1
|
Galyean ML, Tedeschi LO. Predicting Microbial Protein Synthesis in Cattle: Evaluation of Extant Equations and Steps Needed to Improve Accuracy and Precision of Future Equations. Animals (Basel) 2024; 14:2903. [PMID: 39409852 PMCID: PMC11475687 DOI: 10.3390/ani14192903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Predictions of microbial crude protein (MCP) synthesis for beef cattle generally rely on empirical regression equations, with intakes of energy and protein as key variables. Using a database from published literature, we developed new equations based on the intake of organic matter (OM) and intakes or concentrations of crude protein (CP) and neutral detergent fiber (NDF). We compared these new equations to several extant equations based on intakes of total digestible nutrients (TDN) and CP. Regression fit statistics were evaluated using both resampling and sampling from a simulated multivariate normal population. Newly developed equations yielded similar fit statistics to extant equations, but the root mean square error of prediction averaged 155 g (28.7% of the mean MCP of 540.7 g/d) across all equations, indicating considerable variation in predictions. A simple approach of calculating MCP as 10% of the TDN intake yielded MCP estimates and fit statistics that were similar to more complicated equations. Adding a classification code to account for unique dietary characteristics did not have significant effects. Because MCP synthesis is measured indirectly, most often using surgically altered animals, literature estimates are relatively few and highly variable. A random sample of individual studies from our literature database indicated a standard deviation for MCP synthesis that averaged 19.1% of the observed mean, likely contributing to imprecision in the MCP predictions. Research to develop additional MCP estimates across various diets and production situations is needed, with a focus on developing consistent and reliable methodologies for MCP measurements. The use of new meta-omics tools might improve the accuracy and precision of MCP predictions, but further research will be needed to assess the utility of such tools.
Collapse
Affiliation(s)
- Michael L. Galyean
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409-2123, USA
| | - Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
2
|
Rebelo LR, Eastridge ML, Firkins JL, Lee C. Effects of corn silage and grain expressing α-amylase on ruminal nutrient digestibility, microbial protein synthesis, and enteric methane emissions in lactating cows. J Dairy Sci 2023; 106:3932-3946. [PMID: 37225579 DOI: 10.3168/jds.2022-22770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/23/2023] [Indexed: 05/26/2023]
Abstract
Increasing ruminal starch digestibility has the potential to improve microbial protein synthesis (MPS), milk production, and feed efficiency. Enogen corn (Syngenta Seeds LLC) expresses high α-amylase activity, and we evaluated effects of Enogen corn silage (CS) and grain (CG) on ruminal starch digestibility, MPS, and milk production in lactating dairy cows. Fifteen Holstein cows (6 ruminally cannulated and 9 noncannulated; average ± standard deviation at the beginning of the trial: 170 ± 40 d in milk; milk yield, 37.2 ± 7.73 kg/d; body weight, 714 ± 37 kg) were used in a replicated 3 × 3 Latin square design (28 d per period) with 3 treatments: a diet containing isoline CS and CG (control, CON); a diet with Enogen CS and isoline CG (ECS); and a diet with Enogen CS and CG (ECSCG). Dry matter (DM; 30%), starch (35% of DM), and particle size distribution of the isoline and Enogen CS were similar. However, the mean particle size of Enogen CG was larger (1.05 vs. 0.65 mm) than that of the isoline CG. Cannulated cows were used for digestibility and nutrient flow measurements, noncannulated cows were used for enteric CH4 measurements, and all cows were used for production evaluation. Dry matter intake (DMI) and milk yield were greater for ECS and ECSCG compared with CON (26.7 and 26.6 vs. 25.1 kg/d and 36.5 and 34.1 vs. 33.1 kg/d, respectively) without a difference between ECS and ECSCG. Milk protein yield was greater (1.27 vs. 1.14 and 1.17 kg/d) for ECS compared with CON and ECSCG. Milk fat content was greater (3.79 vs. 3.32%) for ECSCG compared with ECS. Milk fat yield and energy-corrected milk did not differ among treatments. Ruminal digestibilities of DM, organic matter, starch, and neutral detergent fiber were not different among treatments. However, ruminal digestibility of nonammonia, nonmicrobial N was greater (85 vs. 75%) for ECS compared with ECSCG. Total-tract apparent starch digestibility was lower (97.6 and 97.1 vs. 98.3%) for ECS and ECSCG compared with CON, respectively, and tended to be lower (97.1 vs. 98.3%) for ECSCG compared with ECS. Ruminal outflows of bacterial OM and nonammonia N tended to be greater