1
|
Farkaš V, Beletić A, Kuleš J, Thomas FC, Rešetar Maslov D, Rubić I, Benić M, Bačić G, Mačešić N, Jović I, Eraghi V, Gelemanović A, Eckersall D, Mrljak V. Biomarkers for subclinical bovine mastitis: a high throughput TMT-based proteomic investigation. Vet Res Commun 2024; 48:2069-2082. [PMID: 38913241 DOI: 10.1007/s11259-024-10442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Mastitis represents the biggest threat to the health and productivity of dairy cows, leading to substantial economic losses in milk production. It manifests in two forms: clinical mastitis, easily diagnosed by visible symptoms, and subclinical mastitis (SCM), which lacks overt clinical signs. SCM's elusive nature often results in it going undetected, thus facilitating the spread of the disease-causing agent due to lack of treatment. Finding a reliable biomarker for early SCM would reduce the possibility of mastitis spreading in the herd, reduce the need for antibiotic use and ultimately reduce milk losses for producers. Utilizing state-of-the-art proteomics techniques, 138 milk samples from dairy cows in continental Croatia underwent analysis. These samples were categorized into four groups based on the Zagreb Mastitis Test (ZMT) and microbiological analysis: lowSCC- (n = 20), lowSCC + (n = 20), medSCC + (n = 79), and highSCC + (n = 19). A total of 386 proteins were identified and quantified, with 76 proteins showing significant differential abundances among the groups. Many of these proteins are linked to the innate immune system, as well as neutrophil and platelet degranulation processes. Through fold changes observed between groups, 15 proteins exhibiting biomarker characteristics for subclinical mastitis (SCM) were identified. Among these, five proteins-cathelicidins (-1, -4, and -7), lactoferrin, and haptoglobin-showed particular promise.
Collapse
Affiliation(s)
- Vladimir Farkaš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia.
| | - Anđelo Beletić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Josipa Kuleš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Funmilola Clara Thomas
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dina Rešetar Maslov
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Miroslav Benić
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute Zagreb, Zagreb, Croatia
| | - Goran Bačić
- Reproduction and Obstetrics Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Mačešić
- Reproduction and Obstetrics Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ines Jović
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vida Eraghi
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | - David Eckersall
- School of Bioaffiliationersity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, University of Murcia, Murcia, Spain
| | - Vladimir Mrljak
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Zorc M, Dolinar M, Dovč P. A Single-Cell Transcriptome of Bovine Milk Somatic Cells. Genes (Basel) 2024; 15:349. [PMID: 38540408 PMCID: PMC10970057 DOI: 10.3390/genes15030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 06/14/2024] Open
Abstract
The production of milk by dairy cows far exceeds the nutritional needs of the calf and is vital for the economical use of dairy cattle. High milk yield is a unique production trait that can be effectively enhanced through traditional selection methods. The process of lactation in cows serves as an excellent model for studying the biological aspects of lactation with the aim of exploring the mechanistic base of this complex trait at the cellular level. In this study, we analyzed the milk transcriptome at the single-cell level by conducting scRNA-seq analysis on milk samples from two Holstein Friesian cows at mid-lactation (75 and 93 days) using the 10× Chromium platform. Cells were pelleted and fat was removed from milk by centrifugation. The cell suspension from each cow was loaded on separate channels, resulting in the recovery of 9313 and 14,544 cells. Library samples were loaded onto two lanes of the NovaSeq 6000 (Illumina) instrument. After filtering at the cell and gene levels, a total of 7988 and 13,973 cells remained, respectively. We were able to reconstruct different cell types (milk-producing cells, progenitor cells, macrophages, monocytes, dendritic cells, T cells, B cells, mast cells, and neutrophils) in bovine milk. Our findings provide a valuable resource for identifying regulatory elements associated with various functions of the mammary gland such as lactation, tissue renewal, native immunity, protein and fat synthesis, and hormonal response.
Collapse
Affiliation(s)
| | | | - Peter Dovč
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.Z.); (M.D.)
| |
Collapse
|
3
|
Bisutti V, Vanzin A, Pegolo S, Toscano A, Gianesella M, Sturaro E, Schiavon S, Gallo L, Tagliapietra F, Giannuzzi D, Cecchinato A. Effect of intramammary infection and inflammation on milk protein profile assessed at the quarter level in Holstein cows. J Dairy Sci 2024; 107:1413-1426. [PMID: 37863294 DOI: 10.3168/jds.2023-23818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
In this study we wanted to investigate the associations between naturally occurring subclinical intramammary infection (IMI) caused by different etiological agents (i.e., Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, and Prototheca spp.), in combination with somatic cell count (SCC), on the detailed milk protein profile measured at the individual mammary gland quarter. An initial bacteriological screening (time 0; T0) conducted on individual composite milk from 450 Holstein cows reared in 3 herds, was performed to identify cows with subclinical IMI. We identified 78 infected animals which were followed up at the quarter level at 2 different sampling times: T1 and T2, 2 and 6 wk after T0, respectively. A total of 529 quarter samples belonging to the previously selected animals were collected at the 2 sampling points and analyzed with a reversed phase HPLC (RP-HPLC) validated method. Specifically, we identified and quantified 4 caseins (CN), namely αS1-CN, αS2-CN, κ-CN, and β-CN, and 3 whey protein fractions, namely β-lactoglobulin, α-lactalbumin, and lactoferrin (LF), which were later expressed both quantitatively (g/L) and qualitatively (as a percentage of the total milk nitrogen content, % N). Data were analyzed with a hierarchical linear mixed model with the following fixed effects: days in milk (DIM), parity, herd, SCC, bacteriological status (BACT), and the SCC × BACT interaction. The random effect of individual cow, nested within herd, DIM and parity was used as the error term for the latter effects. Both IMI (i.e., BACT) and SCC significantly reduced the proportion of β-CN and αS1-CN, ascribed to the increased activity of both milk endogenous and microbial proteases. Less evident alterations were found for whey proteins, except for LF, which being a glycoprotein with direct and undirect antimicrobial activity, increased both with IMI and SCC, suggesting its involvement in the modulation of both the innate and adaptive immune response. Finally, increasing SCC in the positive samples was associated with a more marked reduction of total caseins at T1, and αS1-CN at T2, suggesting a synergic effect of infection and inflammation, more evident at high SCC. In conclusion, our work helps clarify the behavior of protein fractions at quarter level in animals having subclinical IMI. The inflammation status driven by the increase in SCC, rather the infection, was associated with the most significant changes, suggesting that the activity of endogenous proteolytic enzymes related to the onset of inflammation might have a pivotal role in directing the alteration of the milk protein profile.
