1
|
Magnuson AD, Bukowski MR, Rosenberger TA, Picklo MJ. Quantifying Sphingomyelin in Dairy through Infusion-Based Shotgun Mass Spectrometry with Lithium-Ion-Induced Fragmentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13808-13817. [PMID: 36239443 DOI: 10.1021/acs.jafc.2c04587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Quantifying sphingomyelin (SM) species by infusion-based mass spectrometry (MS) is complicated by the presence of isobaric phosphatidylcholine (PC) species, which generate a common m/z 184 product ion in the presence of ammonium ions as a result of the phosphocholine headgroup. Lithium ion adducts of SM undergo a selective dehydration [Li + H2O + (CH3)3NC2H4PO4] with a corresponding neutral loss of -207 Da. This neutral loss was employed to create a SM-selective method for identifying target species, which were quantitated using multiple reaction monitoring (MRM). SM-selective fragments in MS3 were used to characterize the sphingosine base and acyl chain. These methods were used to identify 50 individual SM species in bovine milk ranging from SM 28:1 to SM 44:2, with d16:1, d17:1, d18:1, d19:1, and d20:1 bases, and acyl fatty acids ranging from 10 to 25 carbons and 0-1 desaturations. Spiked SM standards into milk had a recovery of 99.7%, and endogenous milk SM had <10% coefficient of variation for both intra- and interday variability, with limits of detection of 1.4-5.55 nM and limits of quantitation of 11.8-178.1 nM. This MS-MRM method was employed to accurately and precisely quantify SM species in dairy products, including bovine-derived whole milk, half and half, whipping cream, and goat milk.
Collapse
Affiliation(s)
- Andrew D Magnuson
- Grand Forks Human Nutrition Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 2420 Second Avenue North, Grand Forks, North Dakota 58203, United States
| | - Michael R Bukowski
- Beltsville Agricultural Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 10300 Baltimore Avenue, Beltsville, Maryland 20705, United States
| | - Thad A Rosenberger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58201, United States
| | - Matthew J Picklo
- Grand Forks Human Nutrition Research Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 2420 Second Avenue North, Grand Forks, North Dakota 58203, United States
| |
Collapse
|
2
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
3
|
Rul F, Béra-Maillet C, Champomier-Vergès MC, El-Mecherfi KE, Foligné B, Michalski MC, Milenkovic D, Savary-Auzeloux I. Underlying evidence for the health benefits of fermented foods in humans. Food Funct 2022; 13:4804-4824. [PMID: 35384948 DOI: 10.1039/d1fo03989j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fermented foods (FFs) have been a part of our diets for millennia and comprise highly diverse products obtained from plants and animals all over the world. Historically, fermentation has been used to preserve food and render certain raw materials edible. As our food systems evolve towards more sustainability, the health benefits of FFs have been increasingly touted. Fermentation generates new/transformed bioactive compounds that may occur in association with probiotic bacteria. The result can be specific, advantageous functional properties. Yet, when considering the body of human studies on the topic, whether observational or experimental, it is rare to come across findings supporting the above assertion. Certainly, results are lacking to confirm the widespread idea that FFs have general health benefits. There are some exceptions, such as in the case of lactose degradation via fermentation in individuals who are lactose intolerant; the impact of select fermented dairy products on insulin sensitivity; or the benefits of alcohol consumption. However, in other situations, the results fail to categorically indicate whether FFs have neutral, beneficial, or detrimental effects on human health. This review tackles this apparent incongruity by showing why it is complex to test the health effects of FFs and what can be done to improve knowledge in this field.
Collapse
Affiliation(s)
- F Rul
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - C Béra-Maillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - M C Champomier-Vergès
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - K E El-Mecherfi
- INRAE, UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France
| | - B Foligné
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - M C Michalski
- Univ-Lyon, CarMeN Laboratory, Inserm, U1060, INRAE, UMR1397, Université Claude Bernard Lyon 1, 69310 Pierre Bénite, France
| | - D Milenkovic
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France. .,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - I Savary-Auzeloux
- Université Clermont Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France.
| |
Collapse
|
4
|
Szkolnicka K, Dmytrów I, Mituniewicz-Małek A. The Characteristics of Quark Cheese Made from Buttermilk during Refrigerated Storage. Foods 2021; 10:foods10081783. [PMID: 34441560 PMCID: PMC8392251 DOI: 10.3390/foods10081783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
The dairy industry releases huge amounts of by-products. One of them is buttermilk, obtained during butter production. This by-product is characterized by high nutritional and technological value and is finding more and more applications in food production. This study aimed to produce and analyze the characteristics of quark cheese obtained entirely from buttermilk during 3-week refrigerated (4 ± 1 °C) storage. Four kinds of sour buttermilk were used: two from industrial butter production, and another two from butter production at laboratory scale. Laboratory buttermilk differs in the kind of starter culture used in the production. The evaluation of cheese quality properties included physicochemical analyses, texture measurement, and sensory assessment. The results showed that the kind of buttermilk used in production influences the acidity, total solids, textural characteristics, and fat content of the obtained quark cheeses. All obtained cheeses had very high sensory quality throughout the storage period. The study indicates that buttermilk may be successfully used as a substitution for milk in quark cheese production.
