1
|
Liu Q, Wang H, Zhu W, Peng S, Zou H, Zhang P, Li Z, Zhang Z, Fu L, Qian Z. Determination of extracellular proteinase in L. helveticus Lh191404 based on whole genome sequencing and proteomics analysis. Int J Biol Macromol 2024; 276:133958. [PMID: 39033899 DOI: 10.1016/j.ijbiomac.2024.133958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Lactobacillus helveticus exhibits a remarkable proteolytic system. However, the etiology of these protein hydrolysis characteristics, whether caused by extracellular proteinases (EP) or cell envelope proteinases (CEP), has been puzzling researchers. In this study, third-generation Nanopore whole genome sequencing and proteomics analysis were used to unravel the root cause of the aforementioned confusion. The genome of L. helveticus Lh191404 was 2,117,643 bp in length, with 67 secreted proteins were found. Combined with proteomic analysis, it was found that the protein composition of extraction from CEP and EP were indeed the same substance. Bioinformatics analysis indicated that the CEP belonged to the PrtH1 Variant (PrtH1_V) genotype by phylogenetic analysis. The three-dimensional structures of various domains within the PrtH1_V-191404 had been characterized, providing a comprehensive understanding of its structural features. Results of proteinase activity showed that the optimal reaction temperature was 40 °C, with a pH of 6.50. These findings suggested that the origin of EP in L. helveticus Lh191404 may be due to CEP being released into the substrate after detaching from the cell wall. This research is of guiding significance for further understanding the operational mechanism of the protein hydrolysis system in lactic acid bacteria.
Collapse
Affiliation(s)
- Qingwen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Hao Wang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.
| | - Wenye Zhu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Shanyu Peng
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Hao Zou
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Pingyuan Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ziye Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266003, China; State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lijun Fu
- School of Environmental and Biological Engineering, Putian University, Putian, Fujian 351100, China
| | - Zhuozhen Qian
- Fisheries Research Institute of Fujian, 7 Haishan Road, Xiamen 361013, China
| |
Collapse
|
2
|
Du S, Yao L, Zhong B, Qin J, He S, Liu Y, Wu Z. Enhancing synthesis of ethyl lactate in rice baijiu fermentation by adding recovered granular cells. J Biosci Bioeng 2024; 137:388-395. [PMID: 38461104 DOI: 10.1016/j.jbiosc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/11/2024]
Abstract
Ethyl lactate is the most abundant ester in semi-solid rice baijiu fermentation, affecting the flavor of baijiu to a great extent. The present study aimed to investigate the spatial distribution and formation contributor of ethyl lactate by removing the microorganisms and extracellular enzymes from the upper, middle, and lower fermentation broth during the later fermentation stage. The removal of suspended substances by centrifugation did not affect the ethyl lactate content in the top and middle fermentation broth containing free cells, enzymes, and starch particles. After day 5 of fermentation, only the lower fermentation broth containing granular cells attached to the starch could continue to accumulate lactic acid, thereby increasing the ethyl lactate content. The results showed that the chemical reactions were the main contributor to the increased ethyl lactate content at the anaphase of fermentation rather than enzymatic catalysis or microbial metabolism. Sequencing of granular cells revealed the main lactic acid producers at different fermentation stages. Lactobacillus helveticus showed the highest abundance of 94.45-95.40% on day 5, which decreased to 29.58-30.20% on day 15, while Lactobacillus acetotolerans showed the highest abundance of 47.93-49.72% at day 15. Additionally, the granular cells were recovered and used for supplementary inoculation in the next batch, which significantly increased the ethyl lactate content. This study provided a novel strategy for improving the ethyl lactate content in semi-solid baijiu fermentation.