Collapse
Affiliation(s)
- V Bisutti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - A Vanzin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy.
| | - A Toscano
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - M Gianesella
- Department of Animal Medicine, Productions and Health, University of Padua, 35020, Legnaro (PD), Italy
| | - E Sturaro
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - S Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - L Gallo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - F Tagliapietra
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro (PD), Italy
| |
Collapse
|
4
|
Mulakala BK, Smith KM, Snider MA, Ayers A, Honan MC, Greenwood SL. Use of milk proteins as biomarkers of changes in the rumen metaproteome of Holstein cows fed low-fiber, high-starch diets. J Dairy Sci 2023; 106:9630-9643. [PMID: 37210363 DOI: 10.3168/jds.2022-22910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/06/2023] [Indexed: 05/22/2023]
Abstract
Dietary levels of undegraded neutral detergent fiber (uNDF240) and rumen-fermentable starch (RFS) can affect the rumen microbiome and milk composition. The objective of the study is to investigate the use of milk proteins as biomarkers of rumen microbial activity through a comparative evaluation of the rumen microbial and milk protein profiles produced by Holstein cows fed diets with varying contents of physically effective uNDF240 (peuNDF240) and RFS. Eight ruminally cannulated lactating Holstein cows were included in a larger study as part of a 4 × 4 Latin square design with 4 28-d periods to assess 4 diets varying in peuNDF240 and RFS content. For this experiment, cows received one of 2 dietary treatments: (1) low-peuNDF240, high-RFS (LNHR) diet or (2) high-peuNDF240, low-RFS (HNLR) diet. Within each period, rumen fluid samples were collected from each cow on d 26 (1400 h) and d 27 (0600 h and 1000 h), and milk samples were collected from each cow on d 25 (2030 h), d 26 (0430 h, 1230 h, and 2030 h), and d 27 (0430 h and 1230 h). Microbial proteins were isolated from each rumen fluid sample. For milk samples, milk proteins were fractionated, and the whey fraction was subsequently isolated. Isolated proteins within each rumen fluid or milk sample were isobarically labeled and analyzed by liquid chromatography-tandem mass spectrometry. Product ion spectra acquired from rumen fluid samples were searched using SEQUEST against 71 composite databases. In contrast, product ion spectra acquired from milk samples were searched against the Bos taurus database. Data were analyzed using the PROC MIXED procedure in SAS 9.4 to assess the effect of diet and time of sampling. To increase stringency, the false discovery rate-adjusted P-value (PFDR) was also calculated to account for multiple comparisons. Using the mixed procedure, a total of 129 rumen microbial proteins were quantified across 24 searched microbial species. Of these, the abundance of 14 proteins across 9 microbial species was affected due to diet and diet × time interaction, including 7 proteins associated with energetics pathways. Among the 159 quantified milk proteins, the abundance of 21 proteins was affected due to the diet and diet × time interaction. The abundance of 19 of these milk proteins was affected due to diet × time interactions. Of these, 16 proteins had the disparity across diets at the 0430 h sampling time, including proteins involved in host defense, nutrient synthesis, and transportation, suggesting that biological shifts resulting from diet-induced rumen changes are not diurnally uniform across milkings. The concentration of lipoprotein lipase (LPL) was statistically higher in the milk from the cows fed with the LNHR diet, which was numerically confirmed with an ELISA. Further, as determined by ELISA, the LPL concentration was significantly higher in the milk from the cows fed with the LNHR diet at 0430 h sampling point, suggesting that LPL concentration may indicate dietary carbohydrate-induced ruminal changes. The results of this study suggest that diet-induced rumen changes can be reflected in milk in a diurnal pattern, further highlighting the need to consider sampling time points for using milk proteins as a representative biomarker of rumen microbial activity.
Collapse
Affiliation(s)
- B K Mulakala
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405
| | - K M Smith
- William H. Miner Agricultural Research Institute, Chazy, NY 12921
| | - M A Snider
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405; Department of Agriculture, Southeast Missouri State University, Cape Girardeau, MO 63701
| | - A Ayers
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405
| | - M C Honan
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405; Department of Animal Science, University of California, Davis, Davis, CA 95616
| | - S L Greenwood
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405.
| |
Collapse
|
5
|
Yang B, He F, Huan C, Hu R, Li J, Yi K, Kong Z, Luo Y. Bovine Milk Proteome: Milk Fat Globule Membrane Protein Is the Most Sensitive Fraction in Response to High Somatic Cell Count. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15884-15893. [PMID: 37816197 DOI: 10.1021/acs.jafc.3c04480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The impacts of high milk somatic cell count (SCC) on different milk fractions are not well understood. In this study, proteins in milk exosomes, milk fat globule membrane (MFGM), and whey from cows with low (<105 cells/mL, CG) and high SCC (>5 × 105 cells/mL, HSG) were identified using a tandem mass tag proteomic approach. In total, 1568, 2160, and 1002 proteins were identified, with 65, 552, and 98 proteins being altered by high SCC in exosomes, MFGM, and whey, respectively. With high SCC, the exosome marker (ACTB) was increased in the exosomes of HSG. The main MFGM proteins (BTN1A1, PLIN3, FABP3, and MFGE8) and functional proteins (MUC1, IGSF5, TLR5, and CD36/14) were decreased, while the lipid/energy metabolism-related proteins were increased in the MFGM of HSG. The glycolysis-related proteins were increased in the whey of HSG. Also, the host defense/inflammation-related proteins were changed in three fractions under high SCCs. MFGM was the most sensitive fraction to a high SCC, followed by whey. These findings provide guidance for the early detection of unhealthy mammary glands.
