1
|
Chirivi M, Cortes D, Rendon CJ, Contreras GA. Lipolysis inhibition as a treatment of clinical ketosis in dairy cows: Effects on adipose tissue metabolic and immune responses. J Dairy Sci 2024; 107:5104-5121. [PMID: 38278290 DOI: 10.3168/jds.2023-23998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Dairy cows with clinical ketosis (CK) exhibit excessive adipose tissue (AT) lipolysis and systemic inflammation. Lipolysis in cows can be induced by the canonical (hormonally induced) and inflammatory lipolytic pathways. Currently, the most common treatment for CK is oral propylene glycol (PG); however, PG does not reduce lipolysis or inflammation. Niacin (NIA) can reduce the activation of canonical lipolysis, whereas cyclooxygenase inhibitors such as flunixin meglumine (FM) can limit inflammation and inhibit the inflammatory lipolytic pathway. The objective of this study was to determine the effects of including NIA and FM in the standard PG treatment for postpartum CK on AT function. Multiparous Jersey cows (n = 18; 7.1 ± 3.8 DIM) were selected from a commercial dairy. Inclusion criteria were CK symptoms (lethargy, depressed appetite, and drop in milk yield) and high blood levels of BHB (≥1.2 mmol/L). Cows with CK were randomly assigned to one of 3 treatments: (1) PG: 310 g administered orally once per day for 5 d, (2) PG+NIA: 24 g administered orally once per day for 3 d, and (3) PG+NIA+FM: 1.1 mg/kg administered IV once per day for 3 d. Healthy control cows (HC; n = 6) matched by lactation and DIM (±2 d) were sampled. Subcutaneous AT explants were collected at d 0 and d 7 relative to enrollment. To assess AT insulin sensitivity, explants were treated with insulin (1 µL/L) during lipolysis stimulation with a β-adrenergic receptor agonist (isoproterenol, 1 µM). Lipolysis was quantified by glycerol release in the media. Lipid mobilization and inflammatory gene networks were evaluated using quantitative PCR. Protein biomarkers of lipolysis, insulin signaling, and AT inflammation, including hormone-sensitive lipase, protein kinase B (Akt), and ERK1/2, were quantified by capillary immunoassays. Flow cytometry of AT cellular components was used to characterize macrophage inflammatory phenotypes. Statistical significance was determined by a nonparametric t-test when 2 groups (HC vs. CK) were analyzed and an ANOVA test with Tukey adjustment when 3 treatment groups (PG vs. PG+NIA vs. PG+NIA+FM) were evaluated. At d 0, AT from CK cows showed higher mRNA expression of lipolytic enzymes ABHD5, LIPE, and LPL, as well as increased phosphorylation of hormone-sensitive lipase compared with HC. At d 0, insulin reduced lipolysis by 41% ± 8% in AT from HC, but CK cows were unresponsive (-2.9 ± 4%). Adipose tissue from CK cows exhibited reduced Akt phosphorylation compared with HC. Cows with CK had increased AT expression of inflammatory gene markers, including CCL2, IL8, IL10, TLR4, and TNF, along with ERK1/2 phosphorylation. Adipose tissue from CK cows showed increased macrophage infiltration compared with HC. By d 7, AT from PG+NIA+FM cows had a more robust response to insulin, as evidenced by reduced glycerol release (36.5% ± 8% compared with PG at 26.9% ± 7% and PG+NIA at 7.4% ± 8%) and enhanced phosphorylation of Akt. By d 7, PG+NIA+FM cows presented lower inflammatory markers, including ERK1/2 phosphorylation, and reduced macrophage infiltration, compared with PG and PG+NIA. These data suggest that including NIA and FM in CK treatment improves AT insulin sensitivity and reduces AT inflammation and macrophage infiltration.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - Daniela Cortes
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - C Javier Rendon
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
2
|
Zhang F, Nan X, Wang H, Zhao Y, Guo Y, Xiong B. Effects of Propylene Glycol on Negative Energy Balance of Postpartum Dairy Cows. Animals (Basel) 2020; 10:ani10091526. [PMID: 32872233 PMCID: PMC7552166 DOI: 10.3390/ani10091526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary After calving, the milk production of dairy cows increases rapidly, but the nutrient intake cannot meet the demand for milk production, forming a negative energy balance. Dairy cows in a negative energy balance have an increased risk of developing clinical or subclinical ketosis. The ketosis in dairy cows has a negative impact on milk production, dry matter intake, health, immunity, and reproductive performance. Propylene glycol can be used as an important gluconeogenesis in ruminants and can effectively inhibit the formation of ketones. Supplementary propylene glycol to dairy cows during perinatal is an effective method to alleviate the negative energy balance. This review summarizes the reasons and consequences of negative energy balance as well as the mechanism and effects of propylene glycol in inhibiting a negative energy balance in dairy cows. In addition, the feeding levels and methods of using propylene glycol to alleviate negative energy balance are also discussed. Abstract With the improvement in the intense