1
|
Cordero-Solorzano J, de Koning DJ, Tråvén M, de Haan T, Jouffroy M, Larsson A, Myrthe A, Arts JAJ, Parmentier HK, Bovenhuis H, Wensman JJ. Genetic parameters of colostrum and calf serum antibodies in Swedish dairy cattle. Genet Sel Evol 2022; 54:68. [PMID: 36273117 PMCID: PMC9588213 DOI: 10.1186/s12711-022-00758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background A sufficient IgG content in the colostrum is essential for the newborn calf, as it provides passive immunity which substantially affects the probability of survival during rearing. Failure of passive transfer (FPT) occurs when a calf does not absorb enough antibodies from the colostrum and is defined by an IgG concentration in calf serum lower than 10 g/L. Apart from delayed access to colostrum, FPT can be due to a low production of IgG in the mother or poor IgG absorption by the calf. The aim of this study was to estimate the genetic background of antibody levels and indicator traits for antibodies in the colostrum and calf serum, and their correlation with milk production. Results Colostrum data were available for 1340 dairy cows with at least one calving and calf serum data were available for 886 calves from these cows. Indicator traits for antibody concentrations were estimated using refractometry (a digital Brix refractometer for colostrum and an optical refractometer for serum), and enzyme-linked immunosorbent assays (ELISA) were used to determine the levels of total IgG and natural antibodies (NAb) of various antibody isotypes in the colostrum and calf serum. Colostrum traits had heritabilities ranging from 0.16 to 0.31 with repeatabilities ranging from 0.21 to 0.55. Brix percentages had positive genetic correlations with all colostrum antibody traits including total IgG (0.68). Calf serum antibody concentrations had heritabilities ranging from 0.25 to 0.59, with a significant maternal effect accounting for 17 to 27% of the variance. When later in life calves produced their first lactation, the lactation average somatic cell score was found to be negatively correlated with NAb levels in calf serum. Conclusions Our results suggest that antibody levels in the colostrum and calf serum can be increased by means of selection.
Collapse
Affiliation(s)
- Juan Cordero-Solorzano
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7023, 750 07, Uppsala, Sweden.,Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.,Animal Health Service of Costa Rica (SENASA), P.O. Box 3-3006, 40104, Heredia, Costa Rica
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, P.O. Box 7023, 750 07, Uppsala, Sweden.
| | - Madeleine Tråvén
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07, Uppsala, Sweden
| | - Therese de Haan
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07, Uppsala, Sweden
| | - Mathilde Jouffroy
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07, Uppsala, Sweden.,AgroSup Dijon - National Superior Institute of Agronomic Sciences Food and the Environment, 26 Boulevard Dr Petitjean, 21079, Dijon, France
| | - Andrea Larsson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07, Uppsala, Sweden
| | - Aline Myrthe
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07, Uppsala, Sweden.,Superior School of Agricultures (ESA), 55 Rue Rabelais, 49007, Angers, France
| | - Joop A J Arts
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Henk K Parmentier
- Adaptation Physiology Group, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Henk Bovenhuis
- Animal Breeding and Genomics, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Jonas Johansson Wensman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 750 07, Uppsala, Sweden. .,Department of Disease Control and Epidemiology, National Veterinary Institute, 751 89, Uppsala, Sweden.
| |
Collapse
|
2
|
Aghakhani M, Foroozandeh Shahraki AD, Tabatabaei SN, Toghyani M, Rafiee H. Cow-level factors associated with colostrum yield and quality of Holstein dairy cows. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Bovine Colostrum for Human Consumption—Improving Microbial Quality and Maintaining Bioactive Characteristics through Processing. DAIRY 2021. [DOI: 10.3390/dairy2040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The main purpose of bovine colostrum, being the milk secreted by a cow after giving birth, is to transfer passive immunity to the calf. The calves have an immature immune system as they lack immunoglobulins (Igs). Subsequently, the supply of good quality bovine colostrum is required. The quality of colostrum is classified by low bacterial counts and adequate Ig concentrations. Bacterial contamination can contain a variety of human pathogens or high counts of spoilage bacteria, which has become more challenging with the emerging use of bovine colostrum as food and food supplements. There is also a growing risk for the spread of zoonotic diseases originating from bovines. For this reason, processing based on heat treatment or other feasible techniques is required. This review provides an overview of literature on the microbial quality of bovine colostrum and processing methods to improve its microbial quality and keep its nutritional values as food. The highlights of this review are as follows: high quality colostrum is a valuable raw material in food products and supplements; the microbial safety of bovine colostrum is increased using an appropriate processing-suitable effective heat treatment which does not destroy the high nutrition value of colostrum; the heat treatment processes are cost-effective compared to other methods; and heat treatment can be performed in both small- and large-scale production.
