1
|
Zhuang Y, Chai J, Abdelsattar MM, Fu Y, Zhang N. Transcriptomic and metabolomic insights into the roles of exogenous β-hydroxybutyrate acid for the development of rumen epithelium in young goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:10-21. [PMID: 37746660 PMCID: PMC10514413 DOI: 10.1016/j.aninu.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/29/2023] [Accepted: 02/17/2023] [Indexed: 09/26/2023]
Abstract
Beta-hydroxybutyric acid (BHBA), as one of the main metabolic ketones in the rumen epithelium, plays critical roles in cellular growth and metabolism. The ketogenic capacity is associated with the maturation of rumen in young ruminants, and the exogenous BHBA in diet may promote the rumen development. However, the effects of exogenous BHBA on rumen remain unknown. This is the first study to investigate the mechanisms of BHBA on gene expression and metabolism of rumen epithelium using young goats as a model through multi-omics techniques. Thirty-two young goats were divided into control, low dose, middle dose, and high dose groups by supplementation of BHBA in starter (0, 3, 6, and 9 g/day, respectively). Results demonstrated the dietary of BHBA promoted the growth performance of young goats and increased width and length of the rumen papilla (P < 0.05). Hub genes in host transcriptome that were positively related to rumen characteristics and BHBA concentration were identified. Several upregulated hub genes including NDUFC1, NDUFB4, NDUFB10, NDUFA11 and NDUFA1 were enriched in the gene ontology (GO) pathway of nicotinamide adenine dinucleotide (NADH) dehydrogenase (ubiquinone) activity, while ATP5ME, ATP5PO and ATP5PF were associated with ATP synthesis. RT-PCR revealed the expression of genes (HMGCS2, BDH1, SLC16A3, etc.) associated with lipolysis increased significantly by BHBA supplementation (P < 0.05). Metabolomics indicated that some metabolites such as glucose, palmitic acid, cortisol and capric acid were also increased (P < 0.05). This study revealed that BHBA promoted rumen development through altering NADH balance and accelerating lipid metabolism, which provides a theoretical guidance for the strategies of gastrointestinal health and development of young ruminants.
Collapse
Affiliation(s)
- Yimin Zhuang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Chai
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Mahmoud M. Abdelsattar
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Yuze Fu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Brown WE, Holdorf HT, Kendall SJ, White HM. Dam Body Condition Score Alters Offspring Circulating Cortisol and Energy Metabolites in Holstein Calves but Did Not Affect Neonatal Leptin Surge. Metabolites 2023; 13:631. [PMID: 37233672 PMCID: PMC10221655 DOI: 10.3390/metabo13050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
The neonatal leptin surge is important for hypothalamic development, feed intake regulation, and long-term metabolic control. In sheep, the leptin surge is eliminated with maternal overnutrition and an elevated dam body condition score (BCS), but this has not been assessed in dairy cattle. The aim of this study was to characterize the neonatal profile of leptin, cortisol and other key metabolites in calves born to Holstein cows with a range of BCS. Dam BCS was determined 21 d before expected parturition. Blood was collected from calves within 4 h of birth (d 0), and on days 1, 3, 5, and 7. Serum was analyzed for concentrations of leptin, cortisol, blood urea nitrogen, β-hydroxybutyrate (BHB), free fatty acids (FFA), triglycerides, and total protein (TP). Statistical analysis was performed separately for calves sired by Holstein (HOL) or Angus (HOL-ANG) bulls. Leptin tended to decrease after birth in HOL calves, but there was no evidence of an association between leptin and BCS. For HOL calves, the cortisol level increased with an increasing dam BCS on day 0 only. Dam BCS was variably associated with the calf BHB and TP levels, depending on the sire breed and day of age. Further investigation is required to elucidate the impacts of maternal dietary and energy status during gestation on offspring metabolism and performance, in addition to the potential impact of the absence of a leptin surge on long-term feed intake regulation in dairy cattle.