for ECS than for ECSCG. Efficiency of MPS tended to be greater (34.1 vs. 30.6 g of N/kg of organic matter truly digested) for ECS versus ECSCG. Ruminal pH and total and individual short-chain fatty acid concentrations did not differ among treatments. Concentration of ruminal NH3 for ECS and ECSCG was lower (10.4 and 12.4 vs. 13.4 mmol/L, respectively) compared with CON. Methane per unit of DMI decreased for ECS and ECSCG compared with CON (11.4 and 12.2 vs. 13.5 g/kg of DMI, respectively) without a difference between ECS and ECSCG. In conclusion, ECS and ECSCG did not increase ruminal or total-tract starch digestibility. However, the positive effects of ECS and ECSCG on milk protein yield, milk yield, and CH4 per unit of DMI may show potential benefits of feeding Enogen corn. Effects of ECSCG were not apparent when compared with ECS, partly due to larger particle size of Enogen CG compared with its isoline counterpart.
Collapse
Affiliation(s)
- L R Rebelo
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - M L Eastridge
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - C Lee
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691.
| |
Collapse
|
3
|
Du M, Zhang Y, Zhao Y, Fang Y. Role of conformation transition of high acyl gellan in the design of double network hydrogels. Int J Biol Macromol 2023; 233:123583. [PMID: 36758759 DOI: 10.1016/j.ijbiomac.2023.123583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Double network hydrogels (DNs) with excellent strength and toughness have been preliminarily applied in the preparation of artificial foods. To evaluate the effect of conformation transition of ductile polymers on the physicochemical properties of DNs, we firstly prepared agarose (AR)/high acyl gellan (HAG) DNs and investigated their mechanical properties, and then calcium ion (Ca2+) was introduced into optimized AR/HAG DNs to regulate the conformation of ductile chains (HAG) for further increasing their mechanical properties. The mechanical strength of the optimized AR/HAG gel is 5 times and 2 times that of AR and HAG gel, respectively. Compared with adding Ca2+ method, immersing Ca2+ solution endowed optimized DNs with 5-fold increase in mechanical strength, outstanding textural properties and lower swelling ratio, which was attributed to the extended conformation of ductile chains. Furthermore, the obtained DNs were reminiscent of beef omasum based on their physicochemical properties. Optimized AR/HAG DNs after immersing in 2 wt% CaCl2 solution exhibited comparable texture properties with beef omasum by three correlation analysis methods and sensory evaluation, providing a new strategy to fabricate biomimetic food with high chewiness by regulating the conformation of ductile polymers in DNs.
Collapse
Affiliation(s)
- Mengjia Du
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yiguo Zhao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Agarose/konjac glucomannan double network hydrogels to mimic the texture of beef tripe. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Brant LMS, de Carvalho GGP, Pina DDS, de Araújo MLGML, Santos SA, Leite LC, Alba HDR, Bulcão LFDA, da Silva LO, de Freitas Júnior JE. Estimation of ruminal outflow in buffaloes fed diets with different energy and protein sources by use of reticular and omasal sampling. Trop Anim Health Prod 2021; 53:201. [PMID: 33687567 DOI: 10.1007/s11250-021-02630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/21/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to evaluate the effects of different traditional or alternative energy and protein sources, associated or not, on feeding behavior, ruminal kinetics, and post-ruminal flow of nutrients. Besides, it was assessed diets' effects on different sites (reticulum and omasum) of buffaloes. Four ruminally cannulated male Murrah buffaloes (average initial weight of 637 ± 66.37 kg) were randomly distributed in a 4 × 4 Latin square design. Treatments were arranged as 2 × 2 factorial arrangement. The first factor evaluated was the inclusion of energy sources (ground corn and crude glycerin), and the second factor was the inclusion of protein sources (soybean meal and cottonseed cake). Buffaloes fed cottonseed cake had a higher content of neutral detergent fiber (NDF) and potentially digestible detergent fiber (pdNDF) in the rumen environment than buffaloes fed soybean meal. There was a sampling site effect on rumen digestion rates of pdNDF, passage rates of indigestible neutral detergent fiber (iNDF), and pdNDF, and flow of iNDF. In this study, omasal collections were more representative. Total replacement of ground corn by crude glycerin promoted less NDF ruminal digestibility, and care should be taken to include this energy source. The cottonseed cake does not cause a difference in rumen dynamics and can totally replace soybean meal in feedlot buffaloes' diet.
