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 7C6, Canada; Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, J2S 7C6, Canada
| | - Rob Deardon
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada; Department of Mathematics and Statistics, Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada; Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 7C6, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada; Mastitis Network, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, J2S 7C6, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
12
|
Hiitiö H, Pyörälä S, Taponen S, Rajala-Schultz P, Simojoki H. Elimination of experimentally induced bovine intramammary infection assessed by multiplex real-time PCR and bacterial culture. J Dairy Sci 2018; 101:5267-5276. [PMID: 29573801 DOI: 10.3168/jds.2017-13939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/05/2018] [Indexed: 11/19/2022]
Abstract
Diagnosis of bovine intramammary infection (IMI) has traditionally been based on bacterial culture, but currently IMI can also be detected with DNA based methods, such as multiplex real-time PCR. The aim of this study was to describe the elimination of bacteria in experimentally induced IMI on the quarter level, using conventional bacterial culture (BC) and multiplex real-time PCR. Two coagulase-negative staphylococcal species, Staphylococcus epidermidis and Staphylococcus simulans, were experimentally inoculated into 14 healthy quarters of 8 dairy cows during 4 consecutive study periods. Intramammary infections were followed with 20 milk samplings per each quarter. Milk somatic cell count was monitored to evaluate the inflammation process in the quarters. Four quarters cured spontaneously during the study period according to the culture. The PCR detected staphylococcal DNA from these quarters for several days after they were defined as cured in BC. Agreement between BC and PCR results varied from substantial to almost perfect agreement for the first 36 h postchallenge, decreasing to moderate levels toward the end of the sampling period. Based on this study, we recommend collecting possible follow-up samples to assess the bacteriological cure from IMI not until 2 to 3 wk after the onset of mastitis or after the quarter milk somatic cell count has normalized when PCR is used.
Collapse
Affiliation(s)
- Heidi Hiitiö
- Department of Production Animal Medicine, University of Helsinki, Paroninkuja 20, 04920 Saarentaus, Mäntsälä, Finland.
| | - Satu Pyörälä
- Department of Production Animal Medicine, University of Helsinki, Paroninkuja 20, 04920 Saarentaus, Mäntsälä, Finland
| | - Suvi Taponen
- Department of Production Animal Medicine, University of Helsinki, Paroninkuja 20, 04920 Saarentaus, Mäntsälä, Finland
| | - Päivi Rajala-Schultz
- Department of Production Animal Medicine, University of Helsinki, Paroninkuja 20, 04920 Saarentaus, Mäntsälä, Finland
| | - Heli Simojoki
- Department of Production Animal Medicine, University of Helsinki, Paroninkuja 20, 04920 Saarentaus, Mäntsälä, Finland
| |
Collapse
|
13
|
Viveros M, Lopez-Ordaz R, Gutiérrez L, Miranda-Calderón JE, Sumano H. Efficacy assessment of an intramammary treatment with a new recrystallized enrofloxacin vs ceftiofur and parenteral enrofloxacin in dairy cows with nonsevere clinical mastitis. J Vet Pharmacol Ther 2017; 41:e1-e9. [PMID: 28752931 DOI: 10.1111/jvp.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022]
Abstract
A recrystallized form of enrofloxacin as dehydrate-HCl (enro-C) was assessed for bacteriological and clinical cure efficacies in Holstein-Friesian cows affected of nonsevere clinical mastitis. Treatments were enro-Csusp (n = 81), treated with a pharmaceutical suspension of enro-C/quarter; group enro-Cpd (n = 80) treated as above, but using enro-C powder suspended in water; group CF (n = 65), treated with ceftiofur HCl/quarter; and group enroR (n = 66), treated with standard enrofloxacin solution (5 mg/kg, intramuscular). Cows had a mean milk production of 31 L/day and were 2-3 lactational periods old. Treatments were administered every 24 hr for 3 days. Groups treated with enro-C exhibited statistically significant (p > .05) better clinical cure as compared to groups treated with CF or enroR (95.06%, 96.25%, 67.79%, and 57.55%, for enro-Csusp , enro-Cpd , CF, and enroR , respectively). In contrast, probability of bacteriological cure was not statistically different among treatments. Yet, the outstanding clinical and bacteriological cure rates obtained for enro-C for nonsevere cases of mastitis is superior to previously reported data for parenteral enrofloxacin and other antibacterial-intramammary treatments. Impact of using enro-C on the rate and pattern of bacterial resistance, somatic cell counts and milk electric conductivity, must be studied. Also, the use of enro-C for complicated cases of mastitis should be studied and milk withdrawal times must be accurately established.
