1
|
Zhong Z, Sun P, Zhang Y, Li L, Han D, Pan X, Zhang R. Differential responses of rumen and fecal fermentation and microbiota of Liaoning cashmere goats after 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester supplementation. Sci Rep 2024; 14:8505. [PMID: 38605045 PMCID: PMC11009298 DOI: 10.1038/s41598-024-58581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
The 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi), a rumen protective methionine, has been extensively studied in dairy cows and beef cattle and has been shown to regulate gastrointestinal microbiota and improve production performance. However, knowledge of the application of HMBi on cashmere goats and the simultaneous study of rumen and hindgut microbiota is still limited. In this study, HMBi supplementation increased the concentration of total serum protein, the production of microbial protein in the rumen and feces, as well as butyrate production in the feces. The results of PCoA and PERMANOVA showed no significant difference between the rumen microbiota, but there was a dramatic difference between the fecal microbiota of the two groups of Cashmere goats after the HMBi supplementation. Specifically, in the rumen, HMBi significantly increased the relative abundance of some fiber-degrading bacteria (such as Fibrobacter) compared with the CON group. In the feces, as well as a similar effect as in the rumen (increasing the relative abundance of some fiber-degrading bacteria, such as Lachnospiraceae FCS020 group and ASV32), HMBi diets also increased the proliferation of butyrate-producing bacteria (including Oscillospiraceae UCG-005 and Christensenellaceae R-7 group). Overall, these results demonstrated that HMBi could regulate the rumen and fecal microbial composition of Liaoning cashmere goats and benefit the host.
Collapse
Affiliation(s)
- Zhiqiang Zhong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peiyuan Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuning Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lingyun Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Di Han
- Liaoning Province Modern Agricultural Production Base and Construction Engineering Center, Shenyang, 110032, China
| | - Xiaoguang Pan
- School of Artificial Intelligence and Software, Liaoning Petrochemical University, Fushun, 113001, China
| | - Ruiyang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China.
| |
Collapse
|
2
|
Non-targeted metabolomics analyze dough fermented by S. cerevisiae and L. plantarum to reveal the formation of flavor substances of bread. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Ye XX, Li KY, Li YF, Lu JN, Guo PT, Liu HY, Zhou LW, Xue SS, Huang CY, Fang SM, Gan QF. The effects of Clostridium butyricum on Ira rabbit growth performance, cecal microbiota and plasma metabolome. Front Microbiol 2022; 13:974337. [PMID: 36246250 PMCID: PMC9563143 DOI: 10.3389/fmicb.2022.974337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridium butyricum (C. butyricum) can provide many benefits for animals’ growth performance and gut health. In this study, we investigated the effects of C. butyricum on the growth performance, cecal microbiota, and plasma metabolome in Ira rabbits. A total of 216 Ira rabbits at 32 days of age were randomly assigned to four treatments supplemented with basal diets containing 0 (CG), 200 (LC), 400 (MC), and 600 mg/kg (HC) C. butyricum for 35 days, respectively. In comparison with the CG group, C. butyricum supplementation significantly improved the average daily gain (ADG) and feed conversion rate (FCR) at 53 and 67 days of age (P < 0.05) and digestibilities of crude protein (CP) and crude fiber (CF) at 67 days of age (P < 0.05). The cellulase activity in the HC group was higher respectively by 50.14 and 90.13% at 53 and 67 days of age, than those in the CG groups (P < 0.05). Moreover, at 67 days of age, the diet supplemented with C. butyricum significantly increased the relative abundance of Verrucomicrobia at the phylum level (P < 0.05). Meanwhile, the concentrations of different metabolites, such as amino acids and purine, were significantly altered by C. butyricum (P < 0.05). In addition, 10 different genera were highly correlated with 52 different metabolites at 53-day-old and 6 different genera were highly correlated with 18 different metabolites at 67-day-old Ira rabbits. These findings indicated that the C. butyricum supplementation could significantly improve the growth performance by modifying the cecal microbiota structure and plasma metabolome of weaned Ira rabbits.
