1
|
Lambo MT, Ma H, Liu R, Dai B, Zhang Y, Li Y. Review: Mechanism, effectiveness, and the prospects of medicinal plants and their bioactive compounds in lowering ruminants' enteric methane emission. Animal 2024; 18:101134. [PMID: 38593679 DOI: 10.1016/j.animal.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Animal nutritionists continue to investigate new strategies to combat the challenge of methane emissions from ruminants. Medicinal plants (MPs) are known to be beneficial to animal health and exert functional roles in livestock due to their phytogenic compounds with antimicrobial, immunostimulatory, antioxidative, and anti-inflammatory activities. Some MP has been reported to be anti-methanogenic and can effectively lower ruminants' enteric methane emissions. This review overviews trends in MP utilization in ruminants, their bioactivity and their effectiveness in lowering enteric methane production. It highlights the MP regulatory mechanism and the gaps that must be critically addressed to improve its efficacy. MP could reduce enteric methane production by up to 8-50% by regulating the rumen fermentation pathway, directing hydrogen toward propionogenesis, and modifying rumen diversity, structure, and population of the methanogens and protozoa. Yet, factors such as palatability, extraction techniques, and economic implications must be further considered to exploit their potential fully.
Collapse
Affiliation(s)
- M T Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - H Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - R Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - B Dai
- College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Y Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Y Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Ju MS, Jo YH, Kim YR, Ghassemi Nejad J, Lee JG, Lee HG. Supplementation of complex natural feed additive containing ( C. militaris, probiotics and red ginseng by-product) on rumen-fermentation, growth performance and carcass characteristics in Korean native steers. Front Vet Sci 2024; 10:1300518. [PMID: 38288378 PMCID: PMC10822911 DOI: 10.3389/fvets.2023.1300518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
This study evaluated the effects of a complex natural feed additive on rumen fermentation, carcass characteristics and growth performance in Korean-native steers. In this study, in vitro and in vivo experiment were conducted. Seven different levels of complex natural feed additive (CA) were added to the buffered rumen fluid using AnkomRF gas production system for 12, 24 and 48 h. All experimental data were analyzed by mixed procedure of SAS. Total gas production increased in the CA groups, with the highest response observed in the 0.06% group at 48 h of incubation (linear, p = 0.02; quadratic, p < 0.01). Regarding rumen fermentation parameters, the total volatile fatty acid (TVFA) tended to increase in all the CA groups (p = 0.07). The concentrations of butyrate, iso-butyrate, and iso-valerate significantly increased in all treatment groups (p < 0.05). In the in vivo experiment, 23 Korean-native steers were allocated to two groups: (1) Control and (2) Treatment; control +0.07% CA (DM basis), in a randomized complete-block design and blocked by body weight (ave. body weight = 641.96 kg ± 62.51 kg, p = 0.80) and feed intake (ave. feed intake = 13.96 kg ± 0.74 kg, p = 0.08) lasted for 252 days. Average daily gain decreased in the treatment group (p < 0.01). Backfat thickness significantly decreased in the CA group (p = 0.03), whereas meat color tended to increase (p = 0.07). In conclusion, in the in vitro experiment, the inclusion of complex natural feed additive decreased methane proportion and tended to increase TVFA production, but supplementation to Korean native steers decreased average daily gain and backfat thickness.