Collapse
Affiliation(s)
- M Viveros
- Department of Physiology and Pharmacology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - R Lopez-Ordaz
- Department of Agricultural and Animal Production, Autonomous Metropolitan University, Mexico City, Mexico
| | - L Gutiérrez
- Department of Physiology and Pharmacology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - J E Miranda-Calderón
- Unidad Xochimilco Calzada del Hueso 1100, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Coyoacán, Ciudad de México, México
| | - H Sumano
- Department of Physiology and Pharmacology, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
14
|
Mendoza J, Martínez-Cortés I, López-Ordaz R, Gutiérrez L, Sumano H. Concentrations of tilmicosin in mammary gland secretions of dairy cows following subcutaneous administration of one or two doses of an experimental preparation of tilmicosin and its efficacy against intramammary infections caused by Staphylococcus aureus. Am J Vet Res 2017; 77:922-30. [PMID: 27580103 DOI: 10.2460/ajvr.77.9.922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the concentration of tilmicosin in mammary gland secretions of dairy cows following administration of an experimental preparation once or twice during the dry period (45-day period immediately prior to calving during which cows are not milked) and to evaluate its efficacy for the treatment of cows with intramammary infections (IMIs) caused by Staphylococcus aureus at dry off (cessation of milking; first day of dry period), compared with that of an intramammary infusion of ceftiofur. ANIMALS 172 cows. PROCEDURES Milk samples were collected for microbiological culture 5 days before dry off and at calving and 15 and 30 days after calving. Cows with Staphylococcus IMIs were randomly assigned to receive an experimental preparation of tilmicosin (20 mg/kg, SC) once at dry off (n = 58) or at dry off and again 20 days later (56) or receive a long-acting intramammary preparation of ceftiofur (500 mg/mammary gland; 56) at dry off. Mammary gland secretions were collected from 5 cows in the tilmicosin-treated groups every 5 days after dry off until calving for determination of tilmicosin concentration. RESULTS Mean maximum concentration of tilmicosin in mammary gland secretions ranged from 14.4 to 20.9 μg/mL after the first dose and was 17.1 μg/mL after the second dose. The bacteriologic cure rate was 100% for all 3 treatments. Tilmicosin was detectable for 0 and 18 days after calving in the milk of cows treated with 1 and 2 doses of tilmicosin, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Administration of an experimental preparation of tilmicosin (20 mg/kg, SC) once to dairy cows at dry off might be useful for the treatment of S aureus IMIs.