Collapse
Affiliation(s)
- William E. Brown
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Animal Sciences & Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Henry T. Holdorf
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sophia J. Kendall
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heather M. White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
3
|
Carulla P, Villagrá A, Estellés F, Blanco-Penedo I. Welfare implications on management strategies for rearing dairy calves: A systematic review. Part 1-feeding management. Front Vet Sci 2023; 10:1148823. [PMID: 37138918 PMCID: PMC10150452 DOI: 10.3389/fvets.2023.1148823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/14/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Calves are very susceptible to stress in the early stages of life, and it is necessary to ensure maximum welfare. Feeding management has been identified as a major risk factor for calf health and welfare at this stage. However, the management protocol for calf rearing and its impact on animal welfare is unclear. A systematic review of different management strategies for rearing dairy calves according to the three spheres of animal welfare was conducted using an electronic search strategy. In this review, management strategies were studied to identify scientific gaps, to know the welfare problems of these animals in order to prioritize actions and future research and to study the interpretive approach of this management from the three welfare spheres. Methods A protocol was used to analyze and extract information from the studies. Of the 1,783 publications screened, only 351 met the inclusion criteria for the management or welfare of calves' items. Results The publications identified in the search can be divided into two main groups feeding and socialization, based on the main topic of the publication. The main topics that emerged from the search in the feeding management group were milk replacer, colostrum, and weaning, divided into the three main areas of biological functioning and health, natural life and affective states or cognitive judgement. Discussion The main issues to be addressed were the different types of feed consumed by animals from birth to weaning and the weaning management. It has been found that the most researched issues are colostrum and solid starter feed management. Unresolved issues were highlighted, such as the lack of a clear protocol for the administration of milk replacers to reduce hunger and the best management of weaning to reduce stress.
Collapse
Affiliation(s)
- Patricia Carulla
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
- *Correspondence: Patricia Carulla
| | - Arantxa Villagrá
- Centro de Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, CITA-IVIA, Polígono de La Esperanza, Segorbe, Castellón, Spain
| | - Fernando Estellés
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - Isabel Blanco-Penedo
- Departamento de Ciencia Animal, Universidad de Lleida, Lleida, Spain
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Isabel Blanco-Penedo
| |
Collapse
|
4
|
Early Life Fecal Microbiota Transplantation in Neonatal Dairy Calves Promotes Growth Performance and Alleviates Inflammation and Oxidative Stress during Weaning. Animals (Basel) 2021; 11:ani11092704. [PMID: 34573670 PMCID: PMC8471931 DOI: 10.3390/ani11092704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
This study aimed to evaluate the effects of early life fecal microbiota transplantation (FMT) on the health and performance of neonatal dairy calves. The donor was selected based on health and production records and fecal material testing negative for infectious pathogens. Sixteen healthy newborn Holstein calves were randomized to either a baseline nutritional program (CON) or 1×/d inoculations with 25 g of fecal donor material (FMT) mixed in the milk replacer (n = 8/TRT) from 8 to 12 days of age. Blood and fecal samples were collected weekly, and calves were weaned at 7 weeks of age. A TRT × Week interaction was observed in haptoglobin, which was reflected in a positive quadratic effect in FMT calves but not in CON. A trend for a TRT × Week interaction was observed in the liver function biomarker paraoxonase, which resulted in greater paraoxonase in FMT calves than CON at three weeks of age. Fecal microbial community analysis revealed a significant increase in the alpha-diversity between week 1 and week 5 for the FMT calves. These results suggest that early life FMT in neonatal calves has positive effects in mediating the inflammatory response and gut microbial maturation.
Collapse
|
5
|
Zhao XW, Zhu HL, Qi YX, Wu T, Huang DW, Ding HS, Chen S, Li M, Cheng GL, Zhao HL, Yang YX. Quantitative comparative phosphoproteomic analysis of the effects of colostrum and milk feeding on liver tissue of neonatal calves. J Dairy Sci 2021; 104:8265-8275. [PMID: 33865590 DOI: 10.3168/jds.2020-20097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Posttranslational modifications, mostly phosphorylation, are critical for protein structure and function. However, the association between liver phosphoproteins in neonatal calves and colostrum intake is not well understood. In this study, we examined the liver phosphoproteome profile in neonatal calves after receiving colostrum or milk. Liver tissue samples were collected from control calves (CON, n = 3) 2 h after birth and from calves that received colostrum (CG, n = 3) or milk (MG, n = 3) 24 h after birth. Hepatic phosphoprotein expression profiles were analyzed using quantitative proteomics based on the liquid chromatography-tandem mass spectrometry method. In total, 1,587 phosphorylated sites were identified in 1,011 liver proteins. The most abundant phosphorylation site AA was serine (87.5%), followed by threonine (11.9%) and tyrosine (0.5%). Among the 1,011 phosphoproteins, 219, 453, and 26 displayed differential expression in the CG versus MG, CG versus CON, and MG versus CON comparisons, respectively. Differentially expressed phosphoproteins in the CG-MG comparison included 3-phosphoinositide-dependent protein kinase 1, glucose transporter member 4, protein kinase N2, and vinculin, which were mainly involved in the glycogen metabolic process, transport, growth and development, and cell adhesion process, according to Gene Ontology analysis. Pathway analysis indicated their enrichment in the insulin signaling pathway, spliceosome, and adherens junction. The CG-CON comparison identified differentially expressed phosphoproteins and their target genes that were largely involved in the cellular process, macromolecule metabolic process, developmental process, and transport. Pathway analysis indicated their association with endocytosis, mechanistic target of rapamycin, AMP-activated protein kinase, and insulin signaling pathways. These data demonstrate that changes in the phosphoproteins of liver tissues may play an important role in energy metabolism and immune response in the calves that received colostrum. These results provide novel insights into the crucial roles of protein phosphorylation during the early life of newborn calves.