genetic selection of dairy cows, advanced management strategies, and improved feed quality and disease control, milk production level has been greatly improved. However, the negative energy balance (NEB) is increasingly serious at the postpartum stage because the intake of nutrients cannot meet the demand of quickly improved milk production. The NEB leads to a large amount of body fat mobilization and consequently the elevated production of ketones, which causes metabolic diseases such as ketosis and fatty liver. The high milk production of dairy cows in early lactation aggravates NEB. The metabolic diseases lead to metabolic disorders, a decrease in reproductive performance, and lactation performance decline, seriously affecting the health and production of cows. Propylene glycol (PG) can alleviate NEB through gluconeogenesis and inhibit the synthesis of ketone bodies. In addition, PG improves milk yield, reproduction, and immune performance by improving plasma glucose and liver function in ketosis cows, and reduces milk fat percentage. However, a large dose of PG (above 500 g/d) has toxic and side effects in cows. The feeding method used was an oral drench. The combination of PG with some other additives can improve the effects in preventing ketosis. Overall, the present review summarizes the recent research progress in the impacts of NEB in dairy cows and the properties of PG in alleviating NEB and reducing the risk of ketosis.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.Z.); (X.N.); (H.W.); (Y.Z.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.Z.); (X.N.); (H.W.); (Y.Z.)
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.Z.); (X.N.); (H.W.); (Y.Z.)
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.Z.); (X.N.); (H.W.); (Y.Z.)
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.Z.); (X.N.); (H.W.); (Y.Z.)
- Correspondence: ; Tel.: +86-10-62816017; Fax: +86-10-62811680
| |
Collapse
|
3
|
Sauerwein H, Blees T, Zamarian V, Catozzi C, Müller U, Sadri H, Dänicke S, Frahm J, Ceciliani F. Acute phase proteins and markers of oxidative status in water buffalos during the transition from late pregnancy to early lactation. Vet Immunol Immunopathol 2020; 228:110113. [PMID: 32871407 DOI: 10.1016/j.vetimm.2020.110113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023]
Abstract
The transition period, from pregnancy to lactation, implies comprehensive metabolic and endocrine changes including a systemic inflammatory reaction and oxidative stress around calving in dairy cows. The aim of the present study was a longitudinal characterization of the serum concentration of acute phase proteins (APP), i.e., haptoglobin (Hp), serum amyloid A (SAA) and acidic glycoprotein (AGP), as well as of markers for oxidative stress in another large dairy animal, i.e. water buffalo, during the transition from late pregnancy to early lactation. As indicators of oxidative status, derivatives of reactive oxygen metabolites (dROM), ferric reducing ability (FRAP), thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP) were determined in serum. Indicators for metabolic stress included nonesterified fatty acids (NEFA), ß-hydroxybutyrate (BHB) and adiponectin. Bovine specific ELISA methods for Hp and adiponectin were adapted and validated for their application to water buffalo samples. Blood samples were collected weekly from 11 pluriparous water buffalo cows (lactation number 4.6 ± 1.6; daily milk yield 9.0 ± 1.9 kg; means ± SD) from 6 weeks (wk) ante partum (ap) until 8 wk post partum (pp). The maximum concentrations of Hp were observed in wk 1 pp, followed by a decrease towards values lower than before calving starting from wk 3 pp. The concentrations of SAA also peaked in wk 1 pp and then returned to basal values. The AGP serum concentrations increased suddenly from the first to the second wk pp and remained elevated for all the observation period. Indicators of oxidative status which changed in concentration during the transition period were dROM, AOPP and the oxidative stress index (OSi) (dROM/FRAP ratio). Briefly, dROM and AOPP values were lower pp as compared to ap, and OSi was largely following the pattern of dROM due to the constant FRAP values. The TBARS values did not change during the observation period. From the metabolic indicators, adiponectin was not changing with time, whereas greater NEFA and BHB values were observed ap than pp. The time course of NEFA and of some indicators for oxidative status (dROM, OSi and AOPP) point to greater metabolic load in late pregnancy as compared with the first wk of lactation - contrary to the common situation in dairy cows. Both BHB and NEFA values remained below the thresholds applied for dairy cows to define subclinical or clinical ketosis, thus indicating that the buffaloes included in this study were not under metabolic stress. The increase in concentration of the APP around calving supports the concept that an inflammatory reaction is a physiological epiphenomenon of the onset of lactation in water buffalos that is independent of metabolic stress.
