1
|
Bonadeo N, Becu-Villalobos D, Cristina C, Lacau-Mengido IM. The Notch system during pubertal development of the bovine mammary gland. Sci Rep 2019; 9:8899. [PMID: 31222104 PMCID: PMC6586787 DOI: 10.1038/s41598-019-45406-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/05/2019] [Indexed: 12/27/2022] Open
Abstract
The development of the mammary gland of cows during pre-weaning and puberty will condition its future productive capacity and warrants special study. In this respect, Notch signaling regulates tissue development and fate by modifying cell proliferation and differentiation and has been involved in stem cell maintenance, but has not been extensively studied in the developing mammary glands in cows. We therefore investigated Notch receptor expression and localization, as well as the expression of Notch ligands and target genes in the mammary gland of Holstein heifers in pre- and post-pubertal stages. Notch receptors 1 to 4 were detected by immunohistochemistry in the parenchyma and stroma of the developing gland. The subcellular localization of the four receptors was predominantly cytoplasmic except for NOTCH4, which was mostly nuclear. The membrane and the active intracellular domains of NOTCH paralogues were identified by western blot. NOTCH1 and NOTCH2 active domains increased during pubertal stages while NOTCH3 and NOTCH4 active domains decreased, suggesting strikingly different involvement of NOTCH paralogues in bovine mammary gland development and differentiation. The mRNA expression levels of the target genes HEY1 and HEY2 increased during peri-puberty whereas no variation of HES1 mRNA levels was observed. The mRNA levels of the Notch ligands JAGGED1 and DELTA1 also increased gradually during development. In conclusion, Notch signaling system dynamically varies throughout the development of the mammary gland during puberty pointing to specific time involvement of each component.
Collapse
Affiliation(s)
- Nadia Bonadeo
- Centro de Investigaciones Básicas y Aplicadas, Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, Pergamino 2700, Buenos Aires, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, 1428, Argentina
| | - Carolina Cristina
- Centro de Investigaciones Básicas y Aplicadas, Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, Monteagudo 2772, Pergamino 2700, Buenos Aires, Argentina
| | - Isabel M Lacau-Mengido
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, Ciudad Autónoma de Buenos Aires, 1428, Argentina.
| |
Collapse
|
2
|
Kwon HR, Nelson DA, DeSantis KA, Morrissey JM, Larsen M. Endothelial cell regulation of salivary gland epithelial patterning. Development 2017; 144:211-220. [PMID: 28096213 DOI: 10.1242/dev.142497] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022]
Abstract
Perfusion-independent regulation of epithelial pattern formation by the vasculature during organ development and regeneration is of considerable interest for application in restoring organ function. During murine submandibular salivary gland development, the vasculature co-develops with the epithelium during branching morphogenesis; however, it is not known whether the vasculature has instructive effects on the epithelium. Using pharmacological inhibitors and siRNA knockdown in embryonic organ explants, we determined that VEGFR2-dependent signaling is required for salivary gland epithelial patterning. To test directly for a requirement for endothelial cells in instructive epithelial patterning, we developed a novel ex vivo cell fractionation/reconstitution assay. Immuno-depletion of CD31+ endothelial cells in this assay confirmed a requirement for endothelial cells in epithelial patterning of the gland. Depletion of endothelial cells or inhibition of VEGFR2 signaling in organ explants caused an aberrant increase in cells expressing the ductal proteins K19 and K7, with a reduction in Kit+ progenitor cells in the endbuds of reconstituted glands. Addition of exogenous endothelial cells to reconstituted glands restored epithelial patterning, as did supplementation with the endothelial cell-regulated mesenchymal factors IGFBP2 and IGFBP3. Our results demonstrate that endothelial cells promote expansion of Kit+ progenitor cells and suppress premature ductal differentiation in early developing embryonic submandibular salivary gland buds.
Collapse
Affiliation(s)
- Hae Ryong Kwon
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.,Graduate Program in Molecular, Cellular, Developmental, and Neural Biology, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Kara A DeSantis
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.,Graduate Program in Molecular, Cellular, Developmental, and Neural Biology, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Jennifer M Morrissey
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|