Collapse
Affiliation(s)
- Mun-Su Ju
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Yong-Ho Jo
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Yoo-Rae Kim
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jalil Ghassemi Nejad
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jang-Gu Lee
- DM Bio Co., Ltd., Jellonam-do, Republic of Korea
| | - Hong-Gu Lee
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Liu R, Shen Y, Ma H, Li Y, Lambo MT, Dai B, Shen W, Qu Y, Zhang Y. Silibinin reduces in vitro methane production by regulating the rumen microbiome and metabolites. Front Microbiol 2023; 14:1225643. [PMID: 37680535 PMCID: PMC10481870 DOI: 10.3389/fmicb.2023.1225643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
This study used Silibinin as an additive to conduct fermentation experiments, wherein its effects on rumen gas production, fermentation, metabolites, and microbiome were analyzed in vitro. The silibinin inclusion level were 0 g/L (control group), 0.075 g/L, 0.15 g/L, 0.30 g/L, and 0.60 g/L (experimental group). Fermentation parameters, total gas production, carbon dioxide (CO2), methane (CH4), hydrogen (H2), and their percentages were determined. Further analysis of the rumen microbiome's relative abundance and α/β diversity was performed on the Illumina NovaSeq sequencing platform. Qualitative and quantitative metabolomics analyses were performed to analyze the differential metabolites and metabolic pathways based on non-targeted metabolomics. The result indicated that with an increasing dose of silibinin, there was a linear reduction in total gas production, CO2, CH4, H2 and their respective percentages, and the acetic acid to propionic acid ratio. Concurrent with a linear increase in pH, when silibinin was added at 0.15 g/L and above, the total volatile fatty acid concentration decreased, the acetic acid molar ratio decreased, the propionic acid molar ratio increased, and dry matter digestibility decreased. At the same time, the relative abundance of Prevotella, Isotricha, Ophryoscolex, unclassified_Rotifera, Methanosphaera, Orpinomyces, and Neocallimastix in the rumen decreased after adding 0.60 g/L of silibinin. Simultaneously, the relative abundance of Succiniclasticum, NK4A214_group, Candidatus_Saccharimonas, and unclassified_Lachnospiraceae increased, altering the rumen species composition, community, and structure. Furthermore, it upregulated the ruminal metabolites, such as 2-Phenylacetamide, Phlorizin, Dalspinin, N6-(1,2-Dicarboxyethyl)-AMP, 5,6,7,8-Tetrahydromethanopterin, Flavin mononucleotide adenine dinucleotide reduced form (FMNH), Pyridoxine 5'-phosphate, Silibinin, and Beta-D-Fructose 6-phosphate, affecting phenylalanine metabolism, flavonoid biosynthesis, and folate biosynthesis pathways. In summary, adding silibinin can alter the rumen fermentation parameters and mitigate enteric methane production by regulating rumen microbiota and metabolites, which is important for developing novel rumen methane inhibitors.
Collapse
Affiliation(s)
- Rui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yueyu Shen
- Beijing Sunlon Livestock Development Company Limited, Beijing, China
| | - Haokai Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Baisheng Dai
- College of Electrical Engineering and Information, Northeast Agricultural University, Harbin, China
| | - Weizheng Shen
- College of Electrical Engineering and Information, Northeast Agricultural University, Harbin, China
| | - Yongli Qu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Low-carbon Green Agriculture in Northeastern China of Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Yousefi M, Malecky M, Zaboli K, Jahanian Najafabadi H. In vitro and in sacco determining the nutritive value of button mushroom stipe and its application in growing lambs diet. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2021.1987847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Majid Yousefi
- Department of Animal Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mostafa Malecky
- Department of Animal Science, Bu-Ali Sina University, Hamedan, Iran
| | - Khalil Zaboli
- Department of Animal Science, Bu-Ali Sina University, Hamedan, Iran
| | | |
Collapse
|
5
|
Li Y, Wang Y, Lv J, Dou X, Zhang Y. Effects of Dietary Supplementation With Clostridium butyricum on the Amelioration of Growth Performance, Rumen Fermentation, and Rumen Microbiota of Holstein Heifers. Front Nutr 2021; 8:763700. [PMID: 34859032 PMCID: PMC8631910 DOI: 10.3389/fnut.2021.763700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
In China, the use of antibiotics growth promoters as feed additives has been banned. The goal of raising dairy heifers is to gain a relatively high body weight on a high-fiber diet at first mating or calving, thus increasing economic benefits. The objective of this experiment was to explore the effects of supplemental Clostridium butyricum (C. butyricum) on growth performance, rumen fermentation and microbiota, and blood parameters in Holstein heifers. Twenty Holstein heifers [mean ± standard deviation (SD); age = 182 ± 4.20 d, body weight = 197.53 ± 5.94 kg, dry matter intake (DMI) = 6.10 ± 0.38 kg] were randomly assigned to one of two diets group for a 42-day feeding period: (1) basal diet (an untreated control group, i.e., the CON group) or (2) basal diet plus daily 2 × 108 (colony-forming unit, CFU) of C. butyricum per kg