Collapse
Affiliation(s)
- Bin Yang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou ,Zhejiang 310023, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University),Ministry of Education, Hangzhou, Zhejiang 310058, China
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan 410131, China
| | - Cheng Huan
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan 410131, China
| | - Renke Hu
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan 410131, China
| | - Jianbo Li
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan 410131, China
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan 410131, China
| | - Zhiwei Kong
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yang Luo
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
- Hunan Institute of Animal and Veterinary Science, Changsha, Hunan 410131, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University),Ministry of Education, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
6
|
Winther AR, da Silva Duarte V, Porcellato D. Metataxonomic analysis and host proteome response in dairy cows with high and low somatic cell count: a quarter level investigation. Vet Res 2023; 54:32. [PMID: 37016420 PMCID: PMC10074679 DOI: 10.1186/s13567-023-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway.
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| |
Collapse
|
7
|
Couvillion SP, Mostoller KE, Williams JE, Pace RM, Stohel IL, Peterson HK, Nicora CD, Nakayasu ES, Webb-Robertson BJM, McGuire MA, McGuire MK, Metz TO. Interrogating the role of the milk microbiome in mastitis in the multi-omics era. Front Microbiol 2023; 14:1105675. [PMID: 36819069 PMCID: PMC9932517 DOI: 10.3389/fmicb.2023.1105675] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
There is growing interest in a functional understanding of milk-associated microbiota as there is ample evidence that host-associated microbial communities play an active role in host health and phenotype. Mastitis, characterized by painful inflammation of the mammary gland, is prevalent among lactating humans and agricultural animals and is associated with significant clinical and economic consequences. The etiology of mastitis is complex and polymicrobial and correlative studies have indicated alterations in milk microbial community composition. Recent evidence is beginning to suggest that a causal relationship may exist between the milk microbiota and host phenotype in mastitis. Multi-omic approaches can be leveraged to gain a mechanistic, molecular level understanding of how the milk microbiome might modulate host physiology, thereby informing strategies to prevent and ameliorate mastitis. In this paper, we review existing studies that have utilized omics approaches to investigate the role of the milk microbiome in mastitis. We also summarize the strengths and challenges associated with the different omics techniques including metagenomics, metatranscriptomics, metaproteomics, metabolomics and lipidomics and provide perspective on the integration of multiple omics technologies for a better functional understanding of the milk microbiome.
Collapse
Affiliation(s)
- Sneha P. Couvillion
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States,*Correspondence: Sneha P. Couvillion, ✉
| | - Katie E. Mostoller
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Janet E. Williams
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Izabel L. Stohel
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Haley K. Peterson
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Carrie D. Nicora
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Ernesto S. Nakayasu
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Bobbie-Jo M. Webb-Robertson
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States
| | - Mark A. McGuire
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Thomas O. Metz
- Pacific Northwest National Laboratory, Earth and Biological Sciences Directorate, Richland, WA, United States,Thomas O. Metz, ✉
| |
Collapse
|
8
|
Thompson J, Everhart Nunn SL, Sarkar S, Clayton B. Diagnostic Screening of Bovine Mastitis Using MALDI-TOF MS Direct-Spotting of Milk and Machine Learning. Vet Sci 2023; 10:vetsci10020101. [PMID: 36851405 PMCID: PMC9962131 DOI: 10.3390/vetsci10020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Novel strategies for diagnostic screening of animal and herd health are crucial to contain disease outbreaks, maintain animal health, and maximize production efficiency. Mastitis is an inflammation of the mammary gland in dairy cows, often resulting from infection from a microorganism. Mastitis outbreaks result in loss of production, degradation of milk quality, and the need to isolate and treat affected animals. In this work, we evaluate MALDI-TOF mass spectrometry as a diagnostic for the culture-less screening of mastitis state from raw milk samples collected from regional dairies. Since sample preparation requires only minutes per sample using microvolumes of reagents and no cell culture, the technique is promising for rapid sample turnaround and low-cost diagnosis. Machine learning algorithms have been used to detect patterns embedded within MALDI-TOF spectra using a training set of 226 raw milk samples. A separate scoring set of 100 raw milk samples has been used to assess the specificity (spc) and sensitivity (sens) of the approach. Of machine learning models tested, the gradient-boosted tree model gave global optimal results, with the Youden index of J = 0.7, sens = 0.89, and spc = 0.81 achieved for the given set of conditions. Random forest models also performed well, achieving J > 0.63, with sens = 0.83 and spc = 0.81. Naïve Bayes, generalized linear, fast large-margin, and deep learning models failed to produce diagnostic results that were as favorable. We conclude that MALDI-TOF MS combined with machine learning is an alternative diagnostic tool for detection of high somatic cell count (SCC) and subclinical mastitis in dairy herds.
