1
|
Teng J, Zhai T, Zhang X, Zhao C, Wang W, Tang H, Wang D, Shang Y, Ning C, Zhang Q. Improving multi-population genomic prediction accuracy using multi-trait GBLUP models which incorporate global or local genetic correlation information. Brief Bioinform 2024; 25:bbae276. [PMID: 38856170 PMCID: PMC11163384 DOI: 10.1093/bib/bbae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/05/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
In the application of genomic prediction, a situation often faced is that there are multiple populations in which genomic prediction (GP) need to be conducted. A common way to handle the multi-population GP is simply to combine the multiple populations into a single population. However, since these populations may be subject to different environments, there may exist genotype-environment interactions which may affect the accuracy of genomic prediction. In this study, we demonstrated that multi-trait genomic best linear unbiased prediction (MTGBLUP) can be used for multi-population genomic prediction, whereby the performances of a trait in different populations are regarded as different traits, and thus multi-population prediction is regarded as multi-trait prediction by employing the between-population genetic correlation. Using real datasets, we proved that MTGBLUP outperformed the conventional multi-population model that simply combines different populations together. We further proposed that MTGBLUP can be improved by partitioning the global between-population genetic correlation into local genetic correlations (LGC). We suggested two LGC models, LGC-model-1 and LGC-model-2, which partition the genome into regions with and without significant LGC (LGC-model-1) or regions with and without strong LGC (LGC-model-2). In analysis of real datasets, we demonstrated that the LGC models could increase universally the prediction accuracy and the relative improvement over MTGBLUP reached up to 163.86% (25.64% on average).
Collapse
Affiliation(s)
- Jun Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
- Shandong Futeng Food Co. Ltd., Zaozhuang 277500, Shandong, China
| | - Tingting Zhai
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xinyi Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Changheng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Dan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yingli Shang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, Shandong, China
| |
Collapse
|
2
|
Chafai N, Hayah I, Houaga I, Badaoui B. A review of machine learning models applied to genomic prediction in animal breeding. Front Genet 2023; 14:1150596. [PMID: 37745853 PMCID: PMC10516561 DOI: 10.3389/fgene.2023.1150596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
The advent of modern genotyping technologies has revolutionized genomic selection in animal breeding. Large marker datasets have shown several drawbacks for traditional genomic prediction methods in terms of flexibility, accuracy, and computational power. Recently, the application of machine learning models in animal breeding has gained a lot of interest due to their tremendous flexibility and their ability to capture patterns in large noisy datasets. Here, we present a general overview of a handful of machine learning algorithms and their application in genomic prediction to provide a meta-picture of their performance in genomic estimated breeding values estimation, genotype imputation, and feature selection. Finally, we discuss a potential adoption of machine learning models in genomic prediction in developing countries. The results of the reviewed studies showed that machine learning models have indeed performed well in fitting large noisy data sets and modeling minor nonadditive effects in some of the studies. However, sometimes conventional methods outperformed machine learning models, which confirms that there's no universal method for genomic prediction. In summary, machine learning models have great potential for extracting patterns from single nucleotide polymorphism datasets. Nonetheless, the level of their adoption in animal breeding is still low due to data limitations, complex genetic interactions, a lack of standardization and reproducibility, and the lack of interpretability of machine learning models when trained with biological data. Consequently, there is no remarkable outperformance of machine learning methods compared to traditional methods in genomic prediction. Therefore, more research should be conducted to discover new insights that could enhance livestock breeding programs.
