1
|
Ashokan M, Rana E, Sneha K, Namith C, Naveen Kumar GS, Azharuddin N, Elango K, Jeyakumar S, Ramesha KP. Metabolomics-a powerful tool in livestock research. Anim Biotechnol 2023; 34:3237-3249. [PMID: 36200897 DOI: 10.1080/10495398.2022.2128814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Advancements in the Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) along with recent developments in omics sciences have resulted in a better understanding of molecular mechanisms and pathways associated with the physio-pathological state of the animal. Metabolomics is a post-genomics tool that deals with small molecular metabolites in a given set of time which provides clear information about the status of an organism. Recently many researchers mainly focus their research on metabolomics studies due to its valuable information in the various fields of livestock management and precision dairying. The main aim of the present review is to provide an insight into the current research output from different sources and application of metabolomics in various areas of livestock including nutri-metabolomics, disease diagnosis advancements, reproductive disorders, pharmaco-metabolomics, genomics studies, and dairy production studies. The present review would be helpful in understanding the metabolomics methodologies and use of livestock metabolomics in various areas in a brief way.
Collapse
Affiliation(s)
- M Ashokan
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
- Department of Animal Husbandry, Cattle Breeding and Fodder Development, Thiruvarur, India
| | - Ekta Rana
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Kadimetla Sneha
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
| | - C Namith
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - G S Naveen Kumar
- Animal Genetics and Breeding Division, Hassan Veterinary College, Hassan, India
| | - N Azharuddin
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K Elango
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - S Jeyakumar
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - K P Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| |
Collapse
|
2
|
Gimeno I, Salvetti P, Carrocera S, Gatien J, García-Manrique P, López-Hidalgo C, Valledor L, Gómez E. Biomarker metabolite mating of viable frozen-thawed in vitro-produced bovine embryos with pregnancy-competent recipients leads to improved birth rates. J Dairy Sci 2023; 106:6515-6538. [PMID: 37268566 DOI: 10.3168/jds.2022-23082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/21/2023] [Indexed: 06/04/2023]
Abstract
Selection of competent recipients before embryo transfer (ET) is indispensable for improving pregnancy and birth rates in cattle. However, pregnancy prediction can fail when the competence of the embryo is ignored. We hypothesized that the pregnancy potential of biomarkers could improve with information on embryonic competence. In vitro-produced embryos cultured singly for 24 h (from d 6 to 7) were transferred to d 7 synchronized recipients as fresh or after freezing and thawing. Recipient blood was collected on d 0 (estrus; n = 108) and d 7 (4-6 h before ET; n = 107) and plasma was analyzed by nuclear magnetic resonance (1H+NMR). Spent embryo culture medium (CM) was collected and analyzed by ultra-high-performance liquid chromatography tandem mass spectrometry in a subset of n = 70 samples. Concentrations of metabolites quantified in plasma (n = 35) were statistically analyzed as a function of pregnancy diagnosed on d 40, d 62 and birth. Univariate analysis with plasma metabolites consisted of a block study with controllable fixed factors (i.e., embryo cryopreservation, recipient breed, and day of blood collection; Wilcoxon test and t-test). Metabolite concentrations in recipients and embryos were independently analyzed by iterations that reclassified embryos or recipients using the support vector machine. Iterations identified some competent embryos, but mostly competent recipients that had a pregnancy incompetent partner embryo. Misclassified recipients that could be classified as competent were reanalyzed in a new iteration to improve the predictive model. After subsequent iterations, the predictive potential of recipient biomarkers was recalculated. On d 0, creatine, acetone and l-phenylalanine were the most relevant biomarkers at d 40, d 62, and birth, and on d 7, l-glutamine, l-lysine, and ornithine. Creatine was the most representative biomarker within blocks (n = 20), with a uniform distribution over pregnancy endpoints and type of embryos. Biomarkers showed higher abundance on d 7 than d 0, were more predictive for d 40 and d 62 than at birth, and the pregnancy predictive ability was lower with frozen-thawed (F-T) embryos. Six metabolic pathways differed between d 40 pregnant recipients for fresh and F-T embryos. Within F-T embryos, more recipients were misclassified, probably due to pregnancy losses, but were accurately identified when combined with embryonic metabolite signals. After recalculation, 12 biomarkers increased receiver operator characteristic-area under the curve (>0.65) at birth, highlighting creatine (receiver operator characteristic-area under the curve = 0.851), and 5 new biomarkers were identified. Combining metabolic information of recipient and embryos improves the confidence and accuracy of single biomarkers.
Collapse
Affiliation(s)
- Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - Pascal Salvetti
- ELIANCE, Experimental facilities, Le Perroi, 37380 Nouzilly, France
| | - Susana Carrocera
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - Julie Gatien
- ELIANCE, Experimental facilities, Le Perroi, 37380 Nouzilly, France
| | - Pablo García-Manrique
- Molecular Mass Spectrometry Unit, Scientific and Technical Services, University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain
| | - Cristina López-Hidalgo
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain.
| |
Collapse
|
3
|
Meng H, Huang S, Diao F, Gao C, Zhang J, Kong L, Gao Y, Jiang C, Qin L, Chen Y, Xu M, Gao L, Liang B, Hu Y. Rapid and non-invasive diagnostic techniques for embryonic developmental potential: a metabolomic analysis based on Raman spectroscopy to identify the pregnancy outcomes of IVF-ET. Front Cell Dev Biol 2023; 11:1164757. [PMID: 37427383 PMCID: PMC10326628 DOI: 10.3389/fcell.2023.1164757] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The non-invasive and rapid assessment of the developmental potential of embryos is of great clinical importance in assisted reproductive technology (ART). In this retrospective study, we analyzed the metabolomics of 107 samples provided by volunteers and utilized Raman spectroscopy to detect the substance composition in the discarded culture medium of 53 embryos resulting in successful pregnancies and 54 embryos that did not result in pregnancy after implantation. The culture medium from D3 cleavage-stage embryos was collected after transplantation and a total of 535 (107 × 5) original Raman spectra were obtained. By combining several machine learning methods, we predicted the developmental potential of embryos, and the principal component analysis-convolutional neural network (PCA-CNN) model achieved an accuracy rate of 71.5%. Furthermore, the chemometric algorithm was used to analyze seven amino acid metabolites in the culture medium, and the data showed significant differences in tyrosine, tryptophan, and serine between the pregnancy and non-pregnancy groups. The results suggest that Raman spectroscopy, as a non-invasive and rapid molecular fingerprint detection technology, shows potential for clinical application in assisted reproduction.
Collapse
Affiliation(s)
- Hui Meng
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Shan Huang
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Zhang
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Lingyin Kong
- Basecare Medical Device Co., Ltd., Suzhou, China
| | - Yan Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chunyan Jiang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Chen
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Mengna Xu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqiu Hu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Aslih N, Dekel BZ, Malonek D, Michaeli M, Polotov D, Shalom-Paz E. Non-invasive evaluation of embryos using mid-infrared attenuated total reflection spectrometry of incubation medium: a preliminary study. Reprod Biomed Online 2022; 46:793-801. [PMID: 36925364 DOI: 10.1016/j.rbmo.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
RESEARCH QUESTION Can mid-infrared attenuated total reflection (MIR ATR) spectroscopy combined with machine learning methods be used as an additional tool to predict embryo quality and IVF treatment outcomes? DESIGN Spent culture media was collected and analysed. MIR ATR absorbance spectra were measured using an ALPHA II spectrometer equipped with an attenuated total reflection (ATR) spectrometry accessory. Patient and treatment data and results were collected and analysed in combination with machine learning techniques to identify possible correlations. The main outcome measures were to define the characteristics of absorbance spectra of spent culture media and to distinguish the difference in absorbance between top- and low-quality embryos, day 3 and day 5 embryos and implanting embryos versus non-implanting embryos. RESULTS Spent culture media of 227 embryos was collected and analysed. Absorbance peaks in the culture media were different between day 3 and day 5 embryos. Moreover, significant differences in P-values, spanning from 0.014 to 0.044 in absorbance peaks for day 3 embryos and 0.024 up to 0.04 for day 5 embryos, were seen between implanting and non-implanting embryos. Machine learning techniques offered a pregnancy prediction value of 84.6% for day 3 embryos. CONCLUSIONS MIR ATR may offer an additional parameter for better selection of embryos based on the spectrometric absorbance and secretions of metabolites in the culture media.