Collapse
Affiliation(s)
- Helga Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany.
| | - Thomas Blees
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Valentina Zamarian
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - Carlotta Catozzi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - Ute Müller
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Yahaghi L, Yaghmaei P, Hayati-Roodbari N, Irani S, Ebrahim-Habibi A. Betanin effect on PPAR-α and SREBP-1c expression in NMRI mice model of steatohepatitis with fibrosis. Physiol Int 2020; 107:67-81. [DOI: 10.1556/2060.2020.00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 12/20/2019] [Indexed: 11/19/2022]
Abstract
AbstractPurposeBetanin is a betacyanin with antioxidant and anti-inflammatory activities whose effects were investigated in a nonalcoholic steatohepatitis (NASH) model.Main methodsNinety-six male naval medical research institute (NMRI) mice were divided into eight groups (n = 12) including normal control, high fat diet (HFD), Sham, and positive control treated with trans-chalcone. Three experimental groups were treated with 5 mg/kg, 10 mg/kg or 20 mg/kg betanin, and a betanin protective group was also defined.ResultsFour weeks of HFD treatment resulted in steatohepatitis with associated fibrosis. Significant increase was observed in serum levels of triglycerides (TG), total cholesterol (TC), glucose, insulin, leptin, liver enzymes, malondialdehyde (MDA), furthermore insulin resistance and (sterol regulatory element-binding protein-1c) SREBP-1c were detected. Levels of high-density lipoprotein cholesterol (HDL-C), adiponectin, superoxide dismutase (SOD), catalase (CAT), and PPAR-α (peroxisome proliferator-activated receptor-α) considerably decreased. Treatment by betanin, particularly the 20 mg/kg dosage, attenuated these changes.ConclusionBetanin is a potential treating agent of steatohepatitis and works through up-regulation of PPAR-α, down-regulation of SREBP-1c, modification of adipokine levels and modulation of lipid profile.
Collapse
Affiliation(s)
- L. Yahaghi
- 1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehreh Yaghmaei
- 1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - N. Hayati-Roodbari
- 1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - S. Irani
- 1Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - A. Ebrahim-Habibi
- 2Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- 3Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Yahaghi L, Ebrahim‐Habibi A, Hayati‐Roodbari N, Irani S, Yaghmaei P. A simple method for inducing nonalcoholic steatohepatitis with fibrosis. Animal Model Exp Med 2019; 2:282-290. [PMID: 31942560 PMCID: PMC6930990 DOI: 10.1002/ame2.12089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is increasingly occurring in sedentary people, and may progress to NASH and hepatocellular carcinoma. It is essential to design affordable animal models for the study of various diseases, including fatty liver, which was the aim of the study. In this study, a high-fat diet was devised that triggers NASH's animal model quickly and easily. High-fat diet (HFD) was used both with intra-mouth oral gavage and in combination with animal pellets. METHODS Twenty-four male C57BL/6J mice were divided into HFD and ND groups, which received a high-fat diet and a normal diet, respectively. At the end of the experiment (fourth week of treatment), body and liver weights, biochemical parameters, PPAR-α gene expression and histopathologic characteristics of the liver were evaluated. RESULTS During 4 weeks, body weight of mice did not show a significant increase in the HFD group compared to the ND group, while weight gain of the liver was significant. Histological assessment of the HFD group's liver confirmed NASH symptoms. In the HFD group, HDL-c, SOD, catalase, FRAP, adiponectin, and PPAR-α decreased significantly, and lipid profiles, hepatic enzymes, MDA, leptin, and TNF-α showed a significant increase compared to the ND group. CONCLUSION Our high-fat diet has successfully induced all aspects of NASH with fibrosis in 4 weeks, and with low cost.