Collapse
Affiliation(s)
- Lara Maria Santos Brant
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, BA, 40.170-110, Brazil
| | - Gleidson Giordano Pinto de Carvalho
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, BA, 40.170-110, Brazil
| | - Douglas Dos Santos Pina
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, BA, 40.170-110, Brazil
| | | | - Stefanie Alvarenga Santos
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, BA, 40.170-110, Brazil
| | - Laudi Cunha Leite
- Department of Animal Science, Federal University of Recôncavo da Bahia (UFRB), Cruz das Almas, Bahia, 44.380-000, Brazil
| | - Henry Daniel Ruiz Alba
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, BA, 40.170-110, Brazil
| | - Lucas Fialho de Aragão Bulcão
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, BA, 40.170-110, Brazil
| | - Liliane Oliveira da Silva
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, BA, 40.170-110, Brazil
| | - José Esler de Freitas Júnior
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, BA, 40.170-110, Brazil.
| |
Collapse
|
6
|
Freitas Júnior JE, Bettero VP, Zanferari F, Del Valle TA, De Paiva PG, Ferreira De Jesus E, Takiya CS, Leite LC, Dias M, Rennó FP. Ruminal fatty acid outflow in dry cows fed different sources of linoleic acid: reticulum and omasum as alternative sampling sites to abomasum. Arch Anim Nutr 2019; 73:171-193. [PMID: 31033355 DOI: 10.1080/1745039x.2019.1595886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
This study was designed to determine the rumen outflow of fatty acids (FA) and biohydrogenation (BH) extent using alternative sampling sites (reticulum and omasum) to abomasum in dry cows fed different sources of FA. Four Holstein non-pregnant dry cows (≥3 parturitions, and 712 ± 125 kg BW), cannulated in the rumen and abomasum, were randomly assigned to a 4 × 4 Latin square design experiment, containing the following treatments: 1) control (CON); 2) soya bean oil (SO), dietary inclusion at 30 g/kg; 3) whole raw soya beans (WS), dietary inclusion at 160 g/kg; and 4) calcium salts of FA (CSFA), dietary inclusion at 32 g/kg. Rumen outflow of nutrients was estimated using the three markers reconstitution system (cobalt-EDTA, ytterbium chloride, and indigestible neutral detergent fibre [NDF]). Diets with FA sources decreased feed intake and increased FA intake. No differences in nutrient intake and digestibility were detected among cows fed diets supplemented with different FA sources. Diets with FA sources reduced the rumen outflow of DM and NDF, hence decreasing their passage rates. In addition, SO diet reduced the ruminal outflow of DM and NDF in comparison with WS and CSFA. Omasal sampling yielded the highest values of rumen outflow of NDF and potentially degradable NDF (pdNDF), whereas the reticular and abomasal samplings yielded intermediate and least values, respectively. The interaction effect between diet and sampling site was observed for rumen outflow of majority FA (except for C16:0, C18:0, and C18:2 trans-10, cis-12) and BH extension of C18:1 cis, C18:2, and C18:3. Calculations derived from abomasal sampling revealed that WS and CSFA diets had lower BH extent of C18:1 cis and C18:2 in comparison with SO, whereas cows fed CSFA had greater BH extent of C18:3 and lower BH extent of C18:1 cis compared to those fed WS. However, the latter results were not similar when calculations were performed based on the reticular and omasal samplings. Thus, there is evidence that neither reticular nor omasal samplings are suitable for estimating rumen outflow of FA in dry cows. In addition, WS and CSFA diets can increase the abomasal flow of polyunsaturated FA in dry cows.
