1
|
Clark KL, Park K, Lee C. Exploring the cause of reduced production responses to feeding corn dried distillers grains in lactating dairy cows. J Dairy Sci 2024; 107:6717-6731. [PMID: 38642660 DOI: 10.3168/jds.2023-24356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/10/2024] [Indexed: 04/22/2024]
Abstract
An experiment was conducted to identify the factors that cause reduced production of cows fed a diet with high content of corn distillers grains with solubles (DDGS). We hypothesized that the factors could be high sulfur (S) content in DDGS, which may directly (S toxicity) or indirectly (DCAD) cause reduced production. We also hypothesized that high PUFA in DDGS could be another major factor. In a randomized complete block design, 60 lactating cows (15 primiparous and 45 multiparous; average ± SD at the beginning of the trial: milk yield, 44.0 ± 6.9 kg/d; DIM, 123 ± 50; BW, 672 ± 82 kg) were blocked, and cows in each block were randomly assigned to 1 of the following treatments: SBM (4.7% fatty acids [FA], 0.22% S, and 178 mEq/kg DM of DCAD), a diet containing soybean meal as the main protein source; DG, with SBM replacing mainly soybean byproducts and supplemental fat with distillers grains at 30% dietary DM (4.7% FA, 0.44% S, and 42 mEq/kg DM of DCAD); SBM+S, SBM with sodium bisulfate for additional dietary S (4.8% FA, 0.37% S, and 198 mEq/kg DM of DCAD); SBM+CO, SBM with corn oil (4.7% FA, 0.23%, and 165 mEq/kg DM of DCAD); and DG+DCAD, DG with increased DCAD (4.7% FA, 0.40% S, and 330 mEq/kg DM of DCAD). Due to the limited number of tiestalls, blocks 1 to 6 started the experiment first as phase 1, and the rest of the blocks, as phase 2, started the experiment after phase 1. All cows were fed the SBM diet for 10 d as a covariate period followed by the experimental period for 35 d. Data were analyzed using PROC MIXED of SAS (Version 9.4, SAS Institute Inc.); block and phase were random effects; and treatments, repeated week, and interaction were fixed effects. We found an interaction of week by treatment for DMI. Although milk yield did not change, milk fat concentration tended to decrease (2.78% vs. 3.34%) for DG compared with SBM. Dry matter, OM, NDF, and CP digestibilities were lower when cows were fed the DG diet compared with SBM. Additionally, cows fed DG had lower blood concentrations of HCO3-, base excess, and total (t)CO2 compared with SBM. The SBM+S diet did not affect production, nutrient digestibility, or blood parameters compared with SBM. The SBM+CO diet decreased milk fat concentration and yield compared with SBM. The DG+DCAD diet tended to increase milk fat yield and concentration (1.24 vs. 1.47 kg/d; 2.78% vs. 3.37%) and increased ECM (40.9 vs. 45.1 kg/d) compared with DG but did not improve nutrient digestibility. However, blood HCO3-, base excess, and tCO2 were greater for DG+DCAD compared with DG. In conclusion, the indirect role of S-, altering DCAD, along with the high PUFA content in DDGS, appear to be the factors causing reduced production responses to a high DDGS diet. Increasing DCAD to 300 mEq/kg DM in a high DDGS diet can be a feeding strategy to alleviate reduced production responses.
Collapse
Affiliation(s)
- K L Clark
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - K Park
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691
| | - C Lee
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691.
| |
Collapse
|
2
|
Wei X, Zou J, Zhang Y, Yang J, Wang J, Wang Y, Wang C. Effects of milk, milk replacer, and milk replacer plus ethoxyquin on the growth performance, weaning stress, and the fecal microbiota of Holstein dairy calves. Front Microbiol 2023; 14:1113518. [PMID: 36992934 PMCID: PMC10040532 DOI: 10.3389/fmicb.2023.1113518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
The growth and health statuses of calves during the early stages of development have a significant effect on milk production during their first lactation period. Using appropriate milk replacers helps meet the long-term targets of dairy farmers. This study aimed to examine the effects of milk, milk replacer, and milk replacer plus ethoxyquin on growth performance, antioxidant status, immune function, and the gut microbiota of Holstein dairy calves. A total of 36 neonatal dairy calves were randomly divided into three groups and fed different diets: one group was fed milk, another group was fed milk replacer, and the third group was given milk replacer plus ethoxyquin. The supplementation with ethoxyquin was started on day 35 of the feeding period. The calves were weaned on day 45, and the experiment was conducted until day 49. The blood and fecal samples were collected at the end of the animal experiment. The results showed that milk replacers induced poor growth performance (body weight and average daily gain). However, milk replacer plus ethoxyquin aided in growth performance, enhanced the starter intake and blood antioxidative ability, and elevated the concentration of fecal valeric acid. Moreover, fecal fermentation and 16S rRNA analyses showed that milk replacer plus ethoxyquin altered the microbial composition (reducing Alistipes and Ruminococcaceae and increasing Bacteroides and Alloprevotella). Pearson's correlation assays showed that alterations in fecal microbiota strongly correlated with average daily gain and antioxidative ability. The results indicated the potential of milk replacer plus ethoxyquin in modulating the growth of dairy calves and in enhancing their ability to combat stress.