Collapse
Affiliation(s)
- Jonathan Thompson
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Correspondence:
| | - Savana L. Everhart Nunn
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
| | - Sumon Sarkar
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
| | - Beth Clayton
- Dairy Herd Improvement Association, 301 23rd St., 117B, Canyon, TX 79015, USA
| |
Collapse
|
9
|
Wang Y, Nan X, Zhao Y, Jiang L, Wang H, Zhang F, Hua D, Liu J, Yang L, Yao J, Xiong B. Changes in the Profile of Fecal Microbiota and Metabolites as Well as Serum Metabolites and Proteome After Dietary Inulin Supplementation in Dairy Cows With Subclinical Mastitis. Front Microbiol 2022; 13:809139. [PMID: 35479637 PMCID: PMC9037088 DOI: 10.3389/fmicb.2022.809139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of mastitis is linked to dysbiostic gastrointestinal microbiota. Inulin is a dietary prebiotic that improves the profile of intestinal flora. Our previous study showed that inulin supplementation could improve the ruminal microbes of subclinical mastitis (SCM) cows. The current study attempted to further investigate the response of hindgut (fecal) microbiome and metabolites, serum metabolism, and protein expression to inulin in the in SCM cows. Different levels of inulin (0, 100, 200, 300, and 400 g/day per cow) were supplemented in SCM cows. Compared with control group, Bacteroides and Bifidobacteria were increased, and Paeniclostridium, Ruminococcaceae, Coprococcus, and Clostridia were decreased in the feces of inulin groups, and accompanied with elevated propionate and butyrate concentrations, while secondary bile acid (SBA) metabolites were increased and proinflammatory lipid oxidation products were dropped in both feces and serum. In serum, inulin intake suppressed the levels of triglyceride (TG) and low-density lipoprotein (LDL). Serum proteome analysis found that CD44 antigen, phosphatidylinositol-glycan-specific phospholipase D, apolipoprotein A-II, and superoxide dismutase [Cu-Zn] were upregulated, while cathelicidin-1, haptoglobin, serpin A3, inter-alpha-trypsin inhibitor heavy chain H4 were downregulated in inulin groups. These findings suggested further evidence for inulin supplementation in amelioration of inflammatory symptoms in SCM cows, which might provide alternative treatment for mastitis.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dengke Hua
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Liu
- Langfang Academy of Agriculture and Forestry, Langfang, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Xiao J, Wang J, Gan R, Wu D, Xu Y, Peng L, Geng F. Quantitative N-glycoproteome analysis of bovine milk and yogurt. Curr Res Food Sci 2022; 5:182-190. [PMID: 35072106 PMCID: PMC8763629 DOI: 10.1016/j.crfs.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Post-translational modification structure of food's proteins might be changed during processing, thereby affecting the nutritional characteristics of the food product. In this study, differences in protein N-glycosylation patterns between milk and yogurt were quantitatively compared based on glycopeptide enrichment, liquid chromatography separation, and tandem mass spectrometry analysis. A total of 181 N-glycosites were identified, among which 142 were quantified in milk and yogurt. Significant alterations in the abundance of 13 of these N-glycosites were evident after the fermentation of milk into yogurt. Overall, the N-glycosylation status of the majority of milk proteins remained relatively unchanged in yogurt, suggesting that their conformations, activities, and functions were maintained despite the fermentation process. Among the main milk proteins, N241 of cathepsin D and N358 of lactoperoxidase were markedly reduced after undergoing lactic acid fermentation to produce yogurt. Furthermore, a comparative analysis of current and previously reported N-glycoproteomic data revealed heterogeneity in the N-glycosylation of milk proteins. To sum up, a quantitative comparison of the N-glycoproteomes of milk and yogurt was presented here for the first time, providing evidence that the fermentation process of yogurt could cause changes in the N-glycosylation of certain milk proteins. 181 N-glycosites from 118 N-glycoproteins were identified in milk and yogurt. 13 N-glycosites changed significantly after fermentation of milk into yogurt. N241 of cathepsin D and N358 of lactoperoxidase was markedly reduced in yogurt. Heterogeneity of N-glycosylation of milk protein has been documented.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, 610213, Sichuan, China
| | - Di Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yisha Xu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Corresponding author.
| |
Collapse
|
11
|
Understanding the genomic architecture of clinical mastitis in Bos indicus. 3 Biotech 2021; 11:466. [PMID: 34745817 DOI: 10.1007/s13205-021-03012-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
This study elucidated potential genetic variants and QTLs associated with clinical mastitis incidence traits in Bos indicus breed, Sahiwal. Estimated breeding values for the traits (calculated using Bayesian inference) were used as pseudo-phenotypes for association with genome-wide SNPs and further QTL regions underlying the traits were identified. In all, 25 SNPs were found to be associated with the traits at the genome-wide suggestive threshold (p ≤ 5 × 10-4) and these SNPs were used to define QTL boundaries based on the linkage disequilibrium structure. A total of 16 QTLs were associated with the trait EBVs including seven each for clinical mastitis incidence (CMI) in first and second lactations and two for CMI in third lactation. Nine out of sixteen QTLs overlapped with the already reported QTLs for mastitis traits, whereas seven were adjudged as novel ones. Important candidates for clinical mastitis in the identified QTL regions included DNAJB9, ELMO1, ARHGAP26, NR3C1, CACNB2, RAB4A, GRB2, NUP85, SUMO2, RBPJ, and RAB33B genes. These findings shed light on the genetic architecture of the disease in Bos indicus, and present potential regions for fine mapping and downstream analysis in future.
Collapse
|
12
|
Single-Shot Vaccines against Bovine Respiratory Syncytial Virus (BRSV): Comparative Evaluation of Long-Term Protection after Immunization in the Presence of BRSV-Specific Maternal Antibodies. Vaccines (Basel) 2021; 9:vaccines9030236. [PMID: 33803302 PMCID: PMC8001206 DOI: 10.3390/vaccines9030236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
The induction of long-lasting clinical and virological protection is needed for a successful vaccination program against the bovine respiratory syncytial virus (BRSV). In this study, calves with BRSV-specific maternally derived antibodies were vaccinated once, either with (i) a BRSV pre-fusion protein (PreF) and MontanideTM ISA61 VG (ISA61, n = 6), (ii) BRSV lacking the SH gene (ΔSHrBRSV, n = 6), (iii) a commercial vaccine (CV, n = 6), or were injected with ISA61 alone (n = 6). All calves were challenged with BRSV 92 days later and were euthanized 13 days post-infection. Based on clinical, pathological, and proteomic data, all vaccines appeared safe. Compared to the controls, PreF induced the most significant clinical and virological protection post-challenge, followed by ΔSHrBRSV and CV, whereas the protection of PreF-vaccinated calves was correlated with BRSV-specific serum immunoglobulin (Ig)G antibody responses 84 days post-vaccination, and the IgG antibody titers of ΔSHrBRSV- and CV-vaccinated calves did not differ from the controls on this day. Nevertheless, strong anamnestic BRSV- and PreF-specific IgG responses occurred in calves vaccinated with either of the vaccines, following a BRSV challenge. In conclusion, PreF and ΔSHrBRSV are two efficient one-shot candidate vaccines. By inducing a protection for at least three months, they could potentially improve the control of BRSV in calves.