Collapse
Affiliation(s)
- Shoujie Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liucui Yao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen 529080, China
| | - Bin Zhong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Junwei Qin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Songgui He
- Guangdong Jiujiang Distillery Co., Ltd., Foshan 528203, China
| | - Youqiang Liu
- Guangdong Jiujiang Distillery Co., Ltd., Foshan 528203, China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Identification of Novel Bile Salt-Tolerant Genes in Lactobacillus Using Comparative Genomics and Its Application in the Rapid Screening of Tolerant Strains. Microorganisms 2022; 10:microorganisms10122371. [PMID: 36557624 PMCID: PMC9786149 DOI: 10.3390/microorganisms10122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Under bile salt treatment, strains display significant differences in their tolerance ability, suggesting the existence of diverse resistance mechanisms in Lactobacillus; however, the genes involved in this protective process are not fully understood. In this study, novel target genes associated with bile salt tolerance in Lactobacillus were identified using comparative genomics for PCR detection and the rapid screening of tolerant strains. The bile salt tolerance of 107 lactobacilli isolated from different origins was assessed, and 26 strains with comparatively large differences were selected for further comparative genomic analysis. Tolerant strains had 112 specific genes that were enriched in the phosphotransferase system, the two-component system, carbohydrate metabolism, and the ATP-binding cassette transporter. Six genes from Lactobacillus were cloned into the inducible lactobacillal expression vector pSIP403. Overexpression in the host strain increased its tolerance ability by 11.86-18.08%. The novel genes identified here can be used as targets to design primers for the rapid screening of bile salt-tolerant lactobacilli. Altogether, these results deepen our understanding of bile salt tolerance mechanisms in Lactobacillus and provide a basis for further rapid assessments of tolerant strains.
Collapse
|
4
|
Evaluation of Bacterial Diversity and Evolutionary Dynamics of Gut Bifidobacterium longum Isolates Obtained from Older Individuals in Hubei Province, China. Microbiol Spectr 2022; 10:e0144221. [PMID: 35044201 PMCID: PMC8768838 DOI: 10.1128/spectrum.01442-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium longum predominates in the human gut throughout the life span, from birth to old age, and could alter the intestinal microbial population and immune function in the elderly. We investigated the intestinal bacterial diversity in the elderly, and further evaluated the genetic diversity and population structure of B. longum. The results revealed a distinct difference in gut bacterial populations between the elderly from Xiangyang and its neighboring region, Enshi city. A total of 62 bifidobacterial strains were isolated, 30 of which were found to be B. longum. The multilocus sequence typing (MLST) analysis also revealed that 437 B. longum isolates from diverse regions worldwide, including the 30 isolated in this study, could be classified into 341 sequence types (STs). They could be further clustered into 10 clonal complexes and 127 singleton STs, indicating a highly genetic diversity among B. longum isolates. Two putative clone complexes (CCs) containing the isolates from Xiangyang were found to be geographically specific, and a 213-bp recombination fragment was detected. Phylogenetic trees divided these 437 isolates into three lineages, corresponding to the three subspecies of B. longum. It is noteworthy that two isolates from the elderly were identified to be B. longum subsp. suis, while the others were B. longum subsp. longum. Together, our study characterized the intestinal bacterial diversity and evolution of B. longum in the elderly, and it could contribute to further studies on the genotyping and discrimination of B. longum. IMPORTANCEBifidobacterium longum are common inhabitants of the human gut throughout the life span, and have been associated with health-promoting effects, yet little is known about the genotype profile and evolution of these isolates. Our study showed that there was significant difference in gut bacterial community and abundance of B. longum between the elderly from two neighboring cities. Furthermore, the possible geographically specific STs, CCs, and intraspecies recombination fragment were found among the B. longum isolates from elderly.