Collapse
Affiliation(s)
- Xiaoshi Wei
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jifu Zou
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yiwei Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jinyong Yang
- Zhejiang Provincial Animal Husbandry Technology Promotion and Monitoring Station of Breeding Livestock and Poultry, Hangzhou, China
| | - Junhong Wang
- College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yanming Wang
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | - Chong Wang
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang, China
- *Correspondence: Chong Wang
| |
Collapse
|
3
|
Abeyta MA, Al-Qaisi M, Horst EA, Mayorga EJ, Rodriguez-Jimenez S, Goetz BM, Carta S, Tucker H, Baumgard LH. Effects of dietary antioxidant supplementation on metabolism and inflammatory biomarkers in heat-stressed dairy cows. J Dairy Sci 2023; 106:1441-1452. [PMID: 36543647 DOI: 10.3168/jds.2022-22338] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022]
Abstract
Heat-stress-induced inflammation may be ameliorated by antioxidant supplementation due to the purported effects of increased production of reactive oxygen species or oxidative stress on the gastrointestinal tract barrier. Thus, study objectives were to evaluate whether antioxidant supplementation [AGRADO Plus 2.0 (AP); EW Nutrition] affects metabolism and inflammatory biomarkers in heat-stressed lactating dairy cows. Thirty-two mid-lactation multiparous Holstein cows were assigned to 1 of 4 dietary-environmental treatments: (1) thermoneutral (TN) conditions and fed a control diet (TN-CON; n = 8), (2) TN and fed a diet with AP (10 g antioxidant; n = 8), (3) heat stress (HS) and fed a control diet (HS-CON; n = 8), or (4) HS and fed a diet with AP (HS-AP; n = 8). The trial consisted of a 23-d prefeeding phase and 2 experimental periods (P). Respective dietary treatments were top-dressed starting on d 1 of the prefeeding period and continued daily throughout the duration of the experiment. During P1 (4 d), baseline data were collected. During P2 (7 d), HS was artificially induced using an electric heat blanket (Thermotex Therapy Systems Ltd.). During P2, the effects of treatment, day, and treatment-by-day interaction were assessed using PROC MIXED of SAS (SAS Institute Inc.). Heat stress (treatments 3 and 4) increased rectal, vaginal, and skin temperatures (1.2°C, 1.1°C, and 2.0°C, respectively) and respiration rate (33 breaths per minute) relative to TN cows. As expected, HS decreased dry matter intake, milk yield, and energy-corrected milk yield (32%, 28%, and 28% from d 4 to 7, respectively) relative to TN. There were no effects of AP on body temperature indices or production. Milk fat, protein, and lactose concentrations remained unaltered by HS or AP; however, milk urea nitrogen was increased during HS regardless of AP supplementation (26% relative to TN). Circulating glucose remained unchanged by HS, AP, or time. Additionally, HS decreased circulating glucagon (29% from d 3 to 7 relative to TN), but there was no additional effect of AP. There was a tendency for nonesterified fatty acid concentrations to be increased in HS-AP cows throughout P2 (60% relative to TN-CON), whereas it remained similar in all other treatments. Blood urea nitrogen increased for both HS treatments from d 1 to 3 before steadily decreasing from d 5 to 7, with the overall increase being most pronounced in HS-CON cows (27% relative to TN-CON). Further, supplementing AP decreased blood urea nitrogen in HS-AP on d 3 relative to HS-CON (15%). Circulating serum amyloid A tended to be and lipopolysaccharide binding protein was increased by HS, but neither acute-phase protein was affected by AP. Overall, AP supplementation appeared to marginally alter metabolism but did not meaningfully alter inflammation during HS.