Collapse
|
13
|
Zhu J, Dingess KA, Mank M, Stahl B, Heck AJR. Personalized Profiling Reveals Donor- and Lactation-Specific Trends in the Human Milk Proteome and Peptidome. J Nutr 2021; 151:826-839. [PMID: 33693758 PMCID: PMC8030701 DOI: 10.1093/jn/nxaa445] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/17/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human milk is the most genuine form of personalized nutrition, whereby its nutritional and bioactive constituents support the changing needs of the growing infant. Personalized proteome profiling strategies may provide insights into maternal-infant relationships. Proteins and endogenous peptides in human milk play an important role as nutrients for growth and have distinct functionality such as immune defense. Comprehensive monitoring of all of the human milk proteinaceous components, including endogenous peptides, is required to fully understand the changing role of the human milk proteome throughout lactation. OBJECTIVE We aimed to investigate the personalized nature of the human milk proteome and peptidome for individual mother-infant dyads. METHODS Two individual healthy milk donors, aged 29 and 32 y and both of a normal BMI, were longitudinally observed over weeks 1, 2, 3, 4, 6, 8, 10, 12, and 16 postpartum. Milk collection was standardized. Comprehensive variations in the human milk proteinaceous components were assessed using quantitative LC-MS/MS methods. RESULTS We longitudinally profiled the concentrations of >1300 milk proteins and 2000 endogenous milk peptides spanning 16 wk of lactation for 2 individual donors. We observed many gradual and alike changes in both donors related to temporal effects, for instance early lactation was marked by high concentrations of proteins and peptides involved in lactose synthesis and immune development. Uniquely, in 1 of the 2 donors, we observed a substantial anomaly in the milk composition, exclusively at week 6, likely indicating a response to inflammation and/or infection. CONCLUSIONS Here, we provide a resource for characterizing the lactational changes in the human milk proteome, encompassing thousands of proteins and endogenous peptides. Further, we demonstrate the feasibility and benefit of personalized profiling to monitor the influence of milk on the development of the newborn, as well as the health status of each individual mother-infant pair.
Collapse
Affiliation(s)
- Jing Zhu
- Present address for JZ: Beijing Institute of Nutritional Resources, Beijing, China
| | - Kelly A Dingess
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands,Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Marko Mank
- Danone Nutricia Research, Utrecht, The Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, Utrecht, The Netherlands,Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
14
|
Matuozzo M, Spagnuolo MS, Hussein HA, Gomaa AM, Scaloni A, D’Ambrosio C. Novel Biomarkers of Mastitis in Goat Milk Revealed by MALDI-TOF-MS-Based Peptide Profiling. BIOLOGY 2020; 9:E193. [PMID: 32731427 PMCID: PMC7464427 DOI: 10.3390/biology9080193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
Mastitis is the most common infection of dairy goats impairing milk production and quality, which is usually recognized by mammary gland visual inspection and palpation. Subclinical forms of the disease are also widely represented, which lack the typical signs of the clinical ones but are still associated with reduced production and safety for human consumption of milk, generally presenting a high bacterial count. In order to obtain novel analytical tools for rapid and non-invasive diagnosis of mastitis in goats, we analyzed milk samples from healthy, subclinical and clinical mastitic animals with a MALDI-TOF-MS-based peptidomic platform, generating disease group-specific spectral profiles whose signal intensity and mass values were analyzed by statistics. Peculiar spectral signatures of mastitis with respect to the control were identified, while no significant spectral differences were observed between clinical and subclinical milk samples. Discriminant signals were assigned to specific peptides through nanoLC-ESI-Q-Orbitrap-MS/MS experiments. Some of these molecules were predicted to have an antimicrobial activity based on their strong similarity with homolog bioactive compounds from other mammals. Through the definition of a panel of peptide biomarkers, this study provides a very rapid and low-cost method to routinely detect mastitic milk samples even though no evident clinical signs in the mammary gland are observed.
Collapse
Affiliation(s)
- Monica Matuozzo
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR), 80147 Naples, Italy; (M.M.); (M.S.S.); (A.S.)
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR), 80147 Naples, Italy; (M.M.); (M.S.S.); (A.S.)
| | - Hany A. Hussein
- Department of Animal Reproduction and Artificial Insemination, National Research Centre, Giza 12622, Egypt;
- Department of Veterinary Research, Guangdong Haid Institute of Animal Husbandry and Veterinary (GHIAHV), Guangzhou 511400, China
| | - A. M. Gomaa
- Animal Reproduction Research Institute (ARRI), Agriculture Research Center, Ministry of Agriculture, Giza 12556, Egypt;
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR), 80147 Naples, Italy; (M.M.); (M.S.S.); (A.S.)
| | - Chiara D’Ambrosio
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council (CNR), 80147 Naples, Italy; (M.M.); (M.S.S.); (A.S.)
| |
Collapse
|
15
|
Reinhardt TA, Lippolis JD. Characterization of bovine mammary gland dry secretions and their proteome from the end of lactation through day 21 of the dry period. J Proteomics 2020; 223:103831. [DOI: 10.1016/j.jprot.2020.103831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
|
16
|
Optimization of Preservation Methods Allows Deeper Insights into Changes of Raw Milk Microbiota. Microorganisms 2020; 8:microorganisms8030368. [PMID: 32151050 PMCID: PMC7142718 DOI: 10.3390/microorganisms8030368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
The temporal instability of raw milk microbiota drastically affects the reliability of microbiome studies. However, little is known about the microbial integrity in preserved samples. Raw cow milk samples were preserved with azidiol or bronopol and stored at 4 °C, or with dimethyl sulfoxide (DMSO) or a mixture of azidiol and DMSO and stored at −20 °C for up to 30 days. Aliquots of 5-, 10-, and 30-day post-storage were treated with propidium monoazide (PMA), then analyzed by sequencing the 16S rRNA gene V3-V4 and V6-V8 regions. The V6-V8 gave a higher richness and lower diversity than the V3-V4 region. After 5-day storage at 4 °C, the microbiota of unpreserved samples was characterized by a drastic decrease in diversity, and a significant shift in community structure. The treatment with azidiol and DMSO conferred the best community stabilization in preserved raw milk. Interestingly, the azidiol treatment performed as well for up to 10 days, thus appearing as a suitable alternative. However, neither azidiol nor bronopol could minimize fungal proliferation as revealed by PMA-qPCR assays. This study demonstrates the preservative ability of a mixture of azidiol and DMSO and provides deeper insights into the microbial changes occurring during the cold storage of preserved raw milk.