Collapse
Affiliation(s)
- Narjice Chafai
- Laboratory of Biodiversity, Ecology, and Genome, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Ichrak Hayah
- Laboratory of Biodiversity, Ecology, and Genome, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Isidore Houaga
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Royal (Dick) School of Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology, and Genome, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| |
Collapse
|
3
|
Improving Genomic Prediction Accuracy in the Chinese Holstein Population by Combining with the Nordic Holstein Reference Population. Animals (Basel) 2023; 13:ani13040636. [PMID: 36830423 PMCID: PMC9951650 DOI: 10.3390/ani13040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
The size of the reference population is critical in order to improve the accuracy of genomic prediction. Indeed, improving genomic prediction accuracy by combining multinational reference populations has proven to be effective. In this study, we investigated the improvement of genomic prediction accuracy in seven complex traits (i.e., milk yield; fat yield; protein yield; somatic cell count; body conformation; feet and legs; and mammary system conformation) by combining the Chinese and Nordic Holstein reference populations. The estimated genetic correlations between the Chinese and Nordic Holstein populations are high with respect to protein yield, fat yield, and milk yield-whereby these correlations range from 0.621 to 0.720-and are moderate with respect to somatic cell count (0.449), but low for the three conformation traits (which range from 0.144 to 0.236). When utilizing the joint reference data and a two-trait GBLUP model, the genomic prediction accuracy in the Chinese Holsteins improves considerably with respect to the traits with moderate-to-high genetic correlations, whereas the improvement in Nordic Holsteins is small. When compared with the single population analysis, using the joint reference population for genomic prediction in younger animals, results in a 2.3 to 8.1 percent improvement in accuracy. Meanwhile, 10 replications of five-fold cross-validation were also implemented in order to evaluate the performance of joint genomic prediction, thereby resulting in a 1.6 to 5.2 percent increase in accuracy. With respect to joint genomic prediction, the bias was found to be quite low. However, for traits with low genetic correlations, the joint reference data do not improve the prediction accuracy substantially for either population.
Collapse
|
4
|
Li X, Song H, Zhang Z, Huang Y, Zhang Q, Ding X. The theory on and software simulating large-scale genomic data for genotype-by-environment interactions. BMC Genomics 2021; 22:877. [PMID: 34865618 PMCID: PMC8647494 DOI: 10.1186/s12864-021-08191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background With the emphasis on analysing genotype-by-environment interactions within the framework of genomic selection and genome-wide association analysis, there is an increasing demand for reliable tools that can be used to simulate large-scale genomic data in order to assess related approaches. Results We proposed a theory to simulate large-scale genomic data on genotype-by-environment interactions and added this new function to our developed tool GPOPSIM. Additionally, a simulated threshold trait with large-scale genomic data was also added. The validation of the simulated data indicated that GPOSPIM2.0 is an efficient tool for mimicking the phenotypic data of quantitative traits, threshold traits, and genetically correlated traits with large-scale genomic data while taking genotype-by-environment interactions into account. Conclusions This tool is useful for assessing genotype-by-environment interactions and threshold traits methods.
Collapse
Affiliation(s)
- Xiujin Li
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangdong, 510225, Guangzhou, People's Republic of China
| | - Hailiang Song
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yunmao Huang
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangdong, 510225, Guangzhou, People's Republic of China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271001, Taian, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
5
|
Silva DA, Lopes PS, Costa CN, Silva AA, Silva HT, Silva FF, Veroneze R, Thompson G, Carvalheira J. Genotype by environment interaction for Holstein cattle populations using autoregressive and within- and across-country multi-trait reaction norms test-day models. Animal 2020; 15:100084. [PMID: 33712214 DOI: 10.1016/j.animal.2020.100084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 10/22/2022] Open
Abstract
The progenies of international bulls in diverse climatic conditions and management levels may lead to different expressions of their genetic potential resulting in a re-ranking of these bulls. Therefore, evaluate the presence of genotype by environment interaction (G×E) within and across countries is important to guide the decision-making on alternative selection strategies. Thus, a two-step reaction norm (RN) approach was used to investigate the presence of G×E in Portuguese and Brazilian Holstein cattle. In step 1, we performed a within-country genetic evaluation using an autoregressive model to obtain precorrected phenotypes and environmental gradients (herd test-day solutions, HTD levels). In step 2, the precorrected phenotypes were considered as two distinct traits in a bi-trait RN model to estimate variance components across HTD levels, genetic correlation between HTD levels in Portugal and Brazil, and