Collapse
|
4
|
Qin X, Zhang D, Qiu X, Zhao K, Zhang S, Liu C, Lu L, Cui Y, Shi C, Chen Z, Hao R, Li Y, Yang S, Wang L, Wang H, Cao B, Su H. 2-Hydroxy-4-(Methylthio) Butanoic Acid Isopropyl Ester Supplementation Altered Ruminal and Cecal Bacterial Composition and Improved Growth Performance of Finishing Beef Cattle. Front Nutr 2022; 9:833881. [PMID: 35600827 PMCID: PMC9116427 DOI: 10.3389/fnut.2022.833881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to evaluate the effects of isopropyl ester of 2-hydroxy-4-(methylthio)-butyrate acid (HMBi) on ruminal and cecal fermentation, microbial composition, nutrient digestibility, plasma biochemical parameters, and growth performance in finishing beef cattle. The experiment was conducted for 120 days by a complete randomized block design. Sixty 24-month-old Angus steers (723.9 ± 11.6 kg) were randomly assigned to one of the flowing three treatments: basal diet (the concentrate: 7.6 kg/head·d-1, the rice straw: ad libitum) supplemented with 0 g/d MetaSmart® (H0), a basal diet supplemented with 15 g/d of MetaSmart® (H15), and a basal diet supplemented with 30 g/d of MetaSmart® (H30). Results showed that the average daily gain (ADG) increased linearly (P = 0.004) and the feed conversion ratio (FCR) decreased linearly (P < 0.01) with the increasing HMBi supplementation. Blood urea nitrogen (BUN) concentration significantly decreased in the H30 group (P < 0.05) compared with H0 or H15. The ruminal pH value tended to increase linearly (P = 0.086) on day 56 with the increased HMBi supplementation. The concentrations of ammonia-nitrogen (NH3-N), propionate, isobutyrate, butyrate, isovalerate, valerate, and total volatile fatty acid (VFA) were linearly decreased in the cecum (P < 0.05). The results of Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that the abundance of most pathways with a significant difference was higher in the rumen and lower in the cecum in the H30 group compared to the H0 group, and those pathways were mainly related to the metabolism of amino acids, carbohydrates, and lipids. Correlation analysis showed that ADG was positively associated with the ratio of firmicutes/bacteroidetes both in the rumen and cecum. Additionally, the abundance of Lachnospiraceae, Saccharofermentans, Lachnospiraceae_XPB1014_group, and Ruminococcus_1 was positively correlated with ADG and negatively correlated with FCR and BUN in the rumen. In the cecum, ADG was positively correlated with the abundances of Peptostreptococcaceae, Romboutsia, Ruminococcaceae_UCG-013, and Paeniclostridium, and negatively correlated with the abundances of Bacteroidaceae and Bacteroides. Overall, these results indicated that dietary supplementation of HMBi can improve the growth performance and the feed efficiency of finishing beef cattle by potentially changing bacterial community and fermentation patterns of rumen and cecum.