Collapse
Affiliation(s)
- Leyla Yahaghi
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Azadeh Ebrahim‐Habibi
- Biosensor Research CenterEndocrinology and Metabolism Molecular‐Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
- Endocrinology and Metabolism Research CenterTehran University of Medical SciencesTehranIran
| | | | - Shiva Irani
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Parichehreh Yaghmaei
- Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
| |
Collapse
|
6
|
Ghaffari MH, Jahanbekam A, Sadri H, Schuh K, Dusel G, Prehn C, Adamski J, Koch C, Sauerwein H. Metabolomics meets machine learning: Longitudinal metabolite profiling in serum of normal versus overconditioned cows and pathway analysis. J Dairy Sci 2019; 102:11561-11585. [PMID: 31548056 DOI: 10.3168/jds.2019-17114] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the differences in the metabolic profiles in serum of dairy cows that were normal or overconditioned when dried off for elucidating the pathophysiological reasons for the increased health disturbances commonly associated with overconditioning. Fifteen weeks antepartum, 38 multiparous Holstein cows were allocated to either a high body condition (HBCS; n = 19) group or a normal body condition (NBCS; n = 19) group and were fed different diets until dry-off to amplify the difference. The groups were also stratified for comparable milk yields (NBCS: 10,361 ± 302 kg; HBCS: 10,315 ± 437 kg; mean ± standard deviation). At dry-off, the cows in the NBCS group (parity: 2.42 ± 1.84; body weight: 665 ± 64 kg) had a body condition score (BCS) <3.5 and backfat thickness (BFT) <1.2 cm, whereas the HBCS cows (parity: 3.37 ± 1.67; body weight: 720 ± 57 kg) had BCS >3.75 and BFT >1.4 cm. During the dry period and the subsequent lactation, both groups were fed identical diets but maintained the BCS and BFT differences. A targeted metabolomics (AbsoluteIDQ p180 kit, Biocrates Life Sciences AG, Innsbruck, Austria) approach was performed in serum samples collected on d -49, +3, +21, and +84 relative to calving for identifying and quantifying up to 188 metabolites from 6 different compound classes (acylcarnitines, AA, biogenic amines, glycerophospholipids, sphingolipids, and hexoses). The concentrations of 170 metabolites were above the limit of detection and could thus be used in this study. We used various machine learning (ML) algorithms (e.g., sequential minimal optimization, random forest, alternating decision tree, and naïve Bayes-updatable) to analyze the metabolome data sets. The performance of each algorithm was evaluated by a leave-one-out cross-validation method. The accuracy of classification by the ML algorithms was lowest on d 3 compared with the other time points. Various ML methods (partial least squares discriminant analysis, random forest, information gain ranking) were then performed to identify those metabolites that were contributing most significantly to discriminating the groups. On d 21 after parturition, 12 metabolites (acetylcarnitine, hexadecanoyl-carnitine, hydroxyhexadecenoyl-carnitine, octadecanoyl-carnitine, octadecenoyl-carnitine, hydroxybutyryl-carnitine, glycine, leucine, phosphatidylcholine-diacyl-C40:3, trans-4-hydroxyproline, carnosine, and creatinine) were identified in this way. Pathway enrichment analysis showed that branched-chain AA degradation (before calving) and mitochondrial β-oxidation of long-chain fatty acids along with fatty acid metabolism, purine metabolism, and alanine metabolism (after calving) were significantly enriched in HBCS compared with NBCS cows. Our results deepen the insights into the phenotype related to overconditioning from the preceding lactation and the pathophysiological sequelae such as increased lipolysis and ketogenesis and decreased feed intake.