Collapse
Affiliation(s)
- José E Freitas Júnior
- a Department of Animal Nutrition and Animal Production , University of São Paulo , Pirassununga , Brazil
- b Department of Animal Sciences , Federal University of Bahia , Salvador , Brazil
| | - Vitor P Bettero
- c Department of Animal Science , UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho' , Jaboticabal , Brazil
| | - Filipe Zanferari
- a Department of Animal Nutrition and Animal Production , University of São Paulo , Pirassununga , Brazil
| | - Tiago A Del Valle
- a Department of Animal Nutrition and Animal Production , University of São Paulo , Pirassununga , Brazil
| | - Pablo G De Paiva
- c Department of Animal Science , UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho' , Jaboticabal , Brazil
| | - Elmeson Ferreira De Jesus
- c Department of Animal Science , UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho' , Jaboticabal , Brazil
| | - Caio S Takiya
- a Department of Animal Nutrition and Animal Production , University of São Paulo , Pirassununga , Brazil
| | - Laudi C Leite
- d Department of Animal Sciences , Universidade Federal do Recôncavo da Bahia , Cruz das Almas , Brazil
| | - Márcia Dias
- e Department of Animal Sciences , Federal University of Goiás , Jataí , Brazil
| | - Francisco P Rennó
- a Department of Animal Nutrition and Animal Production , University of São Paulo , Pirassununga , Brazil
| |
Collapse
|
7
|
Hristov AN, Bannink A, Crompton LA, Huhtanen P, Kreuzer M, McGee M, Nozière P, Reynolds CK, Bayat AR, Yáñez-Ruiz DR, Dijkstra J, Kebreab E, Schwarm A, Shingfield KJ, Yu Z. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. J Dairy Sci 2019; 102:5811-5852. [PMID: 31030912 DOI: 10.3168/jds.2018-15829] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/27/2019] [Indexed: 01/17/2023]
Abstract
Nitrogen is a component of essential nutrients critical for the productivity of ruminants. If excreted in excess, N is also an important environmental pollutant contributing to acid deposition, eutrophication, human respiratory problems, and climate change. The complex microbial metabolic activity in the rumen and the effect on subsequent processes in the intestines and body tissues make the study of N metabolism in ruminants challenging compared with nonruminants. Therefore, using accurate and precise measurement techniques is imperative for obtaining reliable experimental results on N utilization by ruminants and evaluating the environmental impacts of N emission mitigation techniques. Changeover design experiments are as suitable as continuous ones for studying protein metabolism in ruminant animals, except when changes in body weight or carryover effects due to treatment are expected. Adaptation following a dietary change should be allowed for at least 2 (preferably 3) wk, and extended adaptation periods may be required if body pools can temporarily supply the nutrients studied. Dietary protein degradability in the rumen and intestines are feed characteristics determining the primary AA available to the host animal. They can be estimated using in situ, in vitro, or in vivo techniques with each having inherent advantages and disadvantages. Accurate, precise, and inexpensive laboratory assays for feed protein availability are still needed. Techniques used for direct determination of rumen microbial protein synthesis are laborious and expensive, and data variability can be unacceptably large; indirect approaches have not shown the level of accuracy required for widespread adoption. Techniques for studying postruminal digestion and absorption of nitrogenous compounds, urea recycling, and mammary AA metabolism are also laborious, expensive (especially the methods that use isotopes), and results can be variable, especially the methods based on measurements of digesta or blood flow. Volatile loss of N from feces and particularly urine can be substantial during collection, processing, and analysis of excreta, compromising the accuracy of measurements of total-tract N digestion and body N balance. In studying ruminant N metabolism, nutritionists should consider the longer term fate of manure N as well. Various techniques used to determine the effects of animal nutrition on total N, ammonia- or nitrous oxide-emitting potentials, as well as plant fertilizer value, of manure are available. Overall, methods to study ruminant N metabolism have been developed over 150 yr of animal nutrition research, but many of them are laborious and impractical for application on a large number of animals. The increasing environmental concerns associated with livestock production systems necessitate more accurate and reliable methods to determine manure N emissions in the context of feed composition and ruminant N metabolism.