Collapse
Affiliation(s)
- Xiaoli Qin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Depeng Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinjun Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Zhao
- Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| | - Siyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunlan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lianqiang Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yafang Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changxiao Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiming Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rikang Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yingqi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shunran Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lina Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huili Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huawei Su
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Mi H, Ren A, Zhu J, Ran T, Shen W, Zhou C, Zhang B, Tan Z. Effects of different protein sources on nutrient disappearance, rumen fermentation parameters and microbiota in dual-flow continuous culture system. AMB Express 2022; 12:15. [PMID: 35142936 PMCID: PMC8831666 DOI: 10.1186/s13568-022-01358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022] Open
Abstract
Scarce high-quality protein feed resources has limited the development of animal husbandry. In this study, we used a dual-flow continuous culture system to evaluate effects of difference dietary protein sources including soybean meal (SBM), cottonseed meal (CSM), and rapeseed meal (RSM), on nutrient disappearance, rumen fermentation, and microbiota of XiongDong black goats. Dietary proteins of either CSM, RSM or SBM had no effect on nutrient disappearance (P > 0.05). CSM or RSM significantly reduced (P < 0.01) the pH and enhanced (P < 0.01) the ammonia nitrogen (NH3-N) concentration in fermentation liquid compared to SBM. The short-chain fatty acids (SCFAs) contents were greater (P = 0.05) and acetate was lower (P < 0.01) in SBM than those in RSM and CSM, whereas propionate was greater (P < 0.01) in RSM than that in SBM, consequently reducing the acetate to propionate ratio (A/P) in RSM. Bacteroidetes, Firmicutes, and Proteobacteria were detected as the dominant phyla, and the relative abundances of Spirochaetae (P < 0.01) and Chlorobi (P < 0.05) declined in the CSM and RSM groups as compared to those in the SBM group. At the genus level, Prevotella_1 was the dominant genus; as compared to SBM, its relative abundance was greater (P < 0.01) in CSM and RSM. The abundances of Prevotellaceae_Ga6A1 and Christensenellaceae_R7 were lower (P < 0.05) in CSM, whereas Eubacterium_oxidoreducens_group, and Treponema_2 were lower (P < 0.01) in both CSM and RSM, and other genera were not different (P > 0.10). Although the bacterial community changed with different dietary protein sources, the disappearances of nutrients were not affected, suggesting that CSM and RSM could be used by rumen bacteria, as in case with SBM, and are suitable protein sources for ruminant diets.
Collapse
|
6
|
Roman-Garcia Y, Mitchell KE, Denton BL, Lee C, Socha MT, Wenner BA, Firkins JL. Conditions stimulating neutral detergent fiber degradation by dosing branched-chain volatile fatty acids. II: Relation with solid passage rate and pH on neutral detergent fiber degradation and microbial function in continuous culture. J Dairy Sci 2021; 104:9853-9867. [PMID: 34147227 DOI: 10.3168/jds.2021-20335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Abstract
To support improving genetic potential for increased milk production, intake of digestible carbohydrate must also increase to provide digestible energy and microbial protein synthesis. We hypothesized that the provision of exogenous branched-chain volatile fatty acids (BCVFA) would improve both neutral detergent fiber (NDF) degradability and efficiency of microbial protein synthesis. However, BCVFA should be more beneficial with increasing efficiency of bacterial protein synthesis associated with increasing passage rate (kp). We also hypothesized that decreasing pH would increase the need for isobutyrate over 2-methylbutyrate. To study these effects independent from other sources of variation in vivo, we evaluated continuous cultures without (control) versus with BCVFA (0 vs. 2 mmol/d each of isobutyrate, isovalerate, and 2-methylbutyrate), low versus high kp of the particulate phase (2.5 vs. 5.0%/h), and high versus low pH (ranging from 6.3 to 6.8 diurnally vs. 5.7 to 6.2) in a 2 × 2 × 2 factorial arrangement of treatments. Diets were 50% forage pellets and 50% grain pellets administered twice daily. Without an interaction, NDF degradability tended to increase from 29.7 to 35.0% for main effects of control compared with BCVFA treatments. Provision of BCVFA increased methanogenesis, presumably resulting from improved NDF degradability. Decreasing pH decreased methane production. Total volatile fatty acid (VFA) and acetate production were decreased with increasing kp, even though true organic matter degradability and bacterial nitrogen flow were not affected by treatments. Decreasing pH decreased acetate but increased propionate and valerate production, probably resulting from a shift in bacterial taxa and associated VFA stoichiometry. Decreasing pH decreased isobutyrate and isovalerate production while increasing 2-methylbutyrate production on a net basis (subtracting doses). Supplementing BCVFA improved NDF degradability in continuous cultures administered moderate (15.4%) crude protein diets (excluding urea in buffer) without major interactions with culture pH and kp.