Collapse
|
4
|
Fischer-Tlustos A, Lopez A, Hare K, Wood K, Steele M. Effects of colostrum management on transfer of passive immunity and the potential role of colostral bioactive components on neonatal calf development and metabolism. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neonatal dairy and beef calves are required to ingest adequate volumes of high-quality colostrum during their first hours of life to acquire transfer of passive immunity (TPI). As such, immunoglobulin G (IgG) has largely been the focus of colostrum research over recent decades. Yet, little is known about the additional bioactive compounds in colostrum that potentially influence newborn calf development and metabolism. The purpose of this narrative review is to synthesize research regarding the effects of colostrum management practices on TPI, as well as to address the potential role of additional colostral bioactive molecules, including oligosaccharides, fatty acids, insulin, and insulin-like growth factor-I, in promoting calf development and metabolism. Due to the importance of IgG in ensuring calf immunity and health, we review past research describing the process of colostrogenesis and dam factors influencing the concentrations of IgG in an effort to maximize TPI. We also address the transfer of additional bioactive compounds in colostrum and prepartum management and dam factors that influence their concentrations. Finally, we highlight key areas of future research for the scientific community to pursue to ultimately improve the health and welfare of neonatal dairy calves.
Collapse
Affiliation(s)
- A.J. Fischer-Tlustos
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - A. Lopez
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - K.S. Hare
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - K.M. Wood
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| | - M.A. Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON N1G 1Y2, Canada
| |
Collapse
|
5
|
Soufleri A, Banos G, Panousis N, Fletouris D, Arsenos G, Kougioumtzis A, Valergakis GE. Evaluation of Factors Affecting Colostrum Quality and Quantity in Holstein Dairy Cattle. Animals (Basel) 2021; 11:ani11072005. [PMID: 34359133 PMCID: PMC8300143 DOI: 10.3390/ani11072005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to conduct a large-scale investigation of colostrum composition and yield and an evaluation of factors affecting them. In this study, 1017 clinically healthy Holstein cows from 10 farms were used. The colostrum TS were measured using a digital Brix refractometer. Fat, protein and lactose content were determined using an infrared Milk Analyzer. Statistical analysis was conducted using a series of univariate general linear models. The mean (±SD) percentage of colostrum fat, protein, lactose and TS content were 6.37 (3.33), 17.83 (3.97), 2.15 (0.73) and 25.80 (4.68), respectively. Parity had a significant positive effect on the protein and TS content and a negative one on fat content. The time interval between calving and colostrum collection had a significant negative effect on the fat, protein and TS contents and a positive one on lactose. Colostrum yield had a significant negative effect on the protein and TS content, and it was affected by all factors considered. In addition to TS, the evaluation of the colostrum fat content appears essential when neonates' energy needs are considered. The Brix refractometer, an inexpensive and easy to use devise, can be used effectively in colostrum quality monitoring.
Collapse
Affiliation(s)
- Aikaterini Soufleri
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Box 393, 54124 Thessaloniki, Greece; (G.B.); (G.A.); (A.K.); (G.E.V.)
- Correspondence: ; Tel.: +30-2310999850
| | - Georgios Banos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Box 393, 54124 Thessaloniki, Greece; (G.B.); (G.A.); (A.K.); (G.E.V.)