Collapse
|
17
|
Tanamati F, Taylor JF, Behura SK, Santos DJA, Stafuzza NB, Andrade WBF, Gasparino E, Tonhati H. Short communication: Characterization of the milk protein expression profiles in dairy buffaloes with and without subclinical mastitis. J Dairy Sci 2020; 103:2677-2684. [PMID: 31954559 DOI: 10.3168/jds.2019-16907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 11/19/2019] [Indexed: 11/19/2022]
Abstract
The aim of this study was to characterize the proteins present in milk whey from buffaloes with and without subclinical mastitis using a proteomic approach to identify differentially expressed proteins as potential biomarkers for this disease. Whey from Murrah buffaloes with subclinical mastitis was compared with whey from healthy animals using liquid chromatography-tandem mass spectrometry. The annotated protein databases for Bubalus bubalis and Bos taurus were used in the analysis, and the gene annotations from the buffalo and bovine reference assemblies were also used. After integrating gene annotations from both buffaloes and bovines, a total of 1,033 proteins were identified, of which 156 were differentially expressed. Eighteen biological processes were annotated with Gene Ontology. Cathelicidin-3 was identified as a potential biomarker for subclinical mastitis. These results are important to the characterization of mastitis in the buffalo mammary gland and may aid in the development of tools for early diagnosis.
Collapse
Affiliation(s)
- Fernanda Tanamati
- Department of Animal Science, São Paulo State University (FCAV/UNESP), Jaboticabal 14884-900, Brazil
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia 65211
| | - Daniel J A Santos
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| | | | - Willian B F Andrade
- Department of Animal Science, São Paulo State University (FCAV/UNESP), Jaboticabal 14884-900, Brazil
| | - Eliane Gasparino
- Department of Animal Sciences, Maringá State University (UEM), Maringá 87020-900, Brazil
| | - Humberto Tonhati
- Department of Animal Science, São Paulo State University (FCAV/UNESP), Jaboticabal 14884-900, Brazil.
| |
Collapse
|
18
|
Abstract
Grape marc (GPM) is a viticulture by-product that is rich in secondary compounds, including condensed tannins (CT), and is used as a supplement in livestock feeding practices. The aim of this study was to determine whether feeding GPM to lactating dairy cows would alter the milk proteome through changes in nitrogen (N) partitioning. Ten lactating Holstein cows were fed a total mixed ration (TMR) top-dressed with either 1.5 kg dry matter (DM)/cow/day GPM (GPM group; n = 5) or 2.0 kg DM/cow/day of a 50:50 beet pulp: soy hulls mix (control group; n = 5). Characterization of N partitioning and calculation of N partitioning was completed through analysis of plasma urea-N, urine, feces, and milk urea-N. Milk samples were collected for general composition analysis, HPLC quantification of the high abundance milk proteins (including casein isoforms, α-lactalbumin, and β-lactoglobulin) and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the low abundance protein enriched milk fraction. No differences in DMI, N parameters, or calculated N partitioning were observed across treatments. Dietary treatment did not affect milk yield, milk protein or fat content or yield, or the concentrations of high abundance milk proteins quantified by HPLC analysis. Of the 127 milk proteins that were identified by LC-MS/MS analysis, 16 were affected by treatment, including plasma proteins and proteins associated with the blood-milk barrier, suggesting changes in mammary passage. Immunomodulatory proteins, including butyrophilin subfamily 1 member 1A and serum amyloid A protein, were higher in milk from GPM-fed cows. Heightened abundance of bioactive proteins in milk caused by dietary-induced shifts in mammary passage could be a feasible method to enhance the healthfulness of milk for both the milk-fed calf and human consumer. Additionally, the proteome shifts observed in this trial could provide a starting point for the identification of biomarkers suitable for use as indicators of mammary function.
Collapse
|
19
|
Ujita A, Negrão JA, Filho AEV, Fernandes AR, Faro LE. Milk lactoferrin and milk constituents in dairy Gyr heifers. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Greenwood SL, Honan MC. Symposium review: Characterization of the bovine milk protein profile using proteomic techniques. J Dairy Sci 2019; 102:2796-2806. [PMID: 30612793 DOI: 10.3168/jds.2018-15266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/26/2018] [Indexed: 12/27/2022]
Abstract
Identification and characterization of the comprehensive bovine milk proteome has historically been limited due to the dichotomy of protein abundances within milk. The high abundance of a select few proteins, including caseins, α-lactalbumin, β-lactoglobulin, and serum albumin, has hindered intensive identification and characterization of the vast array of low-abundance proteins in milk due to limitations in separation techniques and protein labeling capacity. In more recent years, the development and advancement of proteomics techniques have yielded valuable tools for characterization of the protein profile in bovine milk. More extensive fractionation and enrichment techniques, including the use of combinations of precipitation techniques, immunosorption, gel electrophoresis, chromatography, ultracentrifugation, and hexapeptide-based binding enrichment, have allowed for better isolation of lower abundance proteins for further downstream liquid chromatography-tandem mass spectrometry approaches. The different milk subfractions isolated during these processes can also be analyzed as individual entities to assess the protein profile unique to the different fractions-for instance, investigation of the skim milk-associated proteome versus the milk fat globule membrane-associated proteome. Updates to high-throughput methods, equipment, and software have also allowed for greater interpretation and visualization of the data. For instance, labeling techniques have enabled analysis of multiplexed samples and more accurate comparison of specific protein abundances and quantities across samples, and integration of gene ontology analysis has allowed for a more in-depth and visual representation of potential relationships between identified proteins. Inclusively, these developments in proteomic techniques have allowed for a rapid increase in the number of milk-associated proteins identified and a better grasp of the relationships and potential functionality of the proteins within the milk proteome.