Collapse
Affiliation(s)
- A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| | - A Bannink
- Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - L A Crompton
- School of Agriculture, Policy and Development, Centre for Dairy Research, University of Reading, PO Box 237 Earley Gate, Reading RG6 6AR, United Kingdom
| | - P Huhtanen
- Department of Agricultural Science, Swedish University of Agricultural Sciences, S-90, Umeå, Sweden
| | - M Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - M McGee
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland C15 PW93
| | - P Nozière
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - C K Reynolds
- School of Agriculture, Policy and Development, Centre for Dairy Research, University of Reading, PO Box 237 Earley Gate, Reading RG6 6AR, United Kingdom
| | - A R Bayat
- Milk Production Solutions, Production Systems, Natural Resources Institute Finland (Luke), FI 31600 Jokioinen, Finland
| | - D R Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Profesor Albareda, 1, 18008, Granada, Spain
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - E Kebreab
- Department of Animal Science, University of California, Davis 95616
| | - A Schwarm
- ETH Zurich, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - K J Shingfield
- Milk Production Solutions, Production Systems, Natural Resources Institute Finland (Luke), FI 31600 Jokioinen, Finland; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, United Kingdom
| | - Z Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| |
Collapse
|
8
|
Cabezas-Garcia EH, Krizsan SJ, Shingfield KJ, Huhtanen P. Effects of replacement of late-harvested grass silage and barley with early-harvested silage on ruminal digestion efficiency in lactating dairy cows. J Dairy Sci 2017; 101:1177-1189. [PMID: 29174160 DOI: 10.3168/jds.2017-13423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/05/2017] [Indexed: 11/19/2022]
Abstract
The objective of this experiment was to quantify the effects of graded replacement of late-harvested grass silage and barley with early-harvested silage on nutrient digestion and rumen fermentation. Four experimental diets were fed to 4 multiparous rumen-cannulated Nordic Red cows in 4 × 4 Latin square design with 21-d periods. Dietary treatments consisted of late-cut grass silage (LS) and rolled barley, which was gradually replaced with early-cut grass silage [ES; 0, 33, 67, and 100% of the forage component (ES + LS) of the diet]. With increased proportion of ES in the diet, the proportion of barley decreased from 47.2 to 26.6% on a dry matter basis. Early- and late-cut silages were harvested at 2-wk intervals (predicted concentrations of metabolizable energy 11.0 and 9.7 MJ/kg of dry matter). The 4 diets were formulated to support the same milk production. Nutrient flows were quantified using omasal sampling technique applying the triple-marker method (Cr, Yb, and indigestible neutral detergent fiber) and 15N as a microbial marker. Feed intake decreased with graded replacement of LS and barley with ES, but milk production was not influenced by diet. Digestibility of nutrients improved with graded addition of ES in the diet with the greatest difference observed in digestibility of neutral detergent fiber (NDF) and potentially digestible NDF (pdNDF). The results suggested that improved cell wall digestibility with graded level of ES in the diet was partly related to higher intrinsic digestibility of ES than LS, and partly due to negative associative effects with an increased proportion of LS and barley in the diet. Efficiency of microbial N synthesis was not influenced by the diet, but ruminal protein degradability increased with ES in the diet. Rumen fermentation pattern was not affected by the diet despite large difference in the profile of dietary carbohydrates. Rumen pool size of NDF and pdNDF, and ruminal turnover time of NDF decreased with graded addition of ES in the diet, whereas digestion rate of pdNDF improved. The results of this study indicate that increased CH4 yield in a parallel production study with graded addition of ES in the diet were more related to greater ruminal and total digestibility of organic matter than to the changes in rumen fermentation pattern.
Collapse
Affiliation(s)
- E H Cabezas-Garcia
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - S J Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - K J Shingfield
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, United Kingdom; Green Technology, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - P Huhtanen
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| |
Collapse
|
9
|
Krizsan S, Gidlund H, Fatehi F, Huhtanen P. Effect of dietary supplementation with heat-treated canola meal on ruminal nutrient metabolism in lactating dairy cows. J Dairy Sci 2017; 100:8004-8017. [DOI: 10.3168/jds.2017-12625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/20/2017] [Indexed: 11/19/2022]
|