Collapse
Affiliation(s)
- Nardin Aslih
- IVF Unit, Hillel Yaffe Medical Center, Hadera, Israel.
| | - Ben Zion Dekel
- Department of Electrical and Computer Engineering, Ruppin Academic Center, Emek Hefer, Israel
| | - Dov Malonek
- Department of Electrical and Computer Engineering, Ruppin Academic Center, Emek Hefer, Israel
| | | | - Diana Polotov
- IVF Unit, Hillel Yaffe Medical Center, Hadera, Israel
| | | |
Collapse
|
5
|
Valente RS, Marsico TV, Sudano MJ. Basic and applied features in the cryopreservation progress of bovine embryos. Anim Reprod Sci 2022; 239:106970. [DOI: 10.1016/j.anireprosci.2022.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/19/2022] [Indexed: 11/30/2022]
|
6
|
Wrenzycki C. Parameters to identify good quality oocytes and embryos in cattle. Reprod Fertil Dev 2021; 34:190-202. [PMID: 35231232 DOI: 10.1071/rd21283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oocyte/embryo selection methodologies are either invasive or noninvasive and can be applied at various stages of development from the oocyte to cleaved embryos and up to the blastocyst stage. Morphology and the proportion of embryos developing to the blastocyst stage are important criteria to assess developmental competence. Evaluation of morphology remains the method of choice for selecting viable oocytes for IVP or embryos prior to transfer. Although non-invasive approaches are improving, invasive ones have been extremely helpful in finding candidate genes to determine oocyte/embryo quality. There is still a strong need for further refinement of existing oocyte and embryo selection methods and quality parameters. The development of novel, robust and non-invasive procedures will ensure that only embryos with the highest developmental potential are chosen for transfer. In the present review, various methods for assessing the quality of oocytes and preimplantation embryos, particularly in cattle, are considered. These methods include assessment of morphology including different staining procedures, transcriptomic and proteomic analyses, metabolic profiling, as well as the use of artificial intelligence technologies.
Collapse
Affiliation(s)
- Christine Wrenzycki
- Chair for Molecular Reproductive Medicine, Clinic for Veterinary Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, Frankfurter Straße 106, Giessen 35392, Germany
| |
Collapse
|
7
|
Gimeno I, García-Manrique P, Carrocera S, López-Hidalgo C, Valledor L, Martín-González D, Gómez E. The Metabolic Signature of In Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer. Metabolites 2021; 11:484. [PMID: 34436426 PMCID: PMC8399324 DOI: 10.3390/metabo11080484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
In vitro produced (IVP) embryos show large metabolic variability induced by breed, culture conditions, embryonic stage and sex and gamete donors. We hypothesized that the birth potential could be accurately predicted by UHPLC-MS/MS in culture medium (CM) with the discrimination of factors inducing metabolic variation. Day-6 embryos were developed in single CM (modified synthetic oviduct fluid) for 24 h and transferred to recipients as fresh (28 ETs) or frozen/thawed (58 ETs) Day-7 blastocysts. Variability was induced with seven bulls, slaughterhouse oocyte donors, culture conditions (serum + Bovine Serum Albumin [BSA] or BSA alone) prior to single culture embryonic stage records (Day-6: morula, early blastocyst, blastocyst; Day-7: expanding blastocyst; fully expanded blastocysts) and cryopreservation. Retained metabolite signals (6111) were analyzed as a function of pregnancy at Day-40, Day-62 and birth in a combinatorial block study with all fixed factors. We identified 34 accumulated metabolites through 511 blocks, 198 for birth, 166 for Day-62 and 147 for Day-40. The relative abundance of metabolites was higher within blocks from non-pregnant (460) than from pregnant (51) embryos. Taxonomy classified lipids (12 fatty acids and derivatives; 224 blocks), amino acids (12) and derivatives (3) (186 blocks), benzenoids (4; 58 blocks), tri-carboxylic acids (2; 41 blocks) and 5-Hydroxy-l-tryptophan (2 blocks). Some metabolites were effective as single biomarkers in 95 blocks (Receiver Operating Characteristic - Area Under the Curve [ROC-AUC]: 0.700-1.000). In contrast, more accurate predictions within the largest data sets were obtained with combinations of 2, 3 and 4 single metabolites in 206 blocks (ROC-AUC = 0.800-1.000). Pregnancy-prone embryos consumed more amino acids and citric acid, and depleted less lipids and cis-aconitic acid. Big metabolic differences between embryos support efficient pregnancy and birth prediction when analyzed in discriminant conditions.
Collapse
Affiliation(s)
- Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Pablo García-Manrique
- Molecular Mass Spectrometry Unit, Scientific and Technical Services, University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain;
| | - Susana Carrocera
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Cristina López-Hidalgo
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain; (C.L.-H.); (L.V.)
| | - Luis Valledor
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain; (C.L.-H.); (L.V.)
| | - David Martín-González
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| |
Collapse
|
8
|
de Oliveira Fernandes G, Milazzotto MP, Fidelis AAG, Kawamoto TS, de Oliveira Leme L, de Lima CB, Franco MM, Dode MAN. Biochemical markers for pregnancy in the spent culture medium of in vitro produced bovine embryos†. Biol Reprod 2021; 105:481-490. [PMID: 33982057 DOI: 10.1093/biolre/ioab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to identify biomarkers to assess the quality of in vitro produced (IVP) bovine embryos in the culture media. IVP embryos on Day (D) 5 of development were transferred to individual drops, where they were maintained for the last 48 h of culture. Thereafter, the medium was collected and the embryos were transferred to the recipients. After pregnancy diagnosis, the media were grouped into the pregnant and nonpregnant groups. The metabolic profiles of the media were analyzed via electrospray ionization mass spectrometry, and the concentrations of pyruvate, lactate, and glutamate were assessed using fluorimetry. The spectrometric profile revealed that the media from embryos from the pregnant group presented a higher signal intensity compared to that of the nonpregnant group; the ions 156.13 Da [M + H]+, 444.33 Da [M + H]+, and 305.97 Da [M + H]+ were identified as biomarkers. Spent culture medium from expanded blastocysts (Bx) that established pregnancy had a greater concentration of pyruvate (p = 0.0174) and lesser concentration of lactate (p = 0.042) than spent culture medium from Bx that did not establish pregnancy. Moreover, pyruvate in the culture media of Bx can predict pregnancy with 90.9% sensitivity and 75% specificity. In conclusion, we identified markers in the culture media that helped in assessing the most viable IVP embryos with a greater potential to establish pregnancy.