Collapse
Affiliation(s)
- X W Zhao
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H L Zhu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Qi
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - T Wu
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - D W Huang
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H S Ding
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - S Chen
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - M Li
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - G L Cheng
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - H L Zhao
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Y X Yang
- Anhui Key Laboratory of Animal and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Kargar S, Bahadori-Moghaddam M, Ghoreishi SM, Akhlaghi A, Kanani M, Pazoki A, Ghaffari MH. Extended transition milk feeding for 3 weeks improves growth performance and reduces the susceptibility to diarrhea in newborn female Holstein calves. Animal 2020; 15:100151. [PMID: 33573935 DOI: 10.1016/j.animal.2020.100151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Dairy calves may benefit from extending the duration of feeding transition milk (TM; the subsequent two to six milkings after parturition) to enhance performance and health during early life. The objective of this study was to assess the effect of replacing pasteurized waste milk (non-saleable milk containing antibiotic and/or drug residues) with pasteurized TM for 3 weeks on the growth performance and health of dairy calves. A total of 84 healthy newborn female Holstein calves were blocked by birth order and assigned randomly to 4 treatment groups with partial replacement of pasteurized waste milk by TM (second milkings after parturition) at 0 (0 l/day TM + 6 l/day milk), 0.5 (0.5 l/day TM + 5.5 l/day milk), 1 (1 l/day TM + 5 l/day milk), or 2 l (2 l/day TM + 4 l/day milk) for a 21-day period. From day 22 onward, all calves were fed individually with 6 l/day pasteurized waste milk. Calves were weaned on day 60 and monitored until day 90 of the study. Liquid feed DM intake (DMI) was increased with increasing levels of TM (P = 0.001). Starter feed DMI and total DMI (liquid feed DMI + starter feed DMI) were not affected by the treatment effect. Calves were fed 2 l/day TM gained more BW compared with those in the control group during the postweaning and overall periods. The average daily gain tended (P = 0.06) to be higher in calves fed 2 l/day TM compared with calves fed 0 (+ 65 g/day), 0.5 (+ 53 g/day), or 1 (+ 76 g/day) l/day TM during the preweaning period. Daily weight gain was also higher in calves fed 2 l/day TM compared with calves in the control group during the postweaning (+ 137 g/day; P = 0.04) and overall (+89 g/day; P < 0.01) periods, respectively. Calves fed 2 l/day TM had a higher feed efficiency compared with calves in the control group during all studied periods. The calves fed TM2 had a lower chance of having diarrhea compared with other treatment groups. Duration but not the frequency of diarrhea was lower in calves fed TM2 vs TM0 (2.5 vs 4.2days; P = 0.03). In general, partial replacement of waste milk with TM (2 l/day) may be recommended to feed dairy calves at an early stage of life to support a higher growth rate and health benefits.