Collapse
Affiliation(s)
- Sabrina L Greenwood
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405.
| | - Mallory C Honan
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| |
Collapse
|
21
|
Tacoma R, Gelsinger SL, Lam YW, Scuderi RA, Ebenstein DB, Heinrichs AJ, Greenwood SL. Exploration of the bovine colostrum proteome and effects of heat treatment time on colostrum protein profile. J Dairy Sci 2017; 100:9392-9401. [PMID: 28918156 PMCID: PMC6350923 DOI: 10.3168/jds.2017-13211] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023]
Abstract
Heat treatment of colostrum is performed on modern dairy farms to reduce pathogenic contamination before hand-feeding the colostrum to newborn calves; however, limited data are available concerning effects of heat treatment on biologically active proteins in colostrum. The objective of this exploratory study was to investigate effects of heat treatment and length of heat treatment on colostrum protein profile. Colostrum samples were collected from Holstein cows within 12 h after parturition and assigned to the following groups: heat treatment at 60°C for 0 (untreated control), 30, 60, or 90 min. Samples were fractionated using acid precipitation, followed by ultracentrifugation and ProteoMiner (Bio-Rad Laboratories, Hercules, CA) treatment, and tandem-mass tagging was used to comparatively assess the low abundance protein profile. A total of 162 proteins were identified with more than 2 peptides in the low abundance protein enriched fraction. Of these, 62 differed in abundance by more than 2-fold in heat treated samples compared with the unheated control. The majority of proteins affected by heat treatment were involved in immunity, enzyme function, and transport-related processes; affected proteins included lactadherin, chitinase-3-like protein 1, and complement component C9. These results provide a foundation for further research to determine optimum heat treatment practices to ensure newborn calves are fed colostrum-containing proteins with the highest nutritional and biological value.
Collapse
Affiliation(s)
- R Tacoma
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| | - S L Gelsinger
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - Y W Lam
- Vermont Genetics Network Proteomics Facility, The University of Vermont, Burlington 05405
| | - R A Scuderi
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| | - D B Ebenstein
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| | - A J Heinrichs
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| | - S L Greenwood
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington 05405
| |
Collapse
|
22
|
Tacoma R, Fields J, Ebenstein DB, Lam YW, Greenwood SL. Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows. J Dairy Sci 2017; 100:7246-7261. [PMID: 28711247 PMCID: PMC6350925 DOI: 10.3168/jds.2017-12647] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/17/2017] [Indexed: 02/03/2023]
Abstract
Little is known about the bovine milk proteome or whether it can be affected by diet. The objective of this study was to determine if the dietary rumen degradable protein (RDP):rumen undegradable protein (RUP) ra-tio could alter the bovine milk proteome. Six Holstein cows (parity: 2.5 ± 0.8) in mid lactation were blocked by days in milk (80 ± 43 d in milk) and milk yield (57.5 ± 6.0 kg) and randomly assigned to treatment groups. The experiment was conducted as a double-crossover design consisting of three 21-d periods. Within each period, treatment groups received diets with either (1) a high RDP:RUP ratio (RDP treatment: 62.4:37.6% of crude protein) or (2) a low RDP:RUP ratio (RUP treatment: 51.3:48.7% of crude protein). Both diets were isonitrogenous and isoenergetic (crude protein: 18.5%, net energy for lactation: 1.8 Mcal/kg of dry matter). To confirm N and energy status of cows, dry matter intake was determined daily, rumen fluid samples were collected for volatile fatty acid analysis, blood samples were collected for plasma glucose, β-hydroxybutyrate, urea nitrogen, and fatty acid analysis, and total 24-h urine and fecal samples were collected for N analysis. Milk samples were collected to determine the general milk composition and the protein profile. Milk samples collected for high-abundance protein analysis were subjected to HPLC analysis to determine the content of α-casein, β-casein, and κ-casein, as well as α-lactalbumin and β-lactoglobulin. Samples collected for low-abundance protein analysis were fractionated, enriched using ProteoMiner treatment, and separated using sodium dodecyl sulfate-PAGE. After excision and digestion, the peptides were analyzed using liquid chromatography (LC) tandem mass spectrometry (MS/MS). The LC-MS/MS data were analyzed using PROC GLIMMIX of SAS (version 9.4, SAS Institute Inc., Cary, NC) and adjusted using the MULTTEST procedure. All other parameters were analyzed using PROC MIXED of SAS. No treatment differences were observed in dry matter intake, milk yield, general milk composition, plasma parameters, or rumen volatile fatty acid concentrations, indicating no shift in total energy or protein available. Milk urea N and plasma urea N concentrations were higher in the RDP group, indicating some shift in N partitioning due to diet. A total of 595 milk proteins were identified, with 83% of these proteins known to be involved in cellular processes. Although none of the low-abundance proteins identified by LC-MS/MS were affected by diet, feeding a diet high in RUP decreased β-casein, κ-casein, and total milk casein concentration. Further investigations of the interactions between diet and the milk protein profile are needed to manipulate the milk proteome using diet.
Collapse
Affiliation(s)
- R Tacoma
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, 05405
| | - J Fields
- Vermont Genetics Network Proteomics Facility, University of Vermont, Burlington, 05405
| | - D B Ebenstein
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, 05405
| | - Y-W Lam
- Vermont Genetics Network Proteomics Facility, University of Vermont, Burlington, 05405; Department of Biology, University of Vermont, Burlington, 05405
| | - S L Greenwood
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, 05405.