of DMI per heifer (the CB group). The results demonstrated that C. butyricum supplementation increased the average daily gain from d 21 to 42 and DMI compared to the control group. Supplementation with C. butyricum significantly decreased the molar proportion of acetate and the acetate to propionate ratio but increased the molar proportion of butyrate and propionate. Compared with the control group, the relative abundance of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminobacter amylophilus, Ruminococcus flavefaciens, and Streptococcus bovis increased during the trial period in the CB group. However, C. butyricum had no significant effect on the blood parameters in Holstein heifers. In conclusion, these results show that feeding C. butyricum can improve growth performance and rumen fermentation without any negative impact on blood parameters in Holstein heifers.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yiqiang Wang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Jingyi Lv
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Xiujing Dou
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yonggen Zhang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| |
Collapse
|
6
|
Viennasay B, Wanapat M. Strategic supplementation of Flemingia silage to enhance rumen fermentation efficiency, microbial protein synthesis and methane mitigation in beef cattle. BMC Vet Res 2020; 16:480. [PMID: 33298016 PMCID: PMC7726859 DOI: 10.1186/s12917-020-02703-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/02/2020] [Indexed: 11/10/2022] Open
Abstract
Background Good quality protein as an on-farm feed resource has been in great demand to support the productivity of ruminants. A digestion trial using beef cattle crossbreds was conducted to assess the four dietary treatments of Flemingia macrophylla silage (FMS) supplementation at 0, 0.2, 0.4 and 0.6 kg dry matter (DM)/day in a 4 × 4 Latin square design. Feed DM intakes were measured during the 14 days and sample of feeds, feces, urine, as well as rumen fluid and blood were collected during the 7 days while the animals were on metabolism crates. Results Based on this experiment strategic supplementation of FMS increased (P < 0.05) nutrients digestibility (organic matter, crude protein, and acid detergent fiber) enhanced rumen total volatile fatty acid production especially propionic acid (C3), C2:C3 ratio while, remarkably promoted the microbial protein synthesis (MPS) by increasing N-balance and retention of purine derivatives. Conclusions Under this experiment, the results revealed the potential use of FMS as a good-quality feed to improve nutrients digestibility, rumen fermentation, microbial protein synthesis, and to mitigate methane production. FMS supplementation at 0.6 kg DM/day exhibited the best result.
Collapse
Affiliation(s)
- Bounnaxay Viennasay
- Tropical Feed Resources Research and Development Centre (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Centre (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
7
|
Abbasi IHR, Abbasi F, Liu L, Bodinga BM, Abdel-Latif MA, Swelum AA, Mohamed MAE, Cao Y. Rumen-protected methionine a feed supplement to low dietary protein: effects on microbial population, gases production and fermentation characteristics. AMB Express 2019; 9:93. [PMID: 31243611 PMCID: PMC6595026 DOI: 10.1186/s13568-019-0815-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/15/2019] [Indexed: 01/02/2023] Open
Abstract
The present study was performed to evaluate the effects of different concentration of rumen-protected methionine (RPMet) with a low level of crude protein (CP) using rumen simulation technology on many parameters. The experiment was assigned randomly into four treatments: (1) high protein diet (163.39 g/kg CP) without RPMet (HP); (2) low protein diet (146.33 g/kg CP) without RPMet (LP); (3) low protein diet, supplement with low RPMet (RPMet: 0.11 g/kg) (LPLMet); and (4) low protein diet, supplement with high RPMet (RPMet: 0.81 g/kg) (LPHMet), mixed with 20 g basal diet in each fermenter. Based on National Research Council (NRC) (Nutrient requirements of dairy cattle, National Academies Press, Washington, DC, 2001) recommendation for dairy ruminants HP diet was formulated as positive normal control and LP as a negative control. Results demonstrated that CP disappearance was found significantly higher (P < 0.05) in supplement groups compared with HP and found similar (P > 0.05) with LP. However, neutral detergent fiber (NDF) and gross energy (GE) were found a parallel among supplement groups compared to HP and higher than LP. Furthermore, microbial crude protein, total and short chain fatty acids were found similar in LPHMet and HP and found significantly higher than LPLMet and LP. The R. albus population of LPHMet found parallel to HP and pointedly higher than LP in a solid and liquid fraction. Daily production of ammonia nitrogen, total gas, and methane were higher in HP than LP, LPLMet, and LPHMet. Overall, results concluded that values of digestibility, rumen fermentation, microbial crude protein, and R. albus population were similar of LPHMet to that of HP group. However, production of ammonia-N, total gas, and methane volume were significantly higher in the HP group than LPLMet, LPHMet, and LP groups. In conclusion, rumen-protected methionine is a good feed supplement to low dietary protein in the level of 0.81 g/kg.