Collapse
Affiliation(s)
- S Kargar
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - M Bahadori-Moghaddam
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - S M Ghoreishi
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - A Akhlaghi
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - M Kanani
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - A Pazoki
- Ghiam Agriculture and Animal Husbandry, Isfahan 83145-46600, Iran
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
7
|
Hromádková J, Suzuki Y, Pletts S, Pyo J, Ma T, Chen Y, Steele MA, Guan LL. Effect of colostrum feeding strategies on the expression of neuroendocrine genes and active gut mucosa-attached bacterial populations in neonatal calves. J Dairy Sci 2020; 103:8629-8642. [PMID: 32622610 DOI: 10.3168/jds.2019-17710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/21/2020] [Indexed: 01/10/2023]
Abstract
Colostrum feeding is vital for the development of the immune system and gastrointestinal tract in neonatal calves; however, it is currently unknown whether different colostrum feeding strategies affect their neuroendocrine system and potentially the gut-brain axis. The present study investigated the effect of 3 different colostrum feeding regimens on the expression of neuroendocrine genes in adrenal glands and gastrointestinal tissues and on the abundance of intestinal commensal bacteria. Holstein bull calves were fed colostrum immediately after birth and randomly assigned to 3 groups: whole milk (n = 8), mixture of 50% colostrum and 50% whole milk (n = 8), and colostrum (CF; n = 8) for 72 h with 12-h intervals. Adrenal glands, ileum, and colon tissues were collected at 75 h and were subjected to the expression of 11 targeted neuroendocrine genes and the abundance of tissue mucosa-associated bacteria measurement using quantitative real-time PCR and quantitative PCR, respectively. The expressions of all targeted genes were detected, and the expression of α-adrenergic receptor (ADRA1A) gene was affected by CF in adrenal glands and gut tissues. In addition, CF upregulated the expression of HTR4 (serotonin receptor) and SLC4A4 (serotonin transporter) genes in the ileum and increased the abundance of active Lactobacillus spp. and Escherichia coli (as detected at RNA level) associated with ileum and colon tissue. Furthermore, there were positive correlations between the abundance of active Lactobacillus spp. and E. coli with expression of HTR2B and HTR4 genes in the colon, suggesting that extended colostrum feeding strategies may affect the interaction between gut microbiota and host endocrine functions in neonatal calves.
Collapse
Affiliation(s)
- Jitka Hromádková
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Yutaka Suzuki
- Laboratory of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan 060-8589
| | - Sarah Pletts
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Jade Pyo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Tao Ma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5; Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China 100081
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Michael A Steele
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5; Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
8
|
Integrating RNA-sequencing and untargeted LC-MS metabolomics to evaluate the effect of lysine deficiency on hepatic functions in Holstein calves. Amino Acids 2020; 52:781-792. [PMID: 32372391 DOI: 10.1007/s00726-020-02852-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/30/2020] [Indexed: 12/31/2022]
Abstract
Lysine (Lys) is majorly metabolized in the liver. The liver functional consequences of a dietary Lys deficiency in young Holstein calves are unknown. This study aimed to investigate the effects of Lys deficiency in Holstein calf livers using RNA-sequencing and untargeted LC-MS metabolomics. Calves (n = 36; initial body weight 101.2 ± 10.8 kg; 90-day-old) were fed restricted diets, for 90 days, containing 19.2% crude protein that varied in Lys content (PC group 1.21%; PC-Lys group 0.85%; dry matter basis) for 90 days. Body weight, average daily gain, gain/feed, and Lys intake were significantly decreased in response to Lys deficiency (P < 0.05). Dry matter intake was not altered (P > 0.05). Network and pathway analyses revealed that noradrenaline, adenosine 5'-monophosphate, acetyl-CoA, and coenzyme A were significantly decreased. Regulating of lipolysis in adipocytes pathway and fatty acid degradation pathway were downregulated. We also identified eight significantly differentially expressed genes (SDEGs), among which adrenoceptor beta 2 (ADRB2), WAP four-disulfide core domain 2 (WFDC2), and claudin-4 (CLDN4) were associated with inhibition of lipolysis, and carbon catabolite repression 4-like (CCRN4L), FOS like 2 (FOSL2), and arginase 2 (ARG2) were associated with inhibiting lipid synthesis. Correlation tests showed that coenzyme A was strongly correlated with SDEGs (0.82 ≤|r|≤ 0.96). Acetyl-CoA and adenosine 5'-monophosphate were strongly correlated with CCRN4L (0.90 ≤|r|≤ 0.92), indicating a strong correlation between the changes in SDEGs and these metabolites. In conclusion, Lys deficiency caused dysplasia and affected lipid metabolism in the liver by inhibiting lipolysis and lipid synthesis in calves.