Collapse
Affiliation(s)
- Y Roman-Garcia
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - K E Mitchell
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - B L Denton
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - C Lee
- Ohio Agricultural Research and Development Center, Wooster 44691
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | - B A Wenner
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210.
| |
Collapse
|
7
|
Liu C, Wu H, Liu S, Chai S, Meng Q, Zhou Z. Dynamic Alterations in Yak Rumen Bacteria Community and Metabolome Characteristics in Response to Feed Type. Front Microbiol 2019; 10:1116. [PMID: 31191470 PMCID: PMC6538947 DOI: 10.3389/fmicb.2019.01116] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
Current knowledge about the relationships between ruminal bacterial communities and metabolite profiles in the yak rumen is limited. This is due to differences in the nutritional and metabolic features between yak and other ordinary cattle combined with difficulties associated with farm-based research and a lack of technical guidance. A comprehensive analysis of the composition and alterations in ruminal metabolites is required to advance the development of modern yak husbandry. In the current study, we characterized the effect of feed type on the ruminal fluid microbiota and metabolites in yak using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS). Bacteroidetes and Firmicutes were the predominant bacterial phyla in the yak rumen. At the genus level, the relative abundance of Bacteroidales BS11 gut group, Prevotellaceae UCG-003, Ruminococcaceae UCG-011, Bacteroidales RF16 group and Ruminococcaceae UCG-010 was significantly (P < 0.01) higher in the forage group compared to that in the concentrate group, while the concentrate group harbored higher proportions of Bacteroidales S24-7 group, Ruminococcaceae NK4A214, Succiniclasticum and Ruminococcus 2. Yak rumen metabolomics analysis combined with enrichment analysis revealed that feed type altered the concentrations of ruminal metabolites as well as the metabolic pattern, and significantly (P < 0.01) affected the concentrations of ruminal metabolites involved in protein digestion and absorption (e.g., L-arginine, ornithine, L-threonine, L-proline and β-alanine), purine metabolism (e.g., xanthine, hypoxanthine, deoxyadenosine and deoxyadenosine monophosphate) and fatty acid biosynthesis (e.g., stearic acid, myristic acid and arachidonic acid). Correlation analysis of the association of microorganisms with metabolite features provides us with a comprehensive understanding of the composition and function of microbial communities. Associations between utilization or production were widely identified between affected microbiota and certain metabolites, and these findings will contribute to the direction of future research in yak.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shujie Liu
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Shatuo Chai
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Qingxiang Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Zhenming Zhou
| |
Collapse
|
8
|
Welty CM, Wenner BA, Wagner BK, Roman-Garcia Y, Plank JE, Meller RA, Gehman AM, Firkins JL. Rumen microbial responses to supplemental nitrate. II. Potential interactions with live yeast culture on the prokaryotic community and methanogenesis in continuous culture. J Dairy Sci 2019; 102:2217-2231. [PMID: 30639000 DOI: 10.3168/jds.2018-15826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
Nitrates have been fed to ruminants, including dairy cows, as an electron sink to mitigate CH4 emissions. In the NO3- reduction process, NO2- can accumulate, which could directly inhibit methanogens and possibly other microbes in the rumen. Saccharomyces cerevisiae yeast was hypothesized to decrease NO2- through direct reduction or indirectly by stimulating the bacterium Selenomonas ruminantium, which is among the ruminal bacteria most well characterized to reduce both NO3- and NO2-. Ruminal fluid was incubated in continuous cultures fed diets without or with NaNO3 (1.5% of diet dry matter; i.e., 1.09% NO3-) and without or with live yeast culture (LYC) fed at a recommended 0.010 g/d (scaled from cattle to fermentor intakes) in a 2 × 2 factorial arrangement of treatments. Treatments with LYC had increased NDF digestibility and acetate:propionate by increasing acetate molar proportion but tended to decrease total VFA production. The main effect of NO3- increased acetate:propionate by increasing acetate molar proportion; NO3- also decreased molar proportions of isobutyrate and butyrate. Both NO3- and LYC shifted bacterial community composition (based on relative sequence abundance of 16S rRNA genes). An interaction occurred such that NO3- decreased valerate molar proportion only when no LYC was added. Nitrate decreased daily CH4 emissions by 29%. However, treatment × time interactions were present for both CH4 and H2 emission from the headspace; CH4 was decreased by the main effect of NO3- until 6 h postfeeding, but NO3- and LYC decreased H2 emission up to 4 h postfeeding. As expected, NO3- decreased methane emissions in continuous cultures; however, contrary to expectations, LYC did not attenuate NO2- accumulation.