Collapse
Affiliation(s)
- Gabriela de Oliveira Fernandes
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, Brazil.,Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | | | | | - Taynan Stonoga Kawamoto
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Ligiane de Oliveira Leme
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil.,UFES, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Camila Bruna de Lima
- Center of Natural and Human Sciences, Universidade Federal do ABC, Santo André, São Paulo, Brazil.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle. Département des Sciences Animales, Université Laval, Québec, Canada
| | - Maurício Machaim Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Margot Alves Nunes Dode
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, Brazil.,Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| |
Collapse
|
9
|
de Oliveira Fernandes G, de Faria OAC, Sifuentes DN, Franco MM, Dode MAN. Electrospray mass spectrometry analysis of blastocoel fluid as a potential tool for bovine embryo selection. J Assist Reprod Genet 2021; 38:2209-2217. [PMID: 33866497 DOI: 10.1007/s10815-021-02189-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE The aim of this study was to analyze the metabolic profiles of blastocoel fluid (BF) obtained from bovine embryos produced in vivo and in vitro. METHODS Expanded blastocysts (20/group) that were in vitro and in vivo derived at day 7 were used. BF was collected and analyzed under direct infusion conditions using a microTOF-Q® mass spectrometer with electrospray ionization and a mass range of 50-650 m/z. RESULTS The spectrometry showed an evident difference in the metabolic profiles of BF from in vivo and in vitro produced embryos. These differences were very consistent between the samples of each group suggesting that embryo fluids can be used to identify the origin of the embryo. Ions 453.15 m/z, 437.18 m/z, and 398.06 m/z were identified as biomarkers for the embryo's origin with 100% sensitivity and specificity. Although it was not possible to unveil the molecular identity of the differential ions, the resulting spectrometric profiles provide a phenotype capable of differentiating embryos and hence constitute a potential parameter for embryo selection. CONCLUSION To the best of our knowledge, our results showed, for the first time, an evident difference between the spectrometric profiles of the BF from bovine embryos produced in vivo and in vitro.
Collapse
Affiliation(s)
| | | | | | - Maurício Machaim Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
| | - Margot Alves Nunes Dode
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, Brazil. .,Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil.
| |
Collapse
|
10
|
Metabolites Secreted by Bovine Embryos In Vitro Predict Pregnancies That the Recipient Plasma Metabolome Cannot, and Vice Versa. Metabolites 2021; 11:metabo11030162. [PMID: 33799889 PMCID: PMC7999939 DOI: 10.3390/metabo11030162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
This work describes the use of mass spectrometry-based metabolomics as a non-invasive approach to accurately predict birth prior to embryo transfer (ET) starting from embryo culture media and plasma recipient. Metabolomics was used here as a predictive platform. Day-6 in vitro produced embryos developed singly in modified synthetic oviduct fluid culture medium (CM) drops for 24 h were vitrified as Day-7 blastocysts and transferred to recipients. Day-0 and Day-7 recipient plasma (N = 36 × 2) and CM (N = 36) were analyzed by gas chromatography coupled to the quadrupole time of flight mass spectrometry (GC-qTOF). Metabolites quantified in CM and plasma were analyzed as a function to predict pregnancy at Day-40, Day-62, and birth (univariate and multivariate statistics). Subsequently, a Boolean matrix (F1 score) was constructed with metabolite pairs (one from the embryo, and one from the recipient) to combine the predictive power of embryos and recipients. Validation was performed in independent cohorts of ETs analyzed. Embryos that did not reach birth released more stearic acid, capric acid, palmitic acid, and glyceryl monostearate in CM (i.e., (p < 0.05, FDR < 0.05, Receiver Operator Characteristic—area under curve (ROC-AUC) > 0.669)). Within Holstein recipients, hydrocinnamic acid, alanine, and lysine predicted birth (ROC-AUC > 0.778). Asturiana de los Valles recipients that reached birth showed lower concentrations of 6-methyl-5-hepten-2-one, stearic acid, palmitic acid, and hippuric acid (ROC-AUC > 0.832). Embryonal capric acid and glyceryl-monostearate formed F1 scores generally >0.900, with metabolites found both to differ (e.g., hippuric acid, hydrocinnamic acid) or not (e.g., heptadecanoic acid, citric acid) with pregnancy in plasmas, as hypothesized. Efficient lipid metabolism in the embryo and the recipient can allow pregnancy to proceed. Changes in phenolics from plasma suggest that microbiota and liver metabolism influence the pregnancy establishment in cattle.
Collapse
|
11
|
Gómez E, Salvetti P, Gatien J, Muñoz M, Martín-González D, Carrocera S, Goyache F. Metabolomic Profiling of Bos taurus Beef, Dairy, and Crossbred Cattle: A Between-Breeds Meta-Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8732-8743. [PMID: 32687347 DOI: 10.1021/acs.jafc.0c02129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cattle breeds may differ substantially in their metabolism. However, the metabolomes of dairy and beef cattle are not well-known. Knowledge of breed-specific metabolic features is essential for biomarker identification and to adopt specific nutritional strategies. The muscle hypertrophy (mh), a beef cattle phenotype present in Asturiana de los Valles (AV) but absent in Asturiana de la Montaña (AM) and Holsteins, may underlie such differences. We compared the plasma metabolomes of Holstein, AV, AM, and crossbred cattle recipients selected for meta-analysis within an embryo transfer (ET) program. Blood samples were collected on day 0 (oestrus) and day 7 (prior to ET) (N = 234 samples × 2 days). Nuclear magnetic resonance quantified N = 36 metabolites in plasma, and more metabolic differences between breeds were found on day 0 (N = 19 regulated metabolites) than on day 7 (N = 5). AV and AM largely differed from Holstein cattle (N = 55 and 35 enriched metabolic pathways, respectively); however, AV and AM differed in N = 6 enriched pathways. Metabolic activity was higher in AV than in Holstein cattle, as explained in part by the mh phenotype. The metabolomic characterization of breeds facilitates biomarker research and helps to define the healthy ranges of metabolite concentrations.
Collapse
Affiliation(s)
- E Gómez
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33300 Gijón, Spain
| | - P Salvetti
- Experimental Facilities, ALLICE, Le Perroi, 37380 Nouzilly, France
| | - J Gatien
- Experimental Facilities, ALLICE, Le Perroi, 37380 Nouzilly, France
| | - M Muñoz
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33300 Gijón, Spain
| | - D Martín-González
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33300 Gijón, Spain
| | - S Carrocera
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33300 Gijón, Spain
| | - F Goyache
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33300 Gijón, Spain
| |
Collapse
|
12
|
Gómez E, Muñoz M, Gatien J, Carrocera S, Martín-González D, Salvetti P. Metabolomic identification of pregnancy-specific biomarkers in blood plasma of BOS TAURUS beef cattle after transfer of in vitro produced embryos. J Proteomics 2020; 225:103883. [PMID: 32574609 DOI: 10.1016/j.jprot.2020.103883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022]
Abstract
Blood biomarkers may help to predict pregnancy in recipients of in vitro produced (IVP) embryos. Using 1H nuclear magnetic resonance, we quantified 36 metabolites in the blood plasma of recipients (90% heifers, healthy, 1.95 years on average at the time of 1st embryo transfer -ET-) collected at Day-0 (estrus) and Day-7 (before ET time). First, IVP embryos were transferred to Asturiana de los Valles recipients as fresh (F) (N = 26) and vitrified/warmed (V/W) (N = 48) (discovery groups). Only at estrus, we discovered 4, 11, and 5 (F-ET), and 2, 2, and 4 (V/W-ET) metabolites that predicted pregnancy on Day-40, Day-62 and calving time, respectively (ROC-AUC > 0.700; P < .05). Thereafter, validation was performed in independent samples (N = 67 F and N = 63 V/W) of three cattle breeds by an index of overall classification accuracy (OCA>0.650, P < .05). The numbers of candidate biomarkers validated were 2, 9 and 1 (F-ET) and 2, 2, and 3 (V/W-ET) on Day 40, Day-62 and calving time. Relevant metabolites were validated at the three (2-Oxoglutaric acid (F-ET), and 2-Hydroxybutyric acid and Dimethylamine (V/W-ET)) and two pregnancy endpoints (Ketoleucine (F-ET); Day-40 and Day-62) analysed. Fatty acid degradation and oxidative metabolism were enriched in pregnant recipients. The candidate biomarkers identified can improve embryo-recipient selection. SIGNIFICANCE: We identified, for the first time, reliable pregnancy and birth candidate metabolite biomarkers for fresh and vitrified IVP embryos in blood of beef cattle recipients. Our findings can help to improve embryo-recipient selection, which is usually carried out in a way that females that will not become pregnant are not well differentiated.