Collapse
|
5
|
Dutra-Silva L, Matteoli FP, Arisi ACM. Distribution of Genes Related to Probiotic Effects Across Lacticaseibacillus rhamnosus Revealed by Population Structure. Probiotics Antimicrob Proteins 2021; 15:548-557. [PMID: 34699013 DOI: 10.1007/s12602-021-09868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
The Gram-positive Lacticaseibacillus rhamnosus has been broadly reported as capable of exerting beneficial health effects. Bacterial genomic diversity may promote niche specialization, thus creating subpatterns within populations. As L. rhamnosus advantageous effects have been widely reported at strain level and few is known regarding the distribution of beneficial genes among L. rhamnosus strains, we investigated all publicly available genomes of Lactobacillus and Lacticaseibacillus genera to study the pangenome and general population structure of L. rhamnosus. Core genome multilocus sequence typing detected eight L. rhamnosus phylogroups (PG1 to PG8). L. rhamnosus harbors an open pangenome; PG1, PG3, PG4, and PG5 exhibited highly conserved gene distribution patterns. Genes significantly associated to the PG1, which comprises L. rhamnosus GG, are mainly phage-related. The adhesion operon spaCBA-srtC1 was found in 44 (24.7%) genomes; however, considering only the PG1, the prevalence was of 65%. In PG2 the spaCBA-srtC1 prevalence was of 43%. Nevertheless, both human and milk-derived strains harbored this operon. Further, two main types of bacteriocin clusters were found (Bact1 and Bact2). Bact1 predictions indicate the presence of garQ, encoding the class II bacteriocin garvieacin Q, that is mainly present in the closely related PG8A and a PG2 subcluster. PG2 harbors two distinct subclusters, harboring either spaCBA-srtC1 or Bact1. Our findings provide novel insights on the distribution of biotechnological relevant genes across L. rhamnosus population, uncovering intra-species patterns that may bring forth the development of more efficient probiotic products.
Collapse
Affiliation(s)
- Lorena Dutra-Silva
- Food Science and Technology Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe P Matteoli
- Department of Soil Science, Luiz de Queiroz College of Agriculture, Piracicaba, SP, Brazil.
| | | |
Collapse
|
6
|
Jaramillo L, Santos D, Guedes D, Dias D, Borges E, Pereira N. Production of Lactic Acid Enantiomers by Lactobacillus Strains under Limited Dissolved Oxygen Conditions in the Presence of a Pentose Fraction. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Yamei, Guo YS, Zhu JJ, Xiao F, Hasiqimuge, Sun JP, Qian JP, Xu WL, Li CD, Guo L. Investigation of physicochemical composition and microbial communities in traditionally fermented vrum from Inner Mongolia. J Dairy Sci 2019; 102:8745-8755. [PMID: 31400900 DOI: 10.3168/jds.2019-16288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/13/2019] [Indexed: 12/26/2022]
Abstract
Mongolian traditionally fermented vrum is known for its functional characteristics, and indigenous microbial flora plays a critical role in its natural fermentation. However, studies of traditionally fermented vrum are still rare. In this study, we investigated the artisanal production of traditionally fermented vrum from Inner Mongolia. In general, its physicochemical composition was characterized by 34.5 ± 8% moisture, 44.9 ± 12.1% fat, 10.6 ± 3.2% protein, and 210 ± 102°T. The total lactic acid bacteria and yeast counts ranged from 50 to 2.8 × 108 cfu/g and from 0 to 1.1 × 106 cfu/g, respectively. We studied bacterial and fungal community structures in 9 fermented vrum; we identified 5 bacterial phyla represented by 11 genera (an average relative abundance >1%) and 8 species (>1%), and 3 fungal phyla represented by 8 genera (>1%) and 8 species (>1%). Relative abundance values showed that Lactococcus and Lactobacillus were the most common bacterial genera, and Dipodascus was the predominant fungal genus. This scientific investigation of the nutritional components, microbial counts, and community profiles in Mongolian traditionally fermented vrum could help to develop future functional biomaterials and probiotics.
Collapse
Affiliation(s)
- Yamei
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Yuan-Sheng Guo
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Jian-Jun Zhu
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Fang Xiao
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Hasiqimuge
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Jian-Ping Sun
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Jun-Ping Qian
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Wei-Liang Xu
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Chun-Dong Li
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China
| | - Liang Guo
- Xilingol Vocational College, Xilin Gol Institute of Bioengineering, Xilin Gol Food Testing and Risk Assessment Center, Xilinhot 026000, Inner Mongolia, China.