Collapse
Affiliation(s)
- M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - S Carta
- Department of Animal Science, Iowa State University, Ames 50011
| | - H Tucker
- Novus International, St. Charles, MO 63304
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
4
|
Mirzaei-Alamouti H, Akbari-Pabandi K, Mansouryar M, Sirjani MA, Cieslak A, Szumacher-Strabel M, Patra AK, Vazirigohar M. Effects of feeding frequency and oil supplementation on feeding behavior, ruminal fermentation, digestibility, blood metabolites, and milk performance in late-lactation cows fed a high-forage diet. J Dairy Sci 2020; 103:11424-11438. [PMID: 33222855 DOI: 10.3168/jds.2020-18869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/07/2020] [Indexed: 11/19/2022]
Abstract
Many dairy producers are keen to feed low-producing late-lactation cows only once per day (1×) to reduce production costs. This study examined effects of feeding frequency (FF: thrice versus once daily) on behavioral patterns, ruminal fermentation, and milk production performance of cows and supplementation of yellow grease oil (YO) rich in 18:2n-6 as a potential strategy to alleviate the possible negative effects of 1× daily feeding. Twenty-four late-lactation Holstein cows (215 ± 53.8 DIM) housed in tiestalls were assigned to 4 treatments according to a 2 × 2 factorial arrangement with 2 FF [3 times daily (3×) at 0800, 1400, and 2000 h; or 1× at 0800 h] and 2 high-forage total mixed rations (TMR), without (CON) or with 25 g/kg of dry matter of YO (YGO), in a randomized complete block design. Treatments were applied for 21 d. Feeding behavior was recorded every 5 min over a 24-h period on d 19. Fresh TMR and orts were sampled (d 15 to 21) and separated using a 3-screen (19, 8, and 1.18 mm) Penn State Particle Separator for sorting activity. Ruminal fluid samples were collected using oral stomach tubing on d 21. Cows on 1×-CON spent more time eating during the first 6 h after feeding at 0800 h than did cows on 3×-CON or 1×-YGO. Decreasing FF increased meal length and tended to increase meal size for CON cows, but supplementing YO increased meal bouts and reduced meal length and size for cows fed 1×. Cows on 1×-CON had the greatest ruminating time between 2000 and 0800 h compared with other treatments. Total and daytime distribution of lying time did not vary by treatments. Sorting activity was higher for cows fed frequently, and the extent of sorting was increased by oil supplementation. In the morning ruminal fluid samples, pH was not different among treatments, but in the evening samples 1× daily feeding reduced ruminal pH compared with 3×. In the morning and evening samples, ratios of acetate to propionate were the lowest for 1×-CON cows compared with other treatments. Dry matter intake and milk yield were similar among the groups. Milk fat content and yield decreased with 1×-CON treatment, but supplementing YO numerically increased milk fat for cows fed 1×. These results suggest that decreasing FF from 3× to 1× daily increases meal length, particularly after feed delivery, in cows fed high-forage diets; but supplementation of plant oil changes feeding patterns and may improve ruminal pH and milk fat in cows fed once a day.
Collapse
Affiliation(s)
| | | | - Morteza Mansouryar
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark
| | | | - Adam Cieslak
- Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
| | | | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 37 K. B. Sarani, Belgachia, Kolkata, India 700037
| | - Mina Vazirigohar
- Zist Dam Group, University Incubator Center, University of Zanjan, Zanjan 45371-38791, Iran.
| |
Collapse
|
5
|
Dewanckele L, Toral PG, Vlaeminck B, Fievez V. Invited review: Role of rumen biohydrogenation intermediates and rumen microbes in diet-induced milk fat depression: An update. J Dairy Sci 2020; 103:7655-7681. [PMID: 32600765 DOI: 10.3168/jds.2019-17662] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022]
Abstract
To meet the energy requirements of high-yielding dairy cows, grains and fats have increasingly been incorporated in ruminant diets. Moreover, lipid supplements have been included in ruminant diets under experimental or practical conditions to increase the concentrations of bioactive n-3 fatty acids and conjugated linoleic acids in milk and meat. Nevertheless, those feeding practices have dramatically increased the incidence of milk fat depression in dairy cattle. Although induction of milk fat depression may be a management tool, most often, diet-induced milk fat depression is unintended and associated with a direct economic loss. In this review, we give an update on the role of fatty acids, particularly originating from rumen biohydrogenation, as well as of rumen microbes in diet-induced milk fat depression. Although this syndrome seems to be multi-etiological, the best-known causal factor remains the shift in rumen biohydrogenation pathway from the formation of mainly trans-11 intermediates toward greater accumulation of trans-10 intermediates, referred to as the trans-11 to trans-10 shift. The microbial etiology of this trans-11 to trans-10 shift is not well understood yet and it seems that unraveling the microbial mechanisms of diet-induced milk fat depression is challenging. Potential strategies to avoid diet-induced milk fat depression are supplementation with rumen stabilizers, selection toward more tolerant animals, tailored management of cows at risk, selection toward more efficient fiber-digesting cows, or feeding less concentrates and grains.
Collapse
Affiliation(s)
- L Dewanckele
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - B Vlaeminck
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - V Fievez
- Laboratory for Animal Nutrition and Animal Product Quality (Lanupro), Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium.
| |
Collapse
|