- Scotland’s Rural College, Roslin Institute, Building, Easter Bush, Edinburgh EH25 9RG, UK
| | - Nikolaos Panousis
- Clinic of Farm Animals, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Fletouris
- Laboratory of Safety and Quality of Dairy Foods, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Georgios Arsenos
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Box 393, 54124 Thessaloniki, Greece; (G.B.); (G.A.); (A.K.); (G.E.V.)
| | - Alexandros Kougioumtzis
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Box 393, 54124 Thessaloniki, Greece; (G.B.); (G.A.); (A.K.); (G.E.V.)
| | - Georgios E. Valergakis
- Laboratory of Animal Husbandry, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Box 393, 54124 Thessaloniki, Greece; (G.B.); (G.A.); (A.K.); (G.E.V.)
| |
Collapse
|
6
|
Influence of Dry Period Length of Swedish Dairy Cows on the Proteome of Colostrum. DAIRY 2020. [DOI: 10.3390/dairy1030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the influence of applying a 4-week instead of an 8-week dry period to dairy cows on the proteome of colostrum (first sample) and of transition milk (the fifth postpartum milk sample). Individual milk serum samples of colostrum and transition milk were analysed from 12 Swedish Holstein (SH) and 12 Swedish Red (SR) cows. Samples were prepared by filter-aided sample preparation and dimethyl labelling and analysed by liquid chromatography tandem mass spectrometry. Shortening the dry period resulted in upregulation of 18 proteins in colostrum and transition milk of SR, whereas no statistical differences were found for SH colostrum and transition milk. These upregulated proteins may reflect a specific immune response in the SR samples that was reflected in colostrum as well as in transition milk. Upregulated proteins in colostrum seemed to reflect increased mammary epithelial cell proliferation in the periparturient period when a 4-week dry period was applied. The proteome data indicate that a dry period of 4 weeks to SR cows may not be sufficient for complete regeneration of the mammary epithelium.
Collapse
|
7
|
Kessler EC, Bruckmaier RM, Gross JJ. Colostrum composition and immunoglobulin G content in dairy and dual-purpose cattle breeds. J Anim Sci 2020; 98:5875097. [PMID: 32697841 DOI: 10.1093/jas/skaa237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/17/2020] [Indexed: 01/14/2023] Open
Abstract
Immunoglobulins (Ig) are essential components in the colostrum of bovine species that enable passive immunization of newborn calves. Concentrations of fat and protein are greater in colostrum compared with mature milk and represent a vital source of energy and nutrients. Colostral IgG was shown to vary between individual dairy cows, but comparative data on different breeds and performance levels are scarce. The objective of the present field study was to investigate the contents of total IgG, fat, protein, and lactose in colostrum in different Swiss and German dairy and dual-purpose breeds. We collected colostrum samples of 458 cows of 13 different breeds (dairy breeds: Brown Swiss, Swiss and German Holstein Friesian, and New Zealand Holstein; dual-purpose breeds: German Fleckvieh, Holstein Friesian × Montbéliarde, Montbéliarde, Murnau-Werdenfels, Original Braunvieh, Pinzgauer, Rhetic Gray, and Simmental; and beef-type crossbred: Charolais × Holstein Friesian). Colostrum samples were obtained between 5 and 900 min after calving and analyzed for total IgG, fat protein, and lactose contents. Immunoglobulin G concentrations varied between 12.7 and 204.0 mg/mL. No effect of breeding purpose (i.e., dairy or dual-purpose) nor of previous lactation yield on IgG content was observed. However, milking of cows for the first time later than 12 h after parturition resulted in lower colostrum IgG concentrations compared with colostrum harvest within 9 h after calving (P < 0.05). Multiparous cows had a higher colostral IgG concentration than primiparous cows (P < 0.0001). Overall, concentrations of IgG and other constituents in colostrum varied widely in the different cattle breeds. High-yielding dairy cows did not have poorer colostrum quality compared with lower-yielding animals or beef and dual-purpose breeds, which suggests an individually different transfer of circulating IgG into colostrum.