RN of the estimated breeding values. Additionally, the genetic correlation between countries using a bi-trait random regression (RR) sire model was obtained. In step 1, genetic additive variance for milk yield (MY) in Portugal was 14.1% higher than in Brazil. For somatic cell score (SCS), the genetic additive variance in Portugal was 12.7% lower than in Brazil. Although similar heritability estimates for SCS were observed in both countries, MY heritabilities were 0.31 for Portugal and 0.23 for Brazil. Genetic correlations (SD) between both countries obtained using RR sire model were 0.78 (0.051) for MY and 0.75 (0.062) for SCS. In step 2, MY genetic correlations among HTD levels within countries were higher than 0.94 for Portugal and 0.98 for Brazil. Somatic cell score genetic correlations among HTD levels ranged from 0.70 to 0.99 for Portugal and from 0.84 to 0.99 for Brazil. The average (SD) of genetic correlation estimates between Portuguese and Brazilian HTD levels were 0.74 (0.009) for MY and 0.57 (0.060) for SCS. These results suggest the presence of G×E for MY and SCS of Holstein cattle between both countries. Although there was no indication of G×E between Brazilian herd environments, the low genetic correlation for SCS indicates potential re-ranking of bulls between extreme environmental gradient in Portugal. Overall, the results of this study evidence the importance of national and international genetic evaluation systems to assist dairy farmers in the selection of the best genotypes to obtain the expected returns from investments in imported semen and to realize genetic progress in dairy populations under local environmental conditions.
Collapse
Affiliation(s)
- D A Silva
- Department of Animal Science, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil
| | - P S Lopes
- Department of Animal Science, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil
| | - C N Costa
- Embrapa Gado de Leite, 36038-330 Juiz de Fora, Brazil
| | - A A Silva
- Department of Animal Science, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil
| | - H T Silva
- Department of Animal Science, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil
| | - F F Silva
- Department of Animal Science, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil
| | - R Veroneze
- Department of Animal Science, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil
| | - G Thompson
- Research Center in Biodiversity and Genetic Resources (CIBIO-InBio), University of Porto, 4485-661 Vairão, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - J Carvalheira
- Research Center in Biodiversity and Genetic Resources (CIBIO-InBio), University of Porto, 4485-661 Vairão, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Song H, Zhang Q, Ding X. The superiority of multi-trait models with genotype-by-environment interactions in a limited number of environments for genomic prediction in pigs. J Anim Sci Biotechnol 2020; 11:88. [PMID: 32974012 PMCID: PMC7507970 DOI: 10.1186/s40104-020-00493-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/07/2020] [Indexed: 11/21/2022] Open
Abstract
Background Different production systems and climates could lead to genotype-by-environment (G × E) interactions between populations, and the inclusion of G × E interactions is becoming essential in breeding decisions. The objective of this study was to investigate the performance of multi-trait models in genomic prediction in a limited number of environments with G × E interactions. Results In total, 2,688 and 1,384 individuals with growth and reproduction phenotypes, respectively, from two Yorkshire pig populations with similar genetic backgrounds were genotyped with the PorcineSNP80 panel. Single- and multi-trait models with genomic best linear unbiased prediction (GBLUP) and BayesC π were implemented to investigate their genomic prediction abilities with 20 replicates of five-fold cross-validation. Our results regarding between-environment genetic correlations of growth and reproductive traits (ranging from 0.618 to 0.723) indicated the existence of G × E interactions between these two Yorkshire pig populations. For single-trait models, genomic prediction with GBLUP was only 1.1% more accurate on average in the combined population than in single populations, and no significant improvements were obtained by BayesC π for most traits. In addition, single-trait models with either GBLUP or BayesC π produced greater bias for the combined population than for single populations. However, multi-trait models with GBLUP and BayesC π better accommodated G × E interactions, yielding 2.2% – 3.8% and 1.0% – 2.5% higher prediction accuracies for growth and reproductive traits, respectively, compared to those for single-trait models of single populations and the combined population. The multi-trait models also yielded lower bias and larger gains in the case of a small reference population. The smaller improvement in prediction accuracy and larger bias obtained by the single-trait models in the combined population was mainly due to the low consistency of linkage disequilibrium between the two populations, which also caused the BayesC π method to always produce the largest standard error in marker effect estimation for the combined population. Conclusions In conclusion, our findings confirmed that directly combining populations to enlarge the reference population is not efficient in improving the accuracy of genomic prediction in the presence of G × E interactions, while multi-trait models perform better in a limited number of environments with G × E interactions.