Collapse
|
9
|
Pyo J, Hare K, Pletts S, Inabu Y, Haines D, Sugino T, Guan LL, Steele M. Feeding colostrum or a 1:1 colostrum:milk mixture for 3 days postnatal increases small intestinal development and minimally influences plasma glucagon-like peptide-2 and serum insulin-like growth factor-1 concentrations in Holstein bull calves. J Dairy Sci 2020; 103:4236-4251. [PMID: 32171512 DOI: 10.3168/jds.2019-17219] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/05/2020] [Indexed: 11/19/2022]
Abstract
This study evaluated how feeding colostrum- or a colostrum-milk mixture for 3 d postnatal affects plasma glucagon-like peptide-2 (GLP-2), serum insulin-like growth factor-1 (IGF-1), and small intestinal histomorphology in calves. Holstein bulls (n = 24) were fed colostrum at 2 h postnatal and randomly assigned to receive either colostrum (COL), whole milk (WM), or a 1:1 COL:WM mixture (MIX) every 12 h from 12 to 72 h. A jugular venous catheter was placed at 1 h postnatal to sample blood frequently for the duration of the experiment. Samples were collected at 1, 2, 3, 6, 9, 11, and 12 h. Following the 12-h meal, blood was collected at half-hour intervals until 16 h and then at 1-h intervals from 16 to 24 h. A 27-h sample was taken, then blood was sampled every 6 h from 30 to 60 h. Again, blood was taken at half-intervals from 60 to 64 h, then at 65 and 66 h, following which, a 2-h sampling interval was used until 72 h. Plasma GLP-2 (all time points) and serum IGF-1 (at time points: 1, 6, 12, 18, 24, 36, 48, and 72 h) were both analyzed. Duodenal, jejunal, and ileal tissues were collected at 75 h of age to assess histomorphology and cellular proliferation. Feeding COL, rather than WM, increased plasma GLP-2 by 60% for 2 h and tended to increase GLP-2 by 49.4% for 4 h after the 60-h meal. Insulin-like growth factor-1 area under the curve (from 12 to 72 h) tended to be 27% greater for COL than WM calves but was otherwise unaffected by treatment. Ileal crypts tended to proliferate more with MIX than WM, whereas ileal crypt proliferation did not differ for COL compared with MIX or WM and was not different between treatments in the proximal jejunum. Villi height was increased 1.8 and 1.5× (COL and MIX vs. WM) in the proximal and distal jejunum, respectively, whereas MIX duodenal and ileal villi height tended to be 1.5 and 1.4× that of WM. Crypt depth did not differ in any region. Surface area of the gastrointestinal tract was reduced for WM by 60 and 58% (proximal jejunum) and 38 and 52% (ileum) relative to COL and MIX and was 54% less than MIX in the distal jejunum. Overall, extended COL feeding minimally increased plasma GLP-2 and serum IGF-1 compared with WM feeding. As COL and MIX similarly promoted small intestinal maturation, feeding calves transition milk to promote intestinal development could be a strategy for producers.
Collapse
Affiliation(s)
- J Pyo
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - K Hare
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - S Pletts
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - Y Inabu
- The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan 739-8528
| | - D Haines
- The Saskatoon Colostrum Company Ltd., Saskatoon, SK, Canada S7K 6A2
| | - T Sugino
- The Research Center for Animal Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan 739-8528
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada T6G 2P5
| | - M Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2.