Collapse
|
15
|
Lundberg Å, Nyman A, Unnerstad HE, Waller KP. Prevalence of bacterial genotypes and outcome of bovine clinical mastitis due to Streptococcus dysgalactiae and Streptococcus uberis. Acta Vet Scand 2014; 56:80. [PMID: 25427658 PMCID: PMC4255449 DOI: 10.1186/s13028-014-0080-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/14/2014] [Indexed: 11/24/2022] Open
Abstract
Background Streptococcus dysgalactiae and Streptococcus uberis are common causes of clinical mastitis (CM) in dairy cows. In the present study genotype variation of S. dysgalactiae and S. uberis was investigated, as well as the influence of bacterial species, or genotype within species, on the outcome of veterinary-treated CM (VTCM). Isolates of S. dysgalactiae (n = 132) and S. uberis (n = 97) were genotyped using pulsed-field gel electrophoresis. Identical banding patterns were called pulsotypes. Outcome measurements used were cow composite SCC, milk yield, additional registered VTCMs and culling rate during a four-month follow-up period. Results In total, 71 S. dysgalactiae pulsotypes were identified. Nineteen of the pulsotypes were isolated from more than one herd; the remaining pulsotypes were only found once each in the material. All S. uberis isolates were of different pulsotypes. During the follow-up period, the SCC of S. dysgalactiae-cows was significantly lower than the SCC of S. uberis-cows (P <0.05). Median SCC of S. dysgalactiae-cows was 71 500 cells/ml and of S. uberis-cows 108 000 cells/ml. No other differences in outcome parameters could be identified between species or genotypes. Conclusions Identical S. dysgalactiae genotypes were isolated from more than one herd, suggesting some spread of this pathogen between Swedish dairy herds. The genetic variation among S. uberis isolates was substantial, and we found no evidence of spread of this pathogen between herds. The milk SCC was lower during the follow-up period if S. dysgalactiae rather than S. uberis was isolated from the case, indicating differences in treatment response between bacterial species. Electronic supplementary material The online version of this article (doi:10.1186/s13028-014-0080-0) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Pyörälä S, Taponen J, Katila T. Use of Antimicrobials in the Treatment of Reproductive Diseases in Cattle and Horses. Reprod Domest Anim 2014; 49 Suppl 3:16-26. [DOI: 10.1111/rda.12324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/25/2014] [Indexed: 01/10/2023]
Affiliation(s)
- S Pyörälä
- Department of Production Animal Medicine; Faculty of Veterinary Medicine; University of Helsinki; Saarentaus Finland
| | - J Taponen
- Department of Production Animal Medicine; Faculty of Veterinary Medicine; University of Helsinki; Saarentaus Finland
| | - T Katila
- Department of Production Animal Medicine; Faculty of Veterinary Medicine; University of Helsinki; Saarentaus Finland
| |
Collapse
|
17
|
Haimerl P, Heuwieser W. Invited review: Antibiotic treatment of metritis in dairy cows: a systematic approach. J Dairy Sci 2014; 97:6649-61. [PMID: 25218751 DOI: 10.3168/jds.2014-8462] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 07/29/2014] [Indexed: 12/26/2022]
Abstract
Acute puerperal metritis (APM) is an acute systemic illness with fever ≥ 39.5 °C and signs of toxemia due to an infection of the uterus occurring within 21 d after parturition. Because of the infectious nature of APM, antibiotics are considered beneficial for its treatment. Each use of an antimicrobial drug, however, is associated with selective pressure for the emergence of resistant bacteria. Hence, there is a significant need to encourage prudent use of antibiotics and alternative therapies to antibiotics. Therefore, the objective of this study was to systematically review the current literature on treatment of APM. A comprehensive and systematic literature search was conducted utilizing the PubMed and CAB Abstracts databases to identify literature focusing on the antibiotic therapy of puerperal metritis in the cow. After application of specific exclusion criteria, 21 publications comprising 23 trials remained for final evaluation. Data extraction revealed that the majority of the studies (n = 19) were attributable to the highest evidence level. Of 21 studies controlled, 11 had an untreated group and 3 a positive control group. The majority of the studies (n = 17) applied ceftiofur for the treatment of APM. Concerning the efficacy of ceftiofur, 7 studies observed clinical improvement, whereas none found improved reproductive performance. Fewer than half of the studies (n = 10) performed a bacteriological examination and only 4 implemented an antibiotic susceptibility test. Also, 3 studies (13.0%) described a self-cure rate per se. Little attention was given to the issue of bacterial resistance (n = 3), the need for reducing the application of antibiotics (n = 2), or guidelines for prudent use of antibiotics (n = 1). Our findings demonstrate that implementation of bacteriological examinations, sensitivity testing, and determination of minimum inhibitory concentrations, as well as reporting and discussion of critical issues (e.g., self-cure rates, resistance, prudent drug use), were suboptimal. On the other hand, the quality of studies on the treatment of APM was good, as indicated by evidence level 1. Nevertheless, more high-quality research considering self-cure rates is necessary to address critical issues related to APM and crucial to the dairy industry, such as resistance, prudent use of antibiotics, animal welfare, and cost-benefit ratios.
Collapse
Affiliation(s)
- P Haimerl
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - W Heuwieser
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany.
| |
Collapse
|