Collapse
Affiliation(s)
- C M Welty
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Ct., Columbus 43210
| | - B A Wenner
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Ct., Columbus 43210
| | - B K Wagner
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Ct., Columbus 43210
| | - Y Roman-Garcia
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Ct., Columbus 43210
| | - J E Plank
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Ct., Columbus 43210
| | - R A Meller
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Ct., Columbus 43210
| | - A M Gehman
- Alltech, 3031 Catnip Hill Pike, Nicholasville, KY 40356
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Ct., Columbus 43210.
| |
Collapse
|
9
|
Sun C, Zhang H, Du W, Wang B, Ji M. Synthesis of a Novel IR-822-Met near-infrared probe for in vivo tumor diagnosis. Biotechnol Lett 2017; 39:491-499. [DOI: 10.1007/s10529-016-2275-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/29/2016] [Indexed: 11/24/2022]
|
10
|
Baghbanzadeh-Nobari B, Taghizadeh A, Khorvash M, Parnian-Khajehdizaj F, Maloney SK, Hashemzadeh-Cigari F, Ghaffari AH. Digestibility, ruminal fermentation, blood metabolites and antioxidant status in ewes supplemented with DL-methionine or hydroxy-4 (methylthio) butanoic acid isopropyl ester. J Anim Physiol Anim Nutr (Berl) 2016; 101:e266-e277. [DOI: 10.1111/jpn.12600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/17/2016] [Indexed: 01/06/2023]
Affiliation(s)
| | - A. Taghizadeh
- Department of Animal Science; Faculty of Agriculture; University of Tabriz; Tabriz Iran
| | - M. Khorvash
- Department of Animal Science; College of Agriculture; Isfahan University of Technology; Isfahan Iran
| | | | - S. K. Maloney
- Faculty of Life and Physical Sciences; School of Anatomy, Physiology and Human Biology (M311); University of Western Australia; Crawley WA Australia
| | - F. Hashemzadeh-Cigari
- Department of Animal Science; Faculty of Agriculture Science; University of Guilan; Rasht Iran
| | - A. H. Ghaffari
- Department of Animal Science; College of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| |
Collapse
|
11
|
Roman-Garcia Y, White RR, Firkins JL. Meta-analysis of postruminal microbial nitrogen flows in dairy cattle. I. Derivation of equations. J Dairy Sci 2016; 99:7918-7931. [PMID: 27448861 DOI: 10.3168/jds.2015-10661] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/04/2016] [Indexed: 11/19/2022]
Abstract
The objective was to summarize the literature and derive equations that relate the chemical composition of diet and rumen characteristics to the intestinal supply of microbial nitrogen (MicN), efficiency of microbial protein synthesis (EMPS), and flow of nonammonia nonmicrobial N (NANMN). In this study, 619 treatment means from 183 trials were assembled for dairy cattle sampled from the duodenum or omasum. Backward elimination multiple regression was used to derive equations to estimate flow of nitrogenous components over a large range of dietary conditions. An intercept shift for sample location revealed that omasal sampling estimated greater MicN flow relative to duodenal sampling, but sample location did not interact with any other variables tested. The ruminal outflow of MicN was positively associated with dry matter intake (DMI) and with dietary starch percentage at a decreasing rate (quadratic response). Also, MicN was associated with DMI and rumen-degraded starch and neutral detergent fiber (NDF). When rumen measurements were included, ruminal pH and ammonia-N were negatively related to MicN flow along with a strong positive association with ruminal isovalerate molar proportion. When evaluating these variables with EMPS, isovalerate interacted with ammonia such that the slope for EMPS with