Collapse
Affiliation(s)
- Hailiang Song
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, 271001 China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
7
|
Genotype-environment interaction for productive traits of Holstein cows in Brazil described by reaction norms. Trop Anim Health Prod 2020; 52:2425-2432. [PMID: 32297042 DOI: 10.1007/s11250-020-02269-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Brazil is the world's fourth largest milk producer; this activity extends throughout the national territory, with productions of approximate 34 billion liters of milk per year. The objective of this work was to evaluate the genotype-environment interaction (GEI) in purebred Holstein cows for milk (M), protein (P), and fat (F) yields. The statistical models used were the standard animal model (AM), which disregards the GEI, and hierarchical reaction norm models with homoscedastic (HRNMHO) and heteroscedastic (HRNMHE) residual variance, and one (HRNMHO1S and HRNMHE1S) and two (HRNMHO2S and HRNMHE2S) steps. HRNMHO1S presented a better fit of the data for all traits, with higher heritability for the best environments. Most bulls presented robust phenotypes; however, GEI was found with a reclassification of the bulls in the environmental gradient. Although few, and less used, bulls with plastic phenotypes were found for all traits, and the use of them can optimize genetic gains in specific environments.
Collapse
|
8
|
Abstract
Relationships play a very important role in studies on quantitative genetics. In traditional breeding, pedigree records are used to establish relationships between animals; while this kind of relationship actually represents one kind of relatedness, it cannot distinguish individual specificity, capture the variation between individuals or determine the actual genetic superiority of an animal. However, with the popularization of high-throughput genotypes, assessments of relationships among animals based on genomic information could be a better option. In this study, we compared the relationships between animals based on pedigree and genomic information from two pig breeding herds with different genetic backgrounds and a simulated dataset. Two different methods were implemented to calculate genomic relationship coefficients and genomic kinship coefficients, respectively. Our results show that, for the same kind of relative, the average genomic relationship coefficients (G matrix) were very close to the pedigree relationship coefficients (A matrix), and on average, the corresponding values were halved in genomic kinship coefficients (K matrix). However, the genomic relationship yielded a larger variation than the pedigree relationship, and the latter was similar to that expected for one relative with no or little variation. Two genomic relationship coefficients were highly correlated, for farm1, farm2 and simulated data, and the correlations for the parent-offspring, full-sib and half-sib were 0.95, 0.90 and 0.85; 0.93, 0.96 and 0.89; and 0.52, 0.85 and 0.77, respectively. When the inbreeding coefficient was measured, the genomic information also yielded a higher inbreeding coefficient and a larger variation than that yielded by the pedigree information. For the two genetically divergent Large White populations, the pedigree relationship coefficients between the individuals were 0, and 62 310 and 175 271 animal pairs in the G matrix and K matrix were greater than 0. Our results demonstrated that genomic information outperformed the pedigree information; it can more accurately reflect the relationships and capture the variation that is not detected by pedigree. This information is very helpful in the estimation of genomic breeding values or gene mapping. In addition, genomic information is useful for pedigree correction. Further, our findings also indicate that genomic information can establish the genetic connection between different groups with different genetic background. In addition, it can be used to provide a more accurate measurement of the inbreeding of an animal, which is very important for the assessment of a population structure and breeding plan. However, the approaches for measuring genomic relationships need further investigation.