Collapse
Affiliation(s)
- Enrique Gómez
- Centro de Biotecnología Animal - SERIDA- Camino de Rioseco, 1225 Gijón, Spain.
| | - Marta Muñoz
- Centro de Biotecnología Animal - SERIDA- Camino de Rioseco, 1225 Gijón, Spain
| | - Julie Gatien
- ALLICE, Experimental facilities, Le Perroi, 37380 Nouzilly, France
| | - Susana Carrocera
- Centro de Biotecnología Animal - SERIDA- Camino de Rioseco, 1225 Gijón, Spain
| | | | - Pascal Salvetti
- ALLICE, Experimental facilities, Le Perroi, 37380 Nouzilly, France
| |
Collapse
|
13
|
Gómez E, Salvetti P, Gatien J, Carrocera S, Martín-González D, Muñoz M. Blood Plasma Metabolomics Predicts Pregnancy in Holstein Cattle Transferred with Fresh and Vitrified/Warmed Embryos Produced in Vitro. J Proteome Res 2020; 19:1169-1182. [PMID: 31975599 DOI: 10.1021/acs.jproteome.9b00688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolomics may identify biomarkers in blood that differentiate pregnant from open embryo recipients. Fresh and vitrified/warmed, in vitro-produced embryos were transferred to Holstein recipients (discovery group). Recipient blood plasma collected on Day-0 (estrus) and Day-7 (before embryo transfer) were analyzed by nuclear magnetic resonance (N = 36 metabolites quantified). Metabolites whose concentrations differed between open and pregnant recipients were analyzed [(P < 0.05); false discovery rate (FDR) (P < 0.05)]. Biomarkers were identified in Day-7 plasma (receiver operator characteristic-area under curve (ROC-AUC) > 0.650; t-test P < 0.05; random forests, mean decrease accuracy) and cross-validated in independent Holstein, beef, and crossbred recipients (overall classification accuracy -OCA-; P < 0.05). Recipients with fresh embryos showed N = 6 biomarkers consistently on Day-40, Day-62, and at birth. Recipients with vitrified embryos showed N = 5 biomarkers on Day-40 and Day-62 but only one biomarker at birth. The most predictive biomarkers identified at birth within fresh embryos were oxoglutaric acid (ROC-AUC = 0.709; OCA = 0.812) and ornithine (ROC-AUC = 0.731; OCA = 0.727), while l-glycine was identified in vitrified embryos (ROC-AUC = 0.796; OCA = 0.667) together with other predictive biomarkers not identified at birth (Day-62: l-glutamine ROC-AUC = 0.757; OCA = 0.767) and l-lysine (Day-62: ROC-AUC = 0.680; OCA = 0.767). Pathway enrichment analysis distinguished between pregnant recipients for fresh (enriched energy oxidative metabolism from fat) and vitrified (lower lipid metabolism) embryos. Metabolomics can select individuals that will become pregnant in a defined cycle.
Collapse
Affiliation(s)
- Enrique Gómez
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - Pascal Salvetti
- ALLICE, Experimental Facilities, Le Perroi, 37380 Nouzilly, France
| | - Julie Gatien
- ALLICE, Experimental Facilities, Le Perroi, 37380 Nouzilly, France
| | - Susana Carrocera
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | | | - Marta Muñoz
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
14
|
Gómez E, Carrocera S, Martín D, Pérez-Jánez JJ, Prendes J, Prendes JM, Vázquez A, Murillo A, Gimeno I, Muñoz M. Efficient one-step direct transfer to recipients of thawed bovine embryos cultured in vitro and frozen in chemically defined medium. Theriogenology 2020; 146:39-47. [PMID: 32036059 DOI: 10.1016/j.theriogenology.2020.01.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023]
Abstract
Direct transfer (DT) of cryopreserved embryos to recipients facilitates on-farm application. We analyzed a new freezing/thawing (F/T) procedure for in vitro produced (IVP) embryos, integrating: 1) an ethylene-glycol based system; 2) a culture step without protein; and 3) a synthetic protein substitute (CRYO3) in cryopreservation medium. IVP embryos from abattoir ovaries were cultured in groups in BSA-containing synthetic oviduct fluid with or without 0.1% fetal calf serum (FCS) until Day-6. Morulae and early blastocysts were subsequently cultured without protein from Day-6 onwards. Day 7 and Day 8 expanded blastocysts (EXB) were subjected to F/T or vitrification/warming (V/W). Thawed and warmed EXB were cultured in vitro, and development rates, cell counts and dead cells were analyzed in surviving embryos. V/W improved survival over F/T (live and hatching rates at 2 h, 24 h and 48 h) (P < 0.0001), and FCS before Day 6 did not affect in vitro survival. After F/T, embryos had lower cell counts in the ICM, TE and total cells than after V/W. Day-7 embryos after F/T showed % apoptotic, % pycnotic and % total dead cells higher (p < 0.05) than their Day-8 counterparts, probably because F/T reduced the numbers of ICM cells within Day-8 embryos. Thereafter, Day-7 blastocysts were transferred to heifers in an experimental herd. There were no differences in birth rates with frozen (-FCS [n = 40]: 45%; +FCS [n = 14]: 28%), vitrified (-FCS [n = 47]: 53%; +FCS [n = 11]: 36%) and fresh (-FCS [n = 30]: 47%; +FCS [n = 17]: 53%) embryos. However, frozen embryos produced with FCS showed 5/9 miscarriages after Day-40. Calves born from frozen (n = 22), vitrified (n = 29) and fresh (n = 22) transfers did not differ in birth weight, gestation length and daily gain weight (P > 0.10). Subsequently, transfer of frozen embryos (n = 29) derived from oocytes collected from live, hormonally stimulated cows in experimental herd, led to pregnancy rates of 57% (heifers) and 40% (dry cows). with EXB on Day-62 Finally, embryos produced with BSA were transferred to cows in an on-field trial (frozen [n = 80]; fresh [n = 58]), with no differences in pregnancy rates (days 30-40). Pregnancy and birth rates could not be predicted from in vitro approaches. The new F/T system yields pregnancy and birth rates comparable to vitrified and fresh embryos without birth overweight. The absence of products of animal origin, defined chemical composition, and direct transfer entail sanitary, manufacturing and application advantages.
Collapse
Affiliation(s)
- Enrique Gómez
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, Gijón, 33394, Spain.
| | - Susana Carrocera
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, Gijón, 33394, Spain
| | - David Martín
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, Gijón, 33394, Spain
| | - Juan José Pérez-Jánez
- Cooperativa de Agricultores y Usuarios de Gijón, Carretera Carbonera 2230, Polígono Industrial de Roces 5, Gijón, 33211, Spain
| | - Javier Prendes
- Cooperativa de Agricultores y Usuarios de Gijón, Carretera Carbonera 2230, Polígono Industrial de Roces 5, Gijón, 33211, Spain
| | - José Manuel Prendes
- Cooperativa de Agricultores y Usuarios de Gijón, Carretera Carbonera 2230, Polígono Industrial de Roces 5, Gijón, 33211, Spain
| | - Alejandro Vázquez
- Asturian Biotechnology, Galeno, 2248, Polígono Industrial de Roces 5, Gijón, 33211, Spain
| | - Antonio Murillo
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, Gijón, 33394, Spain
| | - Isabel Gimeno
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, Gijón, 33394, Spain
| | - Marta Muñoz
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, Gijón, 33394, Spain
| |
Collapse
|
15
|
Nõmm M, Porosk R, Pärn P, Kilk K, Soomets U, Kõks S, Jaakma Ü. In vitro culture and non-invasive metabolic profiling of single bovine embryos. Reprod Fertil Dev 2019; 31:306-314. [PMID: 30092912 DOI: 10.1071/rd17446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 06/29/2018] [Indexed: 01/10/2023] Open
Abstract
Selecting high-quality embryos for transfer has been a difficult task when producing bovine embryos invitro. The most used non-invasive method is based on visual observation. Molecular characterisation of embryo growth media has been proposed as a complementary method. In this study we demonstrate a culture medium sampling method for identifying potential embryonic viability markers to predict normal or abnormal embryonic development. During single embryo culture, 20µL culture media was removed at Days 2, 5 and 8 after fertilisation from the same droplet (60µL). In all, 58 samples were analysed using liquid chromatography-mass spectrometry. We demonstrate that it is possible to remove samples from the same culture medium droplets and not significantly affect blastocyst rate (25.2%). Changes in any single low molecular weight compound were not predictive enough. Combining multiple low molecular weight signals made it possible to predict Day 2 and 5 embryo development to the blastocyst stage with an accuracy of 64%. Elevated concentrations of lysophosphatidylethanolamines (m/z=453, 566, 588) in the culture media of Day 8 well-developing embryos were observed. Choline (104m/z) and citrate (215m/z) concentrations were increased in embryos in which development was retarded. Metabolic profiling provides possibilities to identify well-developing embryos before transfer, thus improving pregnancy rates and the number of calves born.