| |
Collapse
|
8
|
Diversity and evolution of Lactobacillus casei group isolated from fermented dairy products in Tibet. Arch Microbiol 2018; 200:1111-1121. [DOI: 10.1007/s00203-018-1528-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/30/2017] [Accepted: 05/18/2018] [Indexed: 12/16/2022]
|
9
|
Moser A, Wüthrich D, Bruggmann R, Eugster-Meier E, Meile L, Irmler S. Amplicon Sequencing of the slpH Locus Permits Culture-Independent Strain Typing of Lactobacillus helveticus in Dairy Products. Front Microbiol 2017; 8:1380. [PMID: 28775722 PMCID: PMC5517455 DOI: 10.3389/fmicb.2017.01380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/07/2017] [Indexed: 11/13/2022] Open
Abstract
The advent of massive parallel sequencing technologies has opened up possibilities for the study of the bacterial diversity of ecosystems without the need for enrichment or single strain isolation. By exploiting 78 genome data-sets from Lactobacillus helveticus strains, we found that the slpH locus that encodes a putative surface layer protein displays sufficient genetic heterogeneity to be a suitable target for strain typing. Based on high-throughput slpH gene sequencing and the detection of single-base DNA sequence variations, we established a culture-independent method to assess the biodiversity of the L. helveticus strains present in fermented dairy food. When we applied the method to study the L. helveticus strain composition in 15 natural whey cultures (NWCs) that were collected at different Gruyère, a protected designation of origin (PDO) production facilities, we detected a total of 10 sequence types (STs). In addition, we monitored the development of a three-strain mix in raclette cheese for 17 weeks.
Collapse
Affiliation(s)
- Aline Moser
- AgroscopeBern, Switzerland.,Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH ZurichZurich, Switzerland
| | - Daniel Wüthrich
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of BioinformaticsBern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of BioinformaticsBern, Switzerland
| | - Elisabeth Eugster-Meier
- School of Agricultural, Forest and Food Sciences HAFL, Bern University of Applied SciencesZollikofen, Switzerland
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH ZurichZurich, Switzerland
| | | |
Collapse
|
10
|
Poluektova EU, Yunes RA, Epiphanova MV, Orlova VS, Danilenko VN. The Lactobacillus rhamnosus and Lactobacillus fermentum strains from human biotopes characterized with MLST and toxin-antitoxin gene polymorphism. Arch Microbiol 2017; 199:683-690. [PMID: 28213763 DOI: 10.1007/s00203-017-1346-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 11/29/2022]
Abstract
The diversity of Lb. rhamnosus and Lb. fermentum strains isolated from feces, saliva, and the vaginal cavity of 18-22-year-old healthy women residing in central regions of the Russian Federation has been characterized. The results obtained using multilocus sequence typing were identical to those obtained with the analysis of genetic and genomic polymorphism in TA systems. Different as well as identical Lb. rhamnosus and Lb. fermentum sequence types (ST) were isolated from various parts of the body of the same person. Identical ST were also isolated from different women, suggesting that such strains belong to a common pool of strains circulating among the population members. Our results demonstrate that TAs are suitable for characterizing intra-specific diversity of Lb. rhamnosus and Lb. fermentum strains. The advantage of using polymorphisms in TA systems for genotyping is based on the weak number of genes used, and consequently, less time is required for the analysis.
Collapse
Affiliation(s)
- E U Poluektova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, GSP-1, Moscow, 119333, Russian Federation
| | - R A Yunes
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, GSP-1, Moscow, 119333, Russian Federation. .,Peoples' Friendship University of Russia (RUDN), 6 Miklukho-Maklai Street, Moscow, 117198, Russian Federation.