Collapse
|
9
|
Song H, Ye S, Jiang Y, Zhang Z, Zhang Q, Ding X. Using imputation-based whole-genome sequencing data to improve the accuracy of genomic prediction for combined populations in pigs. Genet Sel Evol 2019; 51:58. [PMID: 31638889 PMCID: PMC6805481 DOI: 10.1186/s12711-019-0500-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/07/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND For genomic selection in populations with a small reference population, combining populations of the same breed or populations of related breeds is an effective way to increase the size of the reference population. However, genomic predictions based on single nucleotide polymorphism (SNP)-chip genotype data using combined populations with different genetic backgrounds or from different breeds have not shown a clear advantage over using within-population or within-breed predictions. The increasing availability of whole-genome sequencing (WGS) data provides new opportunities for combined population genomic prediction. Our objective was to investigate the accuracy of genomic prediction using imputation-based WGS data from combined populations in pigs. Using 80K SNP panel genotypes, WGS genotypes, or genotypes on WGS variants that were pruned based on linkage disequilibrium (LD), three methods [genomic best linear unbiased prediction (GBLUP), single-step (ss)GBLUP, and genomic feature (GF)BLUP] were implemented with different prior information to identify the best method to improve the accuracy of genomic prediction for combined populations in pigs. RESULTS In total, 2089 and 2043 individuals with production and reproduction phenotypes, respectively, from three Yorkshire populations with different genetic backgrounds were genotyped with the PorcineSNP80 panel. Imputation accuracy from 80K to WGS variants reached 92%. The results showed that use of the WGS data compared to the 80K SNP panel did not increase the accuracy of genomic prediction in a single population, but using WGS data with LD pruning and GFBLUP with prior information did yield higher accuracy than the 80K SNP panel. For the 80K SNP panel genotypes, using the combined population resulted in a slight improvement, no change, or even a slight decrease in accuracy in comparison with the single population for GBLUP and ssGBLUP, while accuracy increased by 1 to 2.4% when using WGS data. Notably, the GFBLUP method did not perform well for both the combined population and the single populations. CONCLUSIONS The use of WGS data was beneficial for combined population genomic prediction. Simply increasing the number of SNPs to the WGS level did not increase accuracy for a single population, while using pruned WGS data based on LD and GFBLUP with prior information could yield higher accuracy than the 80K SNP panel.
Collapse
Affiliation(s)
- Hailiang Song
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shaopan Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| | - Yifan Jiang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Centre for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Chu TT, Bastiaansen JWM, Berg P, Romé H, Marois D, Henshall J, Jensen J. Use of genomic information to exploit genotype-by-environment interactions for body weight of broiler chicken in bio-secure and production environments. Genet Sel Evol 2019; 51:50. [PMID: 31533614 PMCID: PMC6751605 DOI: 10.1186/s12711-019-0493-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/05/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The increase in accuracy of prediction by using genomic information has been well-documented. However, benefits of the use of genomic information and methodology for genetic evaluations are missing when genotype-by-environment interactions (G × E) exist between bio-secure breeding (B) environments and commercial production (C) environments. In this study, we explored (1) G × E interactions for broiler body weight (BW) at weeks 5 and 6, and (2) the benefits of using genomic information for prediction of BW traits when selection candidates were raised and tested in a B environment and close relatives were tested in a C environment. METHODS A pedigree-based best linear unbiased prediction (BLUP) multivariate model was used to estimate variance components and predict breeding values (EBV) of BW traits at weeks 5 and 6 measured in B and C environments. A single-step genomic BLUP (ssGBLUP) model that combined pedigree and genomic information was used to predict EBV. Cross-validations were based on correlation, mean difference and regression slope statistics for EBV that were estimated from full and reduced datasets. These statistics are indicators of population accuracy, bias and dispersion of prediction for EBV of traits measured in B and C environments. Validation animals were genotyped and non-genotyped birds in the B environment only. RESULTS Several indications of G × E interactions due to environmental differences were found for BW traits including significant re-ranking, heterogeneous variances and different heritabilities for BW measured in environments B and C. The genetic correlations between BW traits measured in environments B and C ranged from 0.48 to 0.54. The use of combined pedigree and genomic information increased population accuracy of EBV, and reduced bias of EBV prediction for genotyped birds compared to the use of pedigree information only. A slight increase in accuracy of EBV was also observed for non-genotyped birds, but the bias of EBV prediction increased for non-genotyped birds. CONCLUSIONS The G × E interaction was strong for BW traits of broilers measured in environments B and C. The use of combined pedigree and genomic information increased population accuracy of EBV substantially for genotyped birds in the B environment compared to the use of pedigree information only.