| |
Collapse
|
10
|
Liermann W, Schäff CT, Gruse J, Derno M, Weitzel JM, Kanitz E, Otten W, Hoeflich A, Stefaniak T, Sauerwein H, Bruckmaier RM, Gross JJ, Hammon HM. Effects of colostrum instead of formula feeding for the first 2 days postnatum on whole-body energy metabolism and its endocrine control in neonatal calves. J Dairy Sci 2020; 103:3577-3598. [PMID: 32089303 PMCID: PMC7127366 DOI: 10.3168/jds.2019-17708] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/18/2019] [Indexed: 01/05/2023]
Abstract
Colostrum provides high amounts of nutritive and non-nutritive substrates, which are essential for calf nutrition and passive immunization. Colostral growth factors and hormones have beneficial effects on postnatal maturation and may affect substrate utilization and energy expenditure in neonatal calves. We tested the hypothesis that energy metabolism and its endocrine regulation differ during the first 10 d of life in calves fed either colostrum or a milk-based formula with a similar nutrient composition to colostrum, but largely depleted of bioactive substances, for the first 2 d postnatum. Male Holstein calves (n = 18) were fed either pooled colostrum (COL; n = 9) or a milk-based formula (FOR; n = 9) for the first 2 d of life. From d 3 on, all calves received same milk replacer. On d 2 and 7 of life, calves were placed in a respiration chamber for indirect calorimetric measurements to calculate heat production, fat (FOX) and carbohydrate oxidation (COX), as well as respiratory quotient. Blood was sampled on d 1 before first colostrum intake and on d 2, 3, 7, 8, 9, and 10 before morning feeding, to measure plasma concentrations of immunoglobulins, metabolites, and hormones. Additional postprandial blood samples were taken on d 1 and 9 at 30, 60, 120, 240, and 420 min after milk feeding. Liver samples were collected on d 10 of life to determine gene expression related to energy metabolism. Formula-fed calves showed lower plasma concentrations of total protein, immunoglobulins, haptoglobin, leptin, adiponectin, and insulin-like growth factor (IGF) binding protein (IGFBP)-4 during the whole study but temporarily higher plasma concentrations of urea, insulin, glucagon, triglyceride, and cholesterol on the first day after feeding, compared with concentrations in COL. The temporary increase in glucagon, triglyceride, and cholesterol on d 1 reversed on d 2 or 3, showing higher concentrations in COL than in FOR calves. In FOR, IGF-I, IGFBP-2, and IGFBP-3 were lower on d 3 than in COL. Interestingly, FOR calves had higher heat production during respiratory measurements on d 2 and higher body temperature on d 2, 3, and 5 than those of COL. The hepatic mRNA abundance of cytosolic phosphoenolpyruvate carboxykinase was higher in FOR than in COL. Our results indicate that first milk feeding after birth influenced whole-body energy expenditure but not FOX and COX in neonatal calves, and the absorption of colostral leptin and adiponectin might affect insulin sensitivity on d 1 of life.
Collapse
Affiliation(s)
- W Liermann
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - C T Schäff
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J Gruse
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - M Derno
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - J M Weitzel
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - E Kanitz
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - W Otten
- Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - A Hoeflich
- Institute of Genome Biology Physiology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - T Stefaniak
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Science, 50-375 Wroclaw, Poland
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Germany
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3001 Switzerland
| | - H M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany.
| |
Collapse
|
11
|
Sadri H, Steinhoff-Wagner J, Hammon HM, Bruckmaier RM, Görs S, Sauerwein H. Mammalian target of rapamycin signaling and ubiquitin proteasome-related gene expression in 3 different skeletal muscles of colostrum- versus formula-fed calves. J Dairy Sci 2017; 100:9428-9441. [PMID: 28918148 DOI: 10.3168/jds.2017-12857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/17/2017] [Indexed: 02/02/2023]
Abstract
The rates of protein turnover are higher during the neonatal period than at any other time in postnatal life. The mammalian target of rapamycin (mTOR) and the ubiquitin-proteasome system are key pathways regulating cellular protein turnover. The objectives of this study were (1) to elucidate the effect of feeding colostrum versus milk-based formula on the mRNA abundance of key components of the mTOR pathway and of the ubiquitin-proteasome system in skeletal muscle of neonatal calves and (2) to compare different muscles. German Holstein calves were fed either colostrum (COL; n = 7) or milk-based formula (FOR; n = 7) up to 4 d of life. The nutrient content in formula and colostrum was similar, but formula had lower concentrations of free branched-chain AA (BCAA) and free total AA, insulin, and insulin-like growth factor (IGF)-I than colostrum. Blood samples were taken from d 1 to 4 before morning feeding and before and 2 h after the last feeding on d 4. Muscle samples from M. longissimus dorsi (MLD), M. semitendinosus (MST), and M. masseter (MM) were collected after slaughter on d 4 at 2 h after feeding. The preprandial concentrations of free total AA and BCAA, insulin, and IGF-I in plasma changed over time but did not differ between groups. Plasma free total AA and BCAA concentrations decreased in COL, whereas they increased in FOR after feeding, resulting in higher postprandial plasma total AA and BCAA concentrations in FOR than in COL. Plasma insulin concentrations increased after feeding in both groups but were higher in COL than in FOR. Plasma IGF-I concentrations decreased in COL, whereas they remained unchanged in FOR after feeding. The mRNA abundance of mTOR and ribosomal protein S6 kinase 1 (S6K1) in 3 different skeletal muscles was greater in COL than in FOR, whereas that of eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) was unaffected by diet. The mRNA abundance of ubiquitin activating enzyme (UBA1) and ubiquitin conjugating enzyme 1 (UBE2G1) enzymes was not affected by diet, whereas that of ubiquitin conjugating enzyme 2 (UBE2G2) was greater (MLD) or tended to be greater (MM) in COL than in FOR. The mRNA abundance of atrogin-1 in MLD and MST was lower in COL than in FOR, whereas that of muscle ring finger protein-1 (MuRF1) was greater (MST) or tended to be greater (MLD). The abundance of MuRF1 mRNA was highest in MST, followed by MLD, and was lowest in MM. The results indicate that colostrum feeding may stimulate protein turnover that may result in a high rate of protein deposition in a muscle type-specific manner. Such effects seem to be mediated by the postprandial increase in plasma insulin.