Collapse
|
8
|
Li Y, Zhang GN, Xu HJ, Zhou S, Dou XJ, Lin C, Zhang XY, Zhao HB, Zhang YG. Effects of replacing alfalfa hay with Moringa oleifera leaves and peduncles on intake, digestibility, and rumen fermentation in dairy cows. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Chanjula P, Cherdthong A. Effects of spent mushroom Cordyceps militaris supplementation on apparent digestibility, rumen fermentation, and blood metabolite parameters of goats. J Anim Sci 2018; 96:1150-1158. [PMID: 29409013 DOI: 10.1093/jas/skx079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/24/2018] [Indexed: 01/01/2023] Open
Abstract
The objective of this experiment was to study the effects of dried spent mushroom Cordyceps militaris (SMCM) supplementation on digestibility, rumen fermentation, and blood metabolite parameters in goats. When the mushroom production and harvesting was complete, SMCM was collected fresh from a mushroom farm. Four 18-mo-old male crossbred (Thai Native × Anglo Nubian) goats with initial BW of 26.0 ± 1.40 kg were randomly assigned according to a 4 × 4 Latin square design to receive four different levels of SMCM at 0, 100, 200, and 300 g/d. There were quadratic effects (P < 0.06) on apparent digestibility of DM, OM, CP, NDF, and ADF among treatment groups, and greater values for the goats fed SMCM at 100 g/d were observed. A quadratic effect in energy intake (ME, Mcal/kg DM) (P = 0.02), with greater values for the goats fed SMCM at 100 g/d, was also observed. Rumen temperature was similar among groups (P = 0.23), whereas feeding of SMCM linearly decreased (P = 0.001) ruminal pH with increasing SMCM supplementation. Supplementing SMCM linearly decreased plasma concentration of cholesterol (P = 0.01), and there was also a tendency of reduction in plasma concentration of triglyceride (P = 0.10), with greater values for the goats fed SMCM at 100 g/d. There were quadratic effects on plasma of total protein, HgB, and MCHC among treatment groups. However, there were quadratic effects on fecal N (P = 0.04) and nitrogen retention (P = 0.07) based on g/d/animal or percentage of nitrogen retained (P = 0.01) among treatment groups, and greater values for the goats fed SMCM at 100 g/d were observed. Based on this experiment, it could be concluded that supplementing goat diets with SMCM at 100 to 200 g/d results in improved apparent digestibility of nutrients and blood metabolites, suggesting that SMCM has positive functions as a feed additive to improve energy substance metabolism and contribute to glyconeogenesis.
Collapse
Affiliation(s)
- Pin Chanjula
- Department of Animal Science, Faculty of Natural Resources, Prince of Songkla University, Songkhla, Thailand
| | - Anusorn Cherdthong
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
10
|
Effects of Acremonium terricola culture on performance, milk composition, rumen fermentation and immune functions in dairy cows. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Li Y, Wang YZ, Zhang GN, Zhang XY, Lin C, Li XX, Zhang YG. Effects of Acremonium terricola culture supplementation on apparent digestibility, rumen fermentation, and blood parameters in dairy cows. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|