Collapse
Affiliation(s)
- Monika Nõmm
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 51006, Estonia
| | - Rando Porosk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ülikooli 18, Tartu 50090, Estonia
| | - Pille Pärn
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 51006, Estonia
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ülikooli 18, Tartu 50090, Estonia
| | - Ursel Soomets
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ülikooli 18, Tartu 50090, Estonia
| | - Sulev Kõks
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 51006, Estonia
| | - Ülle Jaakma
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 51006, Estonia
| |
Collapse
|
16
|
Marsico TV, de Camargo J, Valente RS, Sudano MJ. Embryo competence and cryosurvival: Molecular and cellular features. Anim Reprod 2019; 16:423-439. [PMID: 32435286 PMCID: PMC7234140 DOI: 10.21451/1984-3143-ar2019-0072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022] Open
Abstract
Global cattle genetic market is experiencing a change of strategy, large genetic companies, traditionally recognized in the artificial insemination field, have also begun to operate in the embryo market. Consequently, the demand for in vitro produced (IVP) embryos has grown. However, the overall efficiency of the biotechnology process remains low. Additionally, the lack of homogeneity of post-cryopreservation survival results of IVP embryos still impairing a massive dissemination of this biotechnology in the field. A great challenge for in vitro production labs is to increase the amount of embryos produced with exceptional quality after each round of in vitro fertilization. Herein, we discuss the molecular and cellular features associated with the competence and cryosurvival of IVP embryos. First, morphofunctional, cellular and molecular competence of the embryos were addressed and a relationship between embryo developmental ability and quality were established with cryosurvival and pregnancy success. Additionally, determinant factors of embryo competence and cryosurvival were discussed including the following effects: genotype, oocyte quality and follicular microenvironment, in vitro production conditions, and lipids and other determining molecules. Finally, embryo cryopreservation aspects were addressed and an embryo-focused approach to improve cryosurvival was presented.
Collapse
Affiliation(s)
- Thamiris V. Marsico
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brasil.
| | - Janine de Camargo
- School of Veterinary Medicine, Federal University of Pampa, Uruguaiana, RS, Brasil.
| | - Roniele S. Valente
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brasil.
| | - Mateus J. Sudano
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brasil.
- School of Veterinary Medicine, Federal University of Pampa, Uruguaiana, RS, Brasil.
| |
Collapse
|
17
|
D’Occhio MJ, Baruselli PS, Campanile G. Metabolic health, the metabolome and reproduction in female cattle: a review. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1600385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Michael J. D’Occhio
- School of Life and Environmental Sciences, The University of Sydney, Camden, Australia
| | - Pietro S. Baruselli
- Departamento de Reproducao Animal (VRA), University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Campanile
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
18
|
Mogas T. Update on the vitrification of bovine oocytes and invitro-produced embryos. Reprod Fertil Dev 2019; 31:105-117. [PMID: 32188546 DOI: 10.1071/rd18345] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The combined use of reproductive technologies, such as transvaginal ovum-pick up and invitro embryo production followed by direct transfer of cryopreserved embryos, has great potential for enhancing genetic selection and optimising cross-breeding schemes in beef and dairy cattle production systems. This, along with an effective cryopreservation procedure for cow oocytes, will enable the long-term conservation of female genetic traits and the advance of embryo biotechnology in this species. However, the low fertilisation rates and developmental competence of cryopreserved oocytes still need to be improved. Over the past two decades, many research efforts tried to overcome individual features of the bovine oocyte that make it notoriously difficult to cryopreserve. In addition, pregnancy rates associated with invitro-produced (IVP) embryos remain lower than those obtained using invivo counterparts. This, together with a lack of a standard methodology for IVP embryo cryopreservation that provides easier and more practical logistics for the transfer of IVP embryos on farms, has hindered international genetic trade and the management of embryo banks. This review updates developments in oocyte and IVP embryo vitrification strategies targeting high production efficiency and better outcomes.
Collapse
Affiliation(s)
- Teresa Mogas
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain. Email
| |
Collapse
|
19
|
Kadarmideen HN, Mazzoni G. Transcriptomics-genomics data integration and expression quantitative trait loci analyses in oocyte donors and embryo recipients for improving invitro production of dairy cattle embryos. Reprod Fertil Dev 2019; 31:55-67. [PMID: 32188542 DOI: 10.1071/rd18338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this paper we first provide a brief review of main results from our previously published studies on genome-wide gene expression (transcriptomics) in donor and recipient cattle used in invitro production (IVP) of embryos and embryo transfer (ET). Then, we present novel results from applying integrative systems genomics and biological analyses where transcriptomics data are combined with genomic data in both donor and recipient cattle to map expression quantitative trait loci (eQTLs). The eQTLs are genetic markers that can regulate or control the expression of genes in the entire genome, via complex molecular mechanisms, and thus can act as a powerful tool for genomic and gene-assisted selection. We identified significant eQTLs potentially controlling the expression of 13 candidate genes for donor cow quality (IVP parameters; e.g. cyclin B1 (CCNB1), outer dense fiber of sperm tails 2 like (ODF2L)) and 19 candidate genes for recipient cows quality (endometrial receptivity; e.g. ER membrane protein complex subunit 9 (EMC9), mannosidase beta (MANBA), peptidase inhibitor 16 (PI16)). Annotation and colocation of detected eQTLs show that some of the eQTLs are in the same genomic regions previously reported as QTLs for reproduction-related traits. However, eQTLs and the candidate genes identified should be further validated in larger populations before implementation as genetic markers or used in genomic selection for improving IVP and ET performance.
Collapse
Affiliation(s)
- H N Kadarmideen
- Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kongens Lyngby, Denmark
| | - G Mazzoni
- Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
20
|
Abstract
This manuscript describes the different topics I have been involved in the fields of reproductive
physiology and embryo biotechnologies with attempts to address practical issues raised
mainly by the breeding industry. The journey started with phenotyping work in the field of
reproductive physio-pathology. Other issues were related to the optimization of reproductive
biotechnologies to favorize genetic selection. The implementation of genomic selection
raised opportunities to develop the use embryo biotechnologies and showed the interest of
combining them in the case of embryo genotyping. There is still a need to refine phenotyping
for reproductive traits especially for the identification of markers of uterine dysfunction.
It is believed that new knowledge generated by combining different molecular approaches
will be the source of applications that may benefit AI practice and embryo technologies.