Collapse
Affiliation(s)
- Evelyne C Kessler
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Josef J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Chen Y, Tibbs Cortes LE, Ashley C, Putz AM, Lim KS, Dyck MK, Fortin F, Plastow GS, Dekkers JCM, Harding JCS. The genetic basis of natural antibody titers of young healthy pigs and relationships with disease resilience. BMC Genomics 2020; 21:648. [PMID: 32962629 PMCID: PMC7510148 DOI: 10.1186/s12864-020-06994-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/17/2020] [Indexed: 12/03/2022] Open
Abstract
Background Disease resilience is the ability to maintain performance under pathogen exposure but is difficult to select for because breeding populations are raised under high health. Selection for resilience requires a trait that is heritable, easy to measure on healthy animals, and genetically correlated with resilience. Natural antibodies (NAb) are important parts of the innate immune system and are found to be heritable and associated with disease susceptibility in dairy cattle and poultry. Our objective was to investigate NAb and total IgG in blood of healthy, young pigs as potential indicator traits for disease resilience. Results Data were from Yorkshire x Landrace pigs, with IgG and IgM NAb (four antigens) and total IgG measured by ELISA in blood plasma collected ~ 1 week after weaning, prior to their exposure to a natural polymicrobial challenge. Heritability estimates were lower for IgG NAb (0.12 to 0.24, + 0.05) and for total IgG (0.19 + 0.05) than for IgM NAb (0.33 to 0.53, + 0.07) but maternal effects were larger for IgG NAb (0.41 to 0.52, + 0.03) and for total IgG (0.19 + 0.05) than for IgM NAb (0.00 to 0.10, + 0.04). Phenotypically, IgM NAb titers were moderately correlated with each other (average 0.60), as were IgG NAb titers (average 0.42), but correlations between IgM and IgG NAb titers were weak (average 0.09). Phenotypic correlations of total IgG were moderate with NAb IgG (average 0.46) but weak with NAb IgM (average 0.01). Estimates of genetic correlations among NAb showed similar patterns but with small SE, with estimates averaging 0.76 among IgG NAb, 0.63 among IgM NAb, 0.17 between IgG and IgM NAb, 0.64 between total IgG and IgG NAb, and 0.13 between total IgG and IgM NAb. Phenotypically, pigs that survived had slightly higher levels of NAb and total IgG than pigs that died. Genetically, higher levels of NAb tended to be associated with greater disease resilience based on lower mortality and fewer parenteral antibiotic treatments. Genome-wide association analyses for NAb titers identified several genomic regions, with several candidate genes for immune response. Conclusions Levels of NAb in blood of healthy young piglets are heritable and potential genetic indicators of resilience to polymicrobial disease.
Collapse
Affiliation(s)
- Yulu Chen
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Carolyn Ashley
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Austin M Putz
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Michael K Dyck
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Frederic Fortin
- Centre de développement du porc du Québec inc. (CDPQ), Québec City, QC, Canada
| | - Graham S Plastow
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
9
|
Johnsen JF, Sørby J, Mejdell CM, Sogstad ÅM, Nødtvedt A, Holmøy IH. Indirect quantification of IgG using a digital refractometer, and factors associated with colostrum quality in Norwegian Red Cattle. Acta Vet Scand 2019; 61:59. [PMID: 31805965 PMCID: PMC6896254 DOI: 10.1186/s13028-019-0494-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/28/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND There is an increased interest in using digital refractometers to indirectly assess colostrum quality of dairy cattle, but knowledge on diagnostic accuracy for Norwegian Red dairy cows is lacking. Recent research has indicated a profound variability in the colostrum quality among dairy cows and herds in Norway. The aim of this study was to evaluate the diagnostic test sensitivity and specificity of a digital refractometer (Brix refractometer) at different cut-offs in Brix% for detection of colostrum of high quality (> 50 g/L) defined by the gold standard single radial immunodiffusion (IgG g/L). Furthermore, we aimed to identify possible associations between selected herd and cow-level management factors and colostrum IgG-levels in Norwegian Red dairy cows. RESULTS Median colostrum IgG level across 167 cows from 19 herds was 35.0 g/L, ranging from 5 to 129 g/L. Mean Brix% (± SD) was 19.7 ± 4.12%, ranging from 10.1 to 30.5. Most samples (72.5%) had inferior quality as compared to the international standard of 50 g/L. Brix% and IgG in colostrum were strongly correlated (r = 0.71, P < 0.001). A Brix cut-off of 22%, which is currently recommended, yielded a sensitivity of (95% CI) 69.4% (54.6-81.7) and a specificity of 83.1% (75.0-89.3) for identifying colostrum with high quality (> 50 g/L). The only factor found to be associated with low colostrum quality was parity. Specifically, cows in the second parity were found to produce colostrum with low quality compared to cows in parities four and later. CONCLUSIONS The agreement between colostrum IgG and Brix% is good. However, the diagnostic test evaluation indicates suboptimal performance in identifying high vs. low colostrum quality in this population, possibly related to a high proportion of the samples with < 50 g/L IgG. The only factor found to be associated with low colostrum quality was parity. Specifically, cows in the second parity were found to produce colostrum with lower quality. Future research should investigate colostrum and serum IgG levels which best prevent calf illness under Norwegian conditions.