Collapse
Affiliation(s)
- Morteza H Ghaffari
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany
| | | | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Katharina Schuh
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany; Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Georg Dusel
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan 85350, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Christian Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, 67728 Muenchweileran der Alsenz, Germany
| | - Helga Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
7
|
Contreras GA, Strieder-Barboza C, De Koster J. Symposium review: Modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows. J Dairy Sci 2017; 101:2737-2752. [PMID: 29102145 DOI: 10.3168/jds.2017-13340] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/27/2017] [Indexed: 11/19/2022]
Abstract
Despite major advances in our understanding of transition and early lactation cow physiology and the use of advanced dietary, medical, and management tools, at least half of early lactation cows are reported to develop disease and over half of cow deaths occur during the first week of lactation. Excessive lipolysis, usually measured as plasma concentrations of free fatty acids (FFA), is a major risk factor for the development of displaced abomasum, ketosis, fatty liver, and metritis, and may also lead to poor lactation performance. Lipolysis triggers adipose tissue (AT) remodeling that is characterized by enhanced humoral and cell-mediated inflammatory responses and changes in its distribution of cellular populations and extracellular matrix composition. Uncontrolled AT inflammation could perpetuate lipolysis, as we have observed in cows with displaced abomasum, especially in those animals with genetic predisposition for excessive lipolysis responses. Efficient transition cow management ensures a moderate rate of lipolysis that is rapidly reduced as lactation progresses. Limiting FFA release from AT benefits immune function as several FFA are known to promote dysregulation of inflammation. Adequate formulation of pre- and postpartum diet reduces the intensity of AT lipolysis. Additionally, supplementation with niacin, monensin, and rumen-protected methyl donors (choline and methionine) during the transition period is reported to minimize FFA release into systemic circulation. Targeted supplementation of energy sources during early lactation improves energy balance and increases insulin concentration, which limits AT lipolytic responses. This review elaborates on the mechanisms by which uncontrolled lipolysis triggers inflammatory disorders. Details on current nutritional and pharmacological interventions that aid the modulation of FFA release from AT and their effect on immune function are provided. Understanding the inherent characteristics of AT biology in transition and early lactation cows will reduce disease incidence and improve lactation performance.
Collapse
Affiliation(s)
- G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824.
| | | | - Jenne De Koster
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| |
Collapse
|
8
|
Effect of postpartum propylene glycol allocation to over-conditioned Holstein cows on concentrations of milk metabolites. J DAIRY RES 2016; 83:156-64. [PMID: 27032705 DOI: 10.1017/s0022029916000145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of the study was to investigate the effect of propylene glycol (PG) allocation on concentrations of milk metabolites with potential use as indicators of glucogenic status in high yielding postpartum dairy cows. At time of calving, nine ruminally cannulated Holstein cows were randomly assigned to ruminal dosing of 500 g/d tap water (CON, n = 4) or 500 g/d PG (PPG, n = 5). The PG was given with the morning feeding week 1-4 postpartum (treatment period) and cows were further followed during week 5-8 postpartum (follow-up period). All cows were fed the same postpartum diet. Milk samples were obtained at each milking (3 times/d) in the treatment period, and at morning milking during the follow-up period. Weekly blood samples were obtained from -4 to +8 weeks relative to calving and daily blood samples from -7 until +7 d relative to calving. The main effect of PG allocation was an increased glucogenic status, e.g. visualised by a prompt marked increase in blood fructosamine. During the treatment period, milk concentration of free glucose tended to be greater, whereas milk concentrations of isocitrate and BHBA were lower for PPG compared with CON. It is proposed that the ratio between free glucose and isocitrate in milk may be a potential biomarker for glucogenic status in the vulnerable early postpartum period. We will pursue this issue in the future.
Collapse
|