Collapse
Affiliation(s)
- Patrice Humblot
- Division of Reproduction, Department of Clinical Sciences, SLU, Uppsala, Sweden
| |
Collapse
|
21
|
Gómez E, Carrocera S, Uzbekova S, Martín D, Murillo A, Alonso-Guervós M, Goyache F, Muñoz M. Protein in culture and endogenous lipid interact with embryonic stages in vitro to alter calf birthweight after embryo vitrification and warming. Reprod Fertil Dev 2018; 29:1932-1943. [PMID: 27890045 DOI: 10.1071/rd16213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/01/2016] [Indexed: 12/17/2022] Open
Abstract
Short-term protein removal in vitro improves long-term blastocyst competence to survive vitrification. We investigated the mechanisms and effects underlying protein removal. Day-6 morulae and early blastocysts were cultured individually with and without protein for 24h. Development and lipid content were analysed in expanded blastocysts derived from morulae (M-XB) and from early blastocysts (EB-XB). Expression of genes involved in lipid metabolism, stress responses and apoptosis was analysed in fresh and vitrified-warmed M-XB produced with and without protein. Pregnancy rates, birth rates and birthweight (BW) were recorded after transfer of embryos. Day-7 EB-XB production rates (with, 66.9±6.2 and without, 68.8±6.0 protein) were higher than M-XB rates (with, 21.4±4.6 and without, 9.4±4.6 protein; P<0.005). EB-XB showed fewer lipids than M-XB (P=0.03). In fresh M-XB, expression of sterol regulatory element binding protein (SREBP1) was lower with (4.1±2.2) than without (13.6±2.2) protein, contrary to results obtained for Patatin-like phospholipase domain containing 2, Hormone-sensitive lipase and Bcl-2-associated X protein (P<0.05). Protein did not affect pregnancy rates and birth phenotypes (P>0.05). However, BW was higher (P<0.01) in calves born from vitrified M-XB (48.6±3.4kg) than from EB-XB (39.8±2.9kg). Such effects were more pronounced in females (P<0.001). Calves from fresh embryos did not show BW differences. These results indicate that embryonic kinetics and vitrification impact birth phenotypes, at least in females. Alterations might involve exogenous protein and mobilisation of lipid stocks.
Collapse
Affiliation(s)
- E Gómez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - S Carrocera
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - S Uzbekova
- Institut National de la Recherche Agronomique , UMR8 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - D Martín
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Murillo
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - M Alonso-Guervós
- Unidad de Microscopía Fotónica y Proceso de Imágenes, Servicios Científico Técnicos, Universidad de Oviedo, Instituto Universitario de Oncología de Asturias (IUOPA), 33006 Oviedo, Spain
| | - F Goyache
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - M Muñoz
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
22
|
Murillo-Ríos A, Maillo V, Muñoz M, Gutiérrez-Adán A, Carrocera S, Martín-González D, Fernandez-Buznego A, Gómez E. Short- and long-term outcomes of the absence of protein during bovine blastocyst formation in vitro. Reprod Fertil Dev 2018; 29:1064-1073. [PMID: 27048912 DOI: 10.1071/rd15485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/16/2016] [Indexed: 01/24/2023] Open
Abstract
In cattle, individual in vitro embryo culture after Day 6 benefits development, allowing non-invasive analysis of culture medium. However, undefined supplements in culture reduce analytical reliability. In this study we assayed the short- and long-term performance of embryos after bovine serum albumin removal over a 24-h period in individual culture. The absence of protein decreased embryo development and cell counts in the inner cell mass without affecting blastocyst sex ratio. However, the absence of protein produced embryos with an improved tendency to survive vitrification after 24h in culture (P=0.07). After transfer to recipients, birth rates of embryos that had been cultured with protein tended to decrease (P<0.06) mostly as a result of a higher number of miscarriages (P<0.013), reflecting lower viability. Birthweight, gestation length, height and thorax circumference did not differ between embryos cultured with or without protein. In fresh blastocysts cultured without protein, gene expression analysis showed higher abundance (P<0.05) of insulin-like growth factor 2 receptor (IGF2R; imprinting) and activating transcription factor 4 (ATF4) and DNA-damage-inducible transcript 3 (DDIT3; endoplasmic reticulum stress) transcripts, with DNA methyltransferase 3A (DNMT3A; imprinting) tending to increase (P=0.062). However, in hatched blastocysts that survived cryopreservation, glucose-6-phosphate dehydrogenase (G6PD) was overexpressed in embryos cultured without protein (P<0.01). The absence of protein results in fewer blastocysts but improved long-term viability after cryopreservation.
Collapse
Affiliation(s)
- A Murillo-Ríos
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - V Maillo
- Departamento de Reproducción Animal, INIA, Ctra de la Coruña, km 5.9, 2804 Madrid, Spain
| | - M Muñoz
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Ctra de la Coruña, km 5.9, 2804 Madrid, Spain
| | - S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - D Martín-González
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Fernandez-Buznego
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - E Gómez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
23
|
Gómez E, Sánchez-Calabuig MJ, Martin D, Carrocera S, Murillo A, Correia-Alvarez E, Herrero P, Canela N, Gutiérrez-Adán A, Ulbrich S, Muñoz M. In vitro cultured bovine endometrial cells recognize embryonic sex. Theriogenology 2017; 108:176-184. [PMID: 29223655 DOI: 10.1016/j.theriogenology.2017.11.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022]
Abstract
Endometrial cell co-culture (ECC) with single embryo may reflect endometrium responses in vivo. Bovine Day-6 in vitro-produced morulae were cultured until Day-8 in modified synthetic oviductal fluid (mSOF), or on the epithelial side of ECC. Expression of epithelial- and stromal-cell transcripts was analyzed by RT-PCR in ECC with one male (ME) or female embryo (FE). Concentrations of ARTEMIN (ARTN) and total protein were determined in epithelial cell-conditioned medium. ECCs yielded embryos with more cells in the inner cell mass than embryos cultured in mSOF. Embryos altered transcript expression only in epithelial cells, not in stromal ones. Thus, ME induced larger reductions than FE and controls (i.e., no embryos cultured) in hexose transporter solute carrier family 2 member 1 (SLC2A1) and member 5 (SLC2A5), connective tissue growth factor (CTGF), artemin (ARTN), and interferon alpha and beta receptors subunit IFNAR1 and IFNAR2. FE reduced SLC2A1 and SLC2A5, and increased ARTN expression with respect to controls. ME tended to reduce total protein concentration (P < 0.082) in ECC-conditioned medium, while ARTN protein and gene expressions strongly correlated (R > 0.90; P < 0.05) in the group of ME or FE, but not in controls (without embryo). Isolated male and female embryos may differentially release signaling factors that induce sexually dimorphic responses in endometrial cells.
Collapse
Affiliation(s)
- E Gómez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain.
| | - M J Sánchez-Calabuig
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - D Martin
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Murillo
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - E Correia-Alvarez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - P Herrero
- Centre for OMIC Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - N Canela
- Centre for OMIC Sciences, Universitat Rovira i Virgili, Reus, Tarragona, Spain
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Avda. Puerta de Hierro, n°12, local 10, 28040 Madrid, Spain
| | - S Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Switzerland
| | - M Muñoz
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
24
|
Spent culture medium analysis from individually cultured bovine embryos demonstrates metabolomic differences. ZYGOTE 2017; 25:662-674. [PMID: 29032784 DOI: 10.1017/s0967199417000417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spent culture medium can provide valuable information regarding the physiological state of a bovine preimplantation embryos through non-invasive analysis of the sum/depleted metabolite constituents. Metabolomics has become of great interest as an adjunct technique to morphological and cleavage-rate assessment, but more importantly, in improving our understanding of metabolism. In this study, in vitro produced bovine embryos developing at different rates were evaluated using proton nuclear magnetic resonance (1H NMR). Spent culture medium from individually cultured embryos (2-cell to blastocyst stage) were divided into two groups based on their cleavage rate fast growing (FG) and slow growing (SG; developmentally delayed by 12-24 h), then analyzed by a 600 MHz NMR spectrometer. Sixteen metabolites were detected and investigated for sum/depletion throughout development. Data indicate distinct differences between the 4-cell SG and FG embryos for pyruvate (P < 0.05, n = 9) and at the 16-cell stage for acetate, tryptophan, leucine/isoleucine, valine and histidine. Overall sum/depletion levels of metabolites demonstrated that embryos produced glutamate, but consumed histidine, tyrosine, glycine, methionine, tryptophan, phenylalanine, lysine, arginine, acetate, threonine, alanine, pyruvate, valine, isoleucine/leucine, and lactate with an overall trend of higher consumption of these metabolites by FG groups. Principal component analysis revealed distinct clustering of the plain medium, SG, and FG group, signifying the uniqueness of the metabolomic signatures of each of these groups. This study is the first of its kind to characterize the metabolomic profiles of SG and FG bovine embryos produced in vitro using 1H NMR. Elucidating differences between embryos of varying developmental rates could contribute to a better understanding of embryonic health and physiology.