increasing isovalerate increased as ammonia-N concentration decreased. A similar equation with isobutyrate confirms the importance of branched-chain volatile fatty acids to increase growth rate and therefore assimilation of ammonia-N into microbial protein. The ruminal outflow of NANMN could be predicted by dietary NDF and crude protein percentages, which also interacted. This result is probably associated with neutral detergent insoluble N contamination of NDF in certain rumen-undegradable protein sources. Because NANMN is calculated by subtracting MicN, sample location was inversely related compared with the MicN equation, and omasal sampling underestimated NANMN relative to duodenal sampling. As in the MicN equation, sampling location did not interact with any other variables tested for NANMN. Equations derived from dietary nutrient composition are robust across dietary conditions and could be used for prediction in protein supply-requirement models. These empirical equations were supported by more mechanistic equations based on the ruminal carbohydrate degradation and ruminal variables related to dietary rumen degradable protein.
Collapse
Affiliation(s)
| | - Robin R White
- Department of Dairy Science, Virginia Tech, Blacksburg 24060
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210.
| |
Collapse
|
12
|
Hackmann TJ, Firkins JL. Maximizing efficiency of rumen microbial protein production. Front Microbiol 2015; 6:465. [PMID: 26029197 PMCID: PMC4432691 DOI: 10.3389/fmicb.2015.00465] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
Rumen microbes produce cellular protein inefficiently partly because they do not direct all ATP toward growth. They direct some ATP toward maintenance functions, as long-recognized, but they also direct ATP toward reserve carbohydrate synthesis and energy spilling (futile cycles that dissipate heat). Rumen microbes expend ATP by vacillating between (1) accumulation of reserve carbohydrate after feeding (during carbohydrate excess) and (2) mobilization of that carbohydrate thereafter (during carbohydrate limitation). Protozoa account for most accumulation of reserve carbohydrate, and in competition experiments, protozoa accumulated nearly 35-fold more reserve carbohydrate than bacteria. Some pure cultures of bacteria spill energy, but only recently have mixed rumen communities been recognized as capable of the same. When these communities were dosed glucose in vitro, energy spilling could account for nearly 40% of heat production. We suspect that cycling of glycogen (a major reserve carbohydrate) is a major mechanism of spilling; such cycling has already been observed in single-species cultures of protozoa and bacteria. Interconversions of short-chain fatty acids (SCFA) may also expend ATP and depress efficiency of microbial protein production. These interconversions may involve extensive cycling of intermediates, such as cycling of acetate during butyrate production in certain butyrivibrios. We speculate this cycling may expend ATP directly or indirectly. By further quantifying the impact of reserve carbohydrate accumulation, energy spilling, and SCFA interconversions on growth efficiency, we can improve prediction of microbial protein production and guide efforts to improve efficiency of microbial protein production in the rumen.
Collapse
Affiliation(s)
| | - Jeffrey L. Firkins
- Department of Animal Sciences, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
13
|
Firkins J, Fowler C, Devillard E, Bequette B. Erratum to “Kinetics of microbial methionine metabolism in continuous cultures administered different methionine sources” (J. Dairy Sci. 98:1178–1194). J Dairy Sci 2015. [DOI: 10.3168/jds.2015-98-4-2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|