Collapse
Affiliation(s)
- H Sadri
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53111 Bonn, Germany; Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - J Steinhoff-Wagner
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Harald M Hammon
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - S Görs
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53111 Bonn, Germany.
| |
Collapse
|
12
|
Alugongo GM, Xiao J, Wu Z, Li S, Wang Y, Cao Z. Review: Utilization of yeast of Saccharomyces cerevisiae origin in artificially raised calves. J Anim Sci Biotechnol 2017; 8:34. [PMID: 28469843 PMCID: PMC5410697 DOI: 10.1186/s40104-017-0165-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/29/2017] [Indexed: 12/04/2022] Open
Abstract
Yeast of Saccharomyces cerevisiae (SCY) origin has over long time been incorporated into domestic animal diets. In calves, several products have offered improved performance and health. Although several types of research have been completed, the mode of action of SCY is not clear in calves. Under this review, we have highlighted the works available in the literature on the use of SCY in calves performance, health, immunity, and the gut environment. Both active live yeast and yeast culture have positive effects on growth, rumen, small intestines, immunity and general health of the calf. Specifically, SCY can improve DMI, growth, feed efficiency and reduce diarrhea in calves. Furthermore, subtle improvements are seen in rumen fermentation (increased butyrate production) and rumen papillae growth. These positive results are, however, more pronounced in calves that are under stress or exposed to significant levels of disease-causing agents. There is a need for further research in areas such as gut morphology, gut microbiology and immunity using latest molecular methods to fully understand how SCY helps the growth and development of calves.
Collapse
Affiliation(s)
- Gibson M Alugongo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Zhaohai Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Sciences, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
13
|
Kesser J, Korst M, Koch C, Romberg FJ, Rehage J, Müller U, Schmicke M, Eder K, Hammon H, Sadri H, Sauerwein H. Different milk feeding intensities during the first 4 weeks of rearing dairy calves: Part 2: Effects on the metabolic and endocrine status during calfhood and around the first lactation. J Dairy Sci 2017; 100:3109-3125. [DOI: 10.3168/jds.2016-11595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/18/2016] [Indexed: 11/19/2022]
|
14
|
Weber C, Schäff C, Kautzsch U, Börner S, Erdmann S, Bruckmaier R, Röntgen M, Kuhla B, Hammon H. Variable liver fat concentration as a proxy for body fat mobilization postpartum has minor effects on insulin-induced changes in hepatic gene expression related to energy metabolism in dairy cows. J Dairy Sci 2017; 100:1507-1520. [DOI: 10.3168/jds.2016-11808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
|
15
|
Jacometo C, Zhou Z, Luchini D, Trevisi E, Corrêa M, Loor J. Maternal rumen-protected methionine supplementation and its effect on blood and liver biomarkers of energy metabolism, inflammation, and oxidative stress in neonatal Holstein calves. J Dairy Sci 2016; 99:6753-6763. [DOI: 10.3168/jds.2016-11018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/09/2016] [Indexed: 12/13/2022]
|
16
|
Schäff C, Rohrbeck D, Steinhoff-Wagner J, Kanitz E, Sauerwein H, Bruckmaier R, Hammon H. Hepatic glucocorticoid and α1- and β2-adrenergic receptors in calves change during neonatal maturation and are related to energy regulation. J Dairy Sci 2015; 98:1046-56. [DOI: 10.3168/jds.2014-8636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022]
|