Collapse
|
25
|
Zhang YL, Zhang GM, Jia RX, Wan YJ, Yang H, Sun LW, Han L, Wang F. Non-invasive assessment of culture media from goat cloned embryos associated with subjective morphology by gas chromatography - mass spectroscopy-based metabolomic analysis. Anim Sci J 2017; 89:31-41. [PMID: 28833899 DOI: 10.1111/asj.12885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 06/21/2017] [Indexed: 12/29/2022]
Abstract
Pre-implantation embryo metabolism demonstrates distinctive characteristics associated with the development potential of embryos. We aim to determine if metabolic differences correlate with embryo morphology. In this study, gas chromatography - mass spectroscopy (GC-MS)-based metabolomics was used to assess the culture media of goat cloned embryos collected from high-quality (HQ) and low-quality (LQ) groups based on morphology. Expression levels of amino acid transport genes were further examined by quantitative real-time PCR. Results showed that the HQ group presented higher percentages of blastocysts compared with the LQ counterparts (P < 0.05). Metabolic differences were also present between HQ and LQ groups. The culture media of the HQ group showed lower levels of valin, lysine, glutamine, mannose and acetol, and higher levels of glucose, phytosphingosine and phosphate than those of the LQ group. Additionally, expression levels of amino acid transport genes SLC1A5 and SLC3A2 were significantly lower in the HQ group than the LQ group (P < 0.05, respectively). To our knowledge, this is the first report which uses GC-MS to detect metabolic differences in goat cloned embryo culture media. The biochemical profiles may help to select the most in vitro viable embryos.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Ruo-Xin Jia
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yong-Jie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Ling-Wei Sun
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Le Han
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Murillo A, Muñoz M, Martín-González D, Carrocera S, Martínez-Nistal A, Gómez E. Low serum concentration in bovine embryo culture enhances early blastocyst rates on Day-6 with quality traits in the expanded blastocyst stage similar to BSA-cultured embryos. Reprod Biol 2017; 17:162-171. [PMID: 28479126 DOI: 10.1016/j.repbio.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/23/2022]
Abstract
In bovine, single in vitro embryo culture in protein-free medium from Day-6 to Day-7 leads to expanded blastocyst (XB) with improved pregnancy and birth rates after cryopreservation. Under these conditions, early blastocysts (EB) progress to the XB stage at higher rates than morulae (M). However, embryo production with BSA in culture prior to Day-6 leads to low EB rates. We investigated whether a very low FCS concentration (0.1%) in culture from Day-1 to Day-6 would improve EB rates and, subsequently, increase XB rates on Day-7 after single culture in protein-free medium. The quality of embryos produced was evaluated in terms of survival to cryopreservation, apoptosis percentage, lipid accumulation and transfer to recipients. On Day-6, EB rates from embryos cultured with FCS were higher than with BSA (P=0.022). On Day-7, XB rates were higher in embryos from Day-6 EB than from Day-6M, both with and without FCS (P<0.005). After vitrification/warming of Day-7 XB, 100% embryos survived at 24h in all treatments, and total cell number and apoptosis percentage were not affected by the presence of FCS or embryonic stage on Day-6. Cryopreserved and fresh embryos produced with FCS until Day-6, and then deprived of protein and cultured individually, led to pregnancies after ET. In conclusion, minute FCS concentration improves EB rates on Day-6 leading, after one-day single culture without protein, to more XBs. The quality of XB produced with FCS compares well with XB produced with BSA in terms of apoptosis, lipid accumulation and pregnancy.
Collapse
Affiliation(s)
- A Murillo
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain.
| | - M Muñoz
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - D Martín-González
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - S Carrocera
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| | - A Martínez-Nistal
- Unidad de Microscopía Fotónica y Proceso de Imágenes, Servicios Científico Técnicos, Universidad de Oviedo, Asturias, Spain
| | - E Gómez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394 Gijón, Spain
| |
Collapse
|
27
|
Botigelli RC, Razza EM, Pioltine EM, Nogueira MFG. New approaches regarding the in vitro maturation of oocytes: manipulating cyclic nucleotides and their partners in crime. JBRA Assist Reprod 2017; 21:35-44. [PMID: 28333031 PMCID: PMC5365199 DOI: 10.5935/1518-0557.20170010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several discoveries have been described recently (5-10 years) about the biology of ovarian follicles (oocyte, cumulus cells and granulosa cells), including new aspects of cellular communication, the control of oocyte maturation and the acquisition of oocyte competence for fertilization and further embryo development. These advances are nourishing assisted reproduction techniques (ART) with new possibilities, in which novel culture systems are being developed and tested to improve embryo yield and quality. This mini-review aims to describe how the recent knowledge on the physiological aspects of mammalian oocyte is reflecting as original or revisited approaches into the context of embryo production. These new insights include recent findings on the mechanisms that control oocyte maturation, especially modulating intraoocyte levels of cyclic nucleotides during in vitro maturation using endogenous or exogenous agents. In this mini-review we also discuss the positive and negative effects of these manipulations on the outcoming embryo.
Collapse
Affiliation(s)
- Ramon Cesar Botigelli
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Eduardo Montanari Razza
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Elisa Mariano Pioltine
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil
| | - Marcelo Fábio Gouveia Nogueira
- Department of Pharmacology, Institute of Bioscience, University of São Paulo State, Botucatu, São Paulo, Brazil.,Department of Biological Sciences, Faculty of Sciences and Letters, University of São Paulo State, Assis, São Paulo, Brazil
| |
Collapse
|
28
|
Gómez E, Martin D, Carrocera S, Sánchez-Calabuig MJ, Gutierrez-Adán A, Alonso-Guervos M, Peynot N, Giraud-Delville C, Sandra O, Duranthon V, Muñoz M. Expression and localization of ARTEMIN in the bovine uterus and embryos. Theriogenology 2016; 90:153-162. [PMID: 28166962 DOI: 10.1016/j.theriogenology.2016.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 12/03/2016] [Indexed: 12/28/2022]
Abstract
Artemin a member of the glial cell line-derived neurotrophic factor (GDNF) family is present in mice and human preimplantation embryos, and reproductive tract, during early pregnancy promoting embryo development in vitro. The presence of artemin in cattle embryos and reproductive tract, however, is unknown. In the present work we identified for first time artemin in bovine uterine fluid (UF) (Western blot), endometrium (RT-PCR, Western blot and immunohistochemistry) and embryos (RT-PCR and immunohistochemistry) during early preimplantation development. In addition, GFRalpha3, a component of the artemin receptor was localized in blastocysts produced in vitro. Individually developing embryos released ARTEMIN in culture medium and triggered ARTEMIN mRNA down-regulation in epithelial cells from endometrial cell cultures. Our results suggest that ARTEMIN derived from early embryos and maternal reproductive tract may exert important roles during early development in cattle.