| |
Collapse
|
23
|
Timonen AAE, Katholm J, Petersen A, Mõtus K, Kalmus P. Within-herd prevalence of intramammary infection caused by Mycoplasma bovis and associations between cow udder health, milk yield, and composition. J Dairy Sci 2017; 100:6554-6561. [PMID: 28601455 DOI: 10.3168/jds.2016-12267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/14/2017] [Indexed: 11/19/2022]
Abstract
Subclinical mastitis is one of the major health problems in dairy herds due to decreased milk production and reduced milk quality. The aim of this study was to examine the within-herd prevalence of subclinical intramammary infection caused by Mycoplasma bovis and to evaluate associations between M. bovis and cow daily milk yield, udder health, and milk composition. Individual cow composite milk samples (n = 522) were collected from all lactating dairy cows in 1 Estonian dairy farm in November 2014. Daily milk yield, days in milk, and parity were recorded. Collected milk samples were analyzed for somatic cell count, milk protein, fat, and urea content. The presence of M. bovis, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus uberis in the milk samples was confirmed by quantitative PCR analysis. The within-herd prevalence of M. bovis was 17.2% in the study herd. No association was observed between days in milk and parity to the presence of M. bovis in milk. According to linear regression analysis, the daily milk yield from cows positive for M. bovis was on average 3.0 kg lower compared with cows negative for M. bovis. In addition, the presence of M. bovis in milk samples was significantly associated with higher somatic cell count and lower fat and urea content compared with milk samples negative for M. bovis. In conclusion, subclinical M. bovis intramammary infection is associated with decreased milk yield and lower milk quality.
Collapse
Affiliation(s)
- Anri A E Timonen
- Department of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, 51014, Estonia.
| | - Jørgen Katholm
- DNA Diagnostic A/S, Voldbjergvej 16, 8240 Risskov, Denmark
| | | | - Kerli Mõtus
- Department of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, 51014, Estonia
| | - Piret Kalmus
- Department of Clinical Veterinary Medicine, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, Tartu, 51014, Estonia
| |
Collapse
|
24
|
|
25
|
Addis MF, Tedde V, Puggioni GMG, Pisanu S, Casula A, Locatelli C, Rota N, Bronzo V, Moroni P, Uzzau S. Evaluation of milk cathelicidin for detection of bovine mastitis. J Dairy Sci 2016; 99:8250-8258. [PMID: 27522416 DOI: 10.3168/jds.2016-11407] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/28/2016] [Indexed: 11/19/2022]
Abstract
Mastitis due to intramammary infection is one of the most economically relevant diseases in dairy cows, causing reductions in milk quality and quantity. Currently, mastitis monitoring is based on somatic cell count (SCC) and bacteriologic culture (BC) of milk. Nevertheless, inflammation-specific protein markers might provide more sensitive and reliable assays, enabling immunoassay-based screening strategies. Cathelicidin is an inflammatory protein released in milk that has recently demonstrated fair reliability and diagnostic potential for ewe mastitis. To assess its performance in cows, 531 quarter milk samples from 2 herds were tested using cathelicidin ELISA, SCC, and BC. We found that 29.0% of samples were positive for cathelicidin, 18.8% had SCC >200,000 cells/mL, and 13.7% were BC-positive. Cathelicidin showed a strong positive correlation with SCC as demonstrated by receiver operating characteristics curve analysis and by the clustering of cathelicidin-negative and cathelicidin-positive samples in association with low and high SCC values, respectively. For evaluating the diagnostic performance of a novel test, BC cannot be considered a reliable gold standard for true disease status because of its known limitations. Therefore, we assessed the sensitivity (Se) and specificity (Sp) of the milk cathelicidin ELISA using a latent class analysis approach together with BC and SCC by considering different diagnostic thresholds to identify the preferred Se/Sp combination. We modeled conditional dependence of cathelicidin and SCC to account for their close association. The cathelicidin ELISA showed higher Se than SCC and BC for almost all threshold combinations. In fact, at the best-performing threshold combination, the Se of cathelicidin was 80.6%, 6.2 percentage points higher than that of SCC >200,000 cells/mL (74.4%) and similar to that of SCC >100,000 cells/mL (80.2%). Most importantly, this Se was obtained with a loss in Sp of only 1.4 percentage points compared with SCC >200,000 cells/mL (94.9% Sp for cathelicidin vs. 96.3% for SCC >200,000). The limited Se of BC (38.8%) was also confirmed in this study, and BC showed a slightly lower Sp than both cathelicidin and SCC for most of threshold combinations. This study confirmed that cathelicidin is released in the milk of cows with mastitis and that its presence is highly correlated with SCC. The measurement of cathelicidin by ELISA may hold significant potential for improving the sensitivity of mastitis detection in dairy cows while maintaining high specificity.
Collapse
Affiliation(s)
- M F Addis
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy.
| | - V Tedde
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy
| | - G M G Puggioni
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy
| | - S Pisanu
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy
| | - A Casula
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - C Locatelli
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - N Rota
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - V Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - P Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; Animal Health Diagnostic Center, Quality Milk Production Services, Cornell University, 240 Farrier Road, Ithaca, NY 14853
| | - S Uzzau
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041 Alghero, Italy; Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|
26
|
A proteomics-based identification of putative biomarkers for disease in bovine milk. Vet Immunol Immunopathol 2016; 174:11-8. [PMID: 27185258 DOI: 10.1016/j.vetimm.2016.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 10/22/2022]
Abstract
The objective of this study was to identify and characterize potential biomarkers for disease resistance in bovine milk that can be used to indicate dairy cows at risk to develop future health problems. We selected high- and low-resistant cows i.e. cows that were less or more prone to develop diseases according to farmers' experience and notifications in the disease registration data. The protein composition of milk serum samples of these high- and low-resistant cows were compared using NanoLC-MS/MS. In total 78 proteins were identified and quantified of which 13 were significantly more abundant in low-resistant cows than high-resistant cows. Quantification of one of these proteins, lactoferrin (LF), by ELISA in a new and much larger set of full fat milk samples confirmed higher LF levels in low- versus high-resistant cows. These high- and low-resistant cows were selected based on comprehensive disease registration and milk recording data, and absence of disease for at least 4 weeks. Relating the experienced diseases to LF levels in milk showed that lameness was associated with higher LF levels in milk. Analysis of the prognostic value of LF showed that low-resistant cows with higher LF levels in milk had a higher risk of being culled within one year after testing than high-resistant cows. In conclusion, LF in milk are higher in low-resistant cows, are associated with lameness and may be a prognostic marker for risk of premature culling.
Collapse
|