Collapse
Affiliation(s)
- Julie Føske Johnsen
- Section of Terrestrial Animal Health and Welfare, Norwegian Veterinary Institute, Pb 750 Sentrum, 0106 Oslo, Norway
| | - Johanne Sørby
- Biri Dyreklinikk, Birivegen 75, PB 44, 2832 Biri, Norway
| | - Cecilie Marie Mejdell
- Section of Terrestrial Animal Health and Welfare, Norwegian Veterinary Institute, Pb 750 Sentrum, 0106 Oslo, Norway
| | - Åse Margrethe Sogstad
- ANIMALIA, Norwegian Meat and Poultry Research Centre, Lørenveien 38, PB 396, Økern, 0513 Oslo, Norway
| | - Ane Nødtvedt
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, PB 8146 Dep, 0033 Oslo, Norway
| | - Ingrid Hunter Holmøy
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, PB 8146 Dep, 0033 Oslo, Norway
| |
Collapse
|
10
|
Dunn A, Ashfield A, Earley B, Welsh M, Gordon A, Morrison SJ. Evaluation of factors associated with immunoglobulin G, fat, protein, and lactose concentrations in bovine colostrum and colostrum management practices in grassland-based dairy systems in Northern Ireland. J Dairy Sci 2017; 100:2068-2079. [PMID: 28088405 PMCID: PMC7127401 DOI: 10.3168/jds.2016-11724] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/18/2016] [Indexed: 12/23/2022]
Abstract
The objectives of this study were to investigate colostrum feeding practices and colostrum quality on commercial grassland-based dairy farms, and to identify factors associated with colostrum quality that could help inform the development of colostrum management protocols. Over 1 yr, background information associated with dairy calvings and colostrum management practices were recorded on 21 commercial dairy farms. Colostrum samples (n = 1,239) were analyzed for fat, protein, lactose, and IgG concentration. A subset was analyzed for somatic cell count and total viable bacteria count. Factors associated with nutritional and IgG concentrations were determined using both univariate and multivariate models. This study found that 51% of calves were administered their first feed of colostrum via esophageal tube, and the majority of calves (80%) were fed >2 L of colostrum at their first feed (mean = 2.9 L, SD = 0.79), at a mean time of 3.2 h (SD 4.36) after birth, but this ranged across farms. The mean colostral fat, protein, and lactose percentages and IgG concentrations were 6.4%, 14%, 2.7%, and 55 mg/mL, respectively. The mean somatic cell count and total viable count were 6.3 log10 and 6.1 log10, respectively. Overall, 44% of colostrum samples contained <50 mg/mL IgG, and almost 81% were in excess of industry guidelines (<100,000 cfu/mL) for bacterial contamination. In the multivariate model, IgG concentration was associated with parity and time from parturition to colostrum collection. The nutritional properties of colostrum were associated with parity, prepartum vaccination, season of calving, and dry cow nutrition. The large variation in colostrum quality found in the current study highlights the importance of routine colostrum testing, and now that factors associated with lower-quality colostrum on grassland-based dairy farms have been identified, producers and advisers are better informed and able to develop risk-based colostrum management protocols.
Collapse
Affiliation(s)
- A Dunn
- Agri-Food and Biosciences Institute, Sustainable Livestock, Large Park, Hillsborough, BT26 6DR, United Kingdom; Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 18-30 Malone Road, Belfast, BT9 5BN, United Kingdom
| | - A Ashfield
- Agri-Food and Biosciences Institute, Newforge Lane, Belfast, United Kingdom BT9 5PX
| | - B Earley
- Animal and Grassland Research and Innovation Centre (AGRIC), Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - M Welsh
- Sisaf, Unit 15A Innovation Centre, Queen's Road, Belfast, United Kingdom BT3 9DT
| | - A Gordon
- Agri-Food and Biosciences Institute, Newforge Lane, Belfast, United Kingdom BT9 5PX
| | - S J Morrison
- Agri-Food and Biosciences Institute, Sustainable Livestock, Large Park, Hillsborough, BT26 6DR, United Kingdom.
| |
Collapse
|