Collapse
Affiliation(s)
- E Gómez
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - D Martin
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - S Carrocera
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - M J Sánchez-Calabuig
- INIA Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, Cra de La Coruña Km 5600, 28040, Madrid, Spain
| | - A Gutierrez-Adán
- INIA Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, Cra de La Coruña Km 5600, 28040, Madrid, Spain
| | - M Alonso-Guervos
- Unidad de Microscopía Fotónica y Proceso de Imágenes, Servicios Científico Técnicos, Universidad de Oviedo, Instituto Universitario de Oncología de Asturias (IUOPA), 33006, Oviedo, Spain
| | - N Peynot
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350, Jouy-en-Josas, France
| | - C Giraud-Delville
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350, Jouy-en-Josas, France
| | - O Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350, Jouy-en-Josas, France
| | - V Duranthon
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350, Jouy-en-Josas, France
| | - M Muñoz
- Centro de Biotecnología Animal, SERIDA, Camino de Rioseco 1225, 33394, Gijón, Spain.
| |
Collapse
|
29
|
Gómez E, Muñoz M, Simó C, Ibáñez C, Carrocera S, Martín-González D, Cifuentes A. Non-invasive metabolomics for improved determination of embryonic sex markers in chemically defined culture medium. J Chromatogr A 2016; 1474:138-144. [PMID: 27823786 DOI: 10.1016/j.chroma.2016.10.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022]
Abstract
Metabolic differences between early male and female embryos can be reflected in culture medium (CM). We used a single bovine embryo culture step (24h) supporting improved birth rates under chemically defined conditions (CDC) to investigate biomarker detection of embryonic sex in contrast to classical BSA-containing medium. In vitro matured slaughterhouse oocytes were fertilized in vitro with a single bull. Embryos were initially cultured in synthetic oviduct fluid with BSA. On day-6, morulae were cultured individually in droplets with (BSA) or without protein (CDC). On day-7, expanded blastocysts were sexed (amelogenin gene amplification) and CM was stored at -145°C until metabolomic analysis by UHPLC-TOF MS. N=10 embryos per group (i.e. male-protein; female-protein; male-non-protein; female-non-protein) were produced. Statistical analysis revealed N=6 metabolites with different concentrations in CM, N=5 in male embryos (methionine, tryptophan, N-stearoyl-valine, biotin and pipecolic acid), N=1 in female embryos (threonine) (P<0.05 in BSA; P<10-7 in CDC). Only the clear threshold between males and females in CDC allowed correct classification of 100% males and 91% females within 5 out of 6 biomarkers (one female outlier showing the male biomarker profile). The use of CDC represents a critical aspect in the efficient detection of embryonic sex biomarkers by metabolomics.
Collapse
Affiliation(s)
- E Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Área de Genética y Reproducción Animal, Camino de Rioseco 1225, 33394 Gijón, Spain, Spain
| | - M Muñoz
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Área de Genética y Reproducción Animal, Camino de Rioseco 1225, 33394 Gijón, Spain, Spain.
| | - C Simó
- Foodomics Lab & Metabolomics Platform, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain
| | - C Ibáñez
- Foodomics Lab & Metabolomics Platform, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain
| | - S Carrocera
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Área de Genética y Reproducción Animal, Camino de Rioseco 1225, 33394 Gijón, Spain, Spain
| | - D Martín-González
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Área de Genética y Reproducción Animal, Camino de Rioseco 1225, 33394 Gijón, Spain, Spain
| | - A Cifuentes
- Foodomics Lab & Metabolomics Platform, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
30
|
Dos Santos ÉC, Martinho H, Annes K, da Silva T, Soares CA, Leite RF, Milazzotto MP. Raman-based noninvasive metabolic profile evaluation of in vitro bovine embryos. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:75002. [PMID: 27385403 DOI: 10.1117/1.jbo.21.7.075002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
The timing of the first embryonic cell divisions may predict the ability of an embryo to establish pregnancy. Similarly, metabolic profiles may be markers of embryonic viability. However, in bovine, data about the metabolomics profile of these embryos are still not available. In the present work, we describe Raman-based metabolomic profiles of culture media of bovine embryos with different developmental kinetics (fast x slow) throughout the in vitro culture. The principal component analysis enabled us to classify embryos with different developmental kinetics since they presented specific spectroscopic profiles for each evaluated time point. We noticed that bands at 1076 cm(−1) (lipids), 1300 cm(−1) (Amide III), and 2719 cm(−1) (DNA nitrogen bases) gave the most relevant spectral features, enabling the separation between fast and slow groups. Bands at 1001 cm(−1) (phenylalanine) and 2892 cm(−1) (methylene group of the polymethylene chain) presented specific patterns related to embryonic stage and can be considered as biomarkers of embryonic development by Raman spectroscopy. The culture media analysis by Raman spectroscopy proved to be a simple and sensitive technique that can be applied with high efficiency to characterize the profiles of in vitro produced bovine embryos with different development kinetics and different stages of development.
Collapse
|
31
|
Rødgaard T, Heegaard PM, Callesen H. Non-invasive assessment of in-vitro embryo quality to improve transfer success. Reprod Biomed Online 2015; 31:585-92. [DOI: 10.1016/j.rbmo.2015.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022]
|
32
|
Carrocera S, Caamaño JN, Trigal B, Martín D, Díez C. Developmental kinetics of in vitro-produced bovine embryos: An aid for making decisions. Theriogenology 2015; 85:822-827. [PMID: 26607875 DOI: 10.1016/j.theriogenology.2015.10.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/15/2022]
Abstract
Embryo developmental kinetics and embryo survival after cryopreservation have been correlated with embryo quality and viability. The main objectives of this work were to analyze developmental ability and quality of in vitro-produced bovine embryos in relation to their kinetics and to establish a criterion of quality to predict further viability. Embryos were classified and grouped by their specific stage of development (2, 3-4, or ≥ 5 cells) at 44 hours post insemination (hpi) and cultured separately up to Day 8. On Days 7 and 8, good quality expanded blastocysts were vitrified or frozen. Cryopreserved surviving hatched embryos were stained for cell counts. Embryos at a more advanced stage (3-4 cells, and ≥5 cells) developed to morulae (P < 0.001) and blastocysts (P < 0.01) at higher rates than those embryos that had cleaved once by 44 hpi. Vitrification improved the hatching rates of blastocysts at 48 hours (P < 0.001) when compared with slow-rate freezing within each group of embryos (3-4 cells and ≥5 cells). After vitrification/warming, blastocysts coming from 3- to 4-cell embryos had higher hatching rates at 48 hours than those that came from ≥5-cell embryos. With regard to differential cell counts, no effect of the initial developmental stage was observed after warming/thawing. However, trophectoderm and total cells were higher in vitrified/warmed than in the frozen/thawed embryos (P < 0.001). These data show that selecting IVF embryos at 44 hpi, after the evaluation of their in vitro embryo development, could be used as noninvasive markers of embryo developmental competence and may help to select IVF embryos that would be more suitable for cryopreservation.
Collapse
Affiliation(s)
- S Carrocera
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Asturias, Spain
| | - J N Caamaño
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Asturias, Spain
| | - B Trigal
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Asturias, Spain
| | - D Martín
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Asturias, Spain
| | - C Díez
- Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Asturias, Spain.
| |
Collapse
|
33
|
Santos EC, Martinho HS, Annes K, Leite RF, Milazzotto MP. Rapid and noninvasive technique to assess the metabolomics profile of bovine embryos produced in vitro by Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2015; 6:2830-9. [PMID: 26309747 PMCID: PMC4541511 DOI: 10.1364/boe.6.002830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 05/28/2023]
Abstract
Morphological assessments are used to select embryos with the highest implantation potential, however it is still very limited. The development of new technologies, such as Raman spectroscopy have improved quantitative and qualitative analysis, and consequently led to a better characterization of embryos and improvements on the prediction of their potential. Therefore, we propose a method based on the conventional in vitro culture system of bovine embryos, and the subsequent analysis of the culture media drops by Raman spectroscopy. Our results obtained by PCA analysis clearly showed a separation of the spectral profiles from culture media drops with and without embryos.
Collapse
|