Collapse
Affiliation(s)
- Thinh T. Chu
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
- Wageningen University & Research, Animal Breeding and Genomics, 6709 PG Wageningen, The Netherlands
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi, Vietnam
| | - John W. M. Bastiaansen
- Wageningen University & Research, Animal Breeding and Genomics, 6709 PG Wageningen, The Netherlands
| | - Peer Berg
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Hélène Romé
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Danye Marois
- Cobb-Vantress Inc, Siloam Springs, AR 72761-1030 USA
| | - John Henshall
- Cobb-Vantress Inc, Siloam Springs, AR 72761-1030 USA
| | - Just Jensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
11
|
Mrode R, Ojango JMK, Okeyo AM, Mwacharo JM. Genomic Selection and Use of Molecular Tools in Breeding Programs for Indigenous and Crossbred Cattle in Developing Countries: Current Status and Future Prospects. Front Genet 2019; 9:694. [PMID: 30687382 PMCID: PMC6334160 DOI: 10.3389/fgene.2018.00694] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 12/11/2018] [Indexed: 11/23/2022] Open
Abstract
Genomic selection (GS) has resulted in rapid rates of genetic gains especially in dairy cattle in developed countries resulting in a higher proportion of genomically proven young bulls being used in breeding. This success has been undergirded by well-established conventional genetic evaluation systems. Here, the status of GS in terms of the structure of the reference and validation populations, response variables, genomic prediction models, validation methods, and imputation efficiency in breeding programs of developing countries, where smallholder systems predominate and the basic components for conventional breeding are mostly lacking is examined. Also, the application of genomic tools and identification of genome-wide signatures of selection is reviewed. The studies on genomic prediction in developing countries are mostly in dairy and beef cattle usually with small reference populations (500-3,000 animals) and are mostly cows. The input variables tended to be pre-corrected phenotypic records and the small reference populations has made implementation of various Bayesian methods feasible in addition to GBLUP. Multi-trait single-step has been used to incorporate genomic information from foreign bulls, thus GS in developing countries would benefit from collaborations with developed countries, as many dairy sires used are from developed countries where they may have been genotyped and phenotyped. Cross validation approaches have been implemented in most studies resulting in accuracies of 0.20-0.60. Genotyping animals with a mixture of HD and LD chips, followed by imputation to the HD have been implemented with imputation accuracies of 0.74-0.99 reported. This increases the prospects of reducing genotyping costs and hence the cost-effectiveness of GS. Next-generation sequencing and associated technologies have allowed the determination of breed composition, parent verification, genome diversity, and genome-wide selection sweeps. This information can be incorporated into breeding programs aiming to utilize GS. Cost-effective GS in beef cattle in developing countries may involve usage of reproductive technologies (AI and in-vitro fertilization) to efficiently propagate superior genetics from the genomics pipeline. For dairy cattle, sexed semen of genomically proven young bulls could substantially improve profitability thus increase prospects of small holder farmers buying-in into genomic breeding programs.
Collapse
Affiliation(s)
- Raphael Mrode
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
- Animal and Veterinary Science, Scotland Rural College, Edinburgh, United Kingdom
| | - Julie M. K Ojango
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
| | - A. M. Okeyo
- Animal Biosciences, International Livestock Research Institute, Nairobi, Kenya
| | - Joram M. Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| |
Collapse
|