| | - M V Epiphanova
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, GSP-1, Moscow, 119333, Russian Federation
| | - V S Orlova
- Peoples' Friendship University of Russia (RUDN), 6 Miklukho-Maklai Street, Moscow, 117198, Russian Federation
| | - V N Danilenko
- Laboratory of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, GSP-1, Moscow, 119333, Russian Federation
| |
Collapse
|
11
|
Stefanovic E, Fitzgerald G, McAuliffe O. Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiol 2017; 61:33-49. [DOI: 10.1016/j.fm.2016.08.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 01/21/2023]
|
12
|
Bao Q, Song Y, Xu H, Yu J, Zhang W, Menghe B, Zhang H, Sun Z. Multilocus sequence typing of Lactobacillus casei isolates from naturally fermented foods in China and Mongolia. J Dairy Sci 2016; 99:5202-5213. [PMID: 27179867 DOI: 10.3168/jds.2016-10857] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/28/2016] [Indexed: 11/19/2022]
Abstract
Lactobacillus casei is a lactic acid bacterium used in manufacturing of many fermented food products. To investigate the genetic diversity and population biology of this food-related bacterium, 224 Lb. casei isolates and 5 reference isolates were examined by multilocus sequence typing (MLST). Among them, 224 Lb. casei isolates were isolated from homemade fermented foods, including naturally fermented dairy products, acidic gruel, and Sichuan pickles from 38 different regions in China and Mongolia. The MLST scheme was developed based on the analysis of 10 selected housekeeping genes (carB, clpX, dnaA, groEL, murE, pyrG, pheS, recA, rpoC, and uvrC). All 229 isolates could be allocated to 171 unique sequence types, including 25 clonal complexes and 71 singletons. The high index of association value (1.3524) and standardized index of association value (0.1503) indicate the formation of an underlying clonal population by all the isolates. However, split-decomposition, relative frequency of occurrence of recombination and mutation, and relative effect of recombination and mutation in the diversification values confirm that recombination may have occurred, and were more frequent than mutation during the evolution of Lb. casei. Results from Structure analyses (version 2.3; http://pritch.bsd.uchicago.edu/structure.html) demonstrated that there were 5 lineages in the Lb. casei isolates, and the overall relatedness built by minimum spanning tree showed no clear relationship between the clonal complexes with either the isolation sources or sampling locations of the isolates. Our newly developed MLST scheme of Lb. casei was an easy and valuable tool that, together with the construction of an MLST database, will contribute to further detailed studies on the evolution and population genetics of Lb. casei from various niches.
Collapse
Affiliation(s)
- Qiuhua Bao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot 010018, China.
| |
Collapse
|
13
|
Identification, typing and functional characterization of dominant lactic acid bacteria strains from Iranian traditional yoghurt. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2562-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Chen X, Song Y, Xu H, Menghe B, Zhang H, Sun Z. Genetic relationships among Enterococcus faecalis isolates from different sources as revealed by multilocus sequence typing. J Dairy Sci 2015; 98:5183-93. [DOI: 10.3168/jds.2015-9571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
|
15
|
Dan T, Liu W, Song Y, Xu H, Menghe B, Zhang H, Sun Z. The evolution and population structure of Lactobacillus fermentum from different naturally fermented products as determined by multilocus sequence typing (MLST). BMC Microbiol 2015; 15:107. [PMID: 25990318 PMCID: PMC4437502 DOI: 10.1186/s12866-015-0447-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/14/2015] [Indexed: 11/11/2022] Open
Abstract
Background Lactobacillus fermentum is economically important in the production and preservation of fermented foods. A repeatable and discriminative typing method was devised to characterize L. fermentum at the molecular level. The multilocus sequence typing (MLST) scheme developed was based on analysis of the internal sequence of 11 housekeeping gene fragments (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). Results MLST analysis of 203 isolates of L. fermentum from Mongolia and seven provinces/ autonomous regions in China identified 57 sequence types (ST), 27 of which were represented by only a single isolate, indicating high genetic diversity. Phylogenetic analyses based on the sequence of the 11 housekeeping gene fragments indicated that the L. fermentum isolates analyzed belonged to two major groups. A standardized index of association (IAS) indicated a weak clonal population structure in L. fermentum. Split decomposition analysis indicated that recombination played an important role in generating the genetic diversity observed in L. fermentum. The results from the minimum spanning tree strongly suggested that evolution of L. fermentum STs was not correlated with geography or food-type. Conclusions The MLST scheme developed will be valuable for further studies on the evolution and population structure of L. fermentum isolates used in food products. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0447-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Dan
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Yuqin Song
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, P. R. China.
| |
Collapse
|