Collapse
|
5
|
Mayo B, Rodríguez J, Vázquez L, Flórez AB. Microbial Interactions within the Cheese Ecosystem and Their Application to Improve Quality and Safety. Foods 2021; 10:602. [PMID: 33809159 PMCID: PMC8000492 DOI: 10.3390/foods10030602] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
The cheese microbiota comprises a consortium of prokaryotic, eukaryotic and viral populations, among which lactic acid bacteria (LAB) are majority components with a prominent role during manufacturing and ripening. The assortment, numbers and proportions of LAB and other microbial biotypes making up the microbiota of cheese are affected by a range of biotic and abiotic factors. Cooperative and competitive interactions between distinct members of the microbiota may occur, with rheological, organoleptic and safety implications for ripened cheese. However, the mechanistic details of these interactions, and their functional consequences, are largely unknown. Acquiring such knowledge is important if we are to predict when fermentations will be successful and understand the causes of technological failures. The experimental use of "synthetic" microbial communities might help throw light on the dynamics of different cheese microbiota components and the interplay between them. Although synthetic communities cannot reproduce entirely the natural microbial diversity in cheese, they could help reveal basic principles governing the interactions between microbial types and perhaps allow multi-species microbial communities to be developed as functional starters. By occupying the whole ecosystem taxonomically and functionally, microbiota-based cultures might be expected to be more resilient and efficient than conventional starters in the development of unique sensorial properties.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (J.R.); (L.V.); (A.B.F.)
| | | | | | | |
Collapse
|
6
|
Storage Studies of Flaxseed Oil Encapsulated by Buttermilk Solids. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Production of Milk Phospholipid-Enriched Dairy Ingredients. Foods 2020; 9:foods9030263. [PMID: 32121655 PMCID: PMC7143133 DOI: 10.3390/foods9030263] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 02/01/2023] Open
Abstract
Milk phospholipids (MPLs) have been used as ingredients for food fortification, such as bakery products, yogurt, and infant formula, because of their technical and nutritional functionalities. Starting from either buttermilk or beta serum as the original source, this review assessed four typical extraction processes and estimated that the life-cycle carbon footprints (CFs) of MPLs were 87.40, 170.59, 159.07, and 101.05 kg CO2/kg MPLs for membrane separation process, supercritical fluid extraction (SFE) by CO2 and dimethyl ether (DME), SFE by DME, and organic solvent extraction, respectively. Regardless of the MPL content of the final products, membrane separation remains the most efficient way to concentrate MPLs, yielding an 11.1-20.0% dry matter purity. Both SFE and solvent extraction processes are effective at purifying MPLs to relatively higher purity (76.8-88.0% w/w).
Collapse
|
8
|
Skryplonek K, Dmytrów I, Mituniewicz‐Małek A. The use of buttermilk as a raw material for cheese production. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katarzyna Skryplonek
- Department of Dairy Technology and Food Storage Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Papieża Pawła VI Str. 3 71‐459 Szczecin Poland
| | - Izabela Dmytrów
- Department of Dairy Technology and Food Storage Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Papieża Pawła VI Str. 3 71‐459 Szczecin Poland
| | - Anna Mituniewicz‐Małek
- Department of Dairy Technology and Food Storage Faculty of Food Sciences and Fisheries West Pomeranian University of Technology Papieża Pawła VI Str. 3 71‐459 Szczecin Poland
| |
Collapse
|
9
|
Huang Z, Stipkovits L, Zheng H, Serventi L, Brennan CS. Bovine Milk Fats and Their Replacers in Baked Goods: A Review. Foods 2019; 8:E383. [PMID: 31480707 PMCID: PMC6769948 DOI: 10.3390/foods8090383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Milk fats and related dairy products are multi-functional ingredients in bakeries. Bakeries are critical local industries in Western countries, and milk fats represent the most important dietary lipids in countries such as New Zealand. Milk fats perform many roles in bakery products, including dough strengthening, textural softeners, filling fats, coating lipids, laminating fats, and flavor improvers. This review reports how milk fats interact with the ingredients of main bakery products. It also elaborates on recent studies on how to modulate the quality and digestibility of baked goods by designing a new type of fat mimetic, in order to make calorie- and saturated fat-reduced bakery products. It provides a quick reference for both retailers and industrial manufacturers of milk fat-based bakery products.
Collapse
Affiliation(s)
- Zhiguang Huang
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand
- Riddet Research Institute, Palmerston North 4442, New Zealand
| | - Letitia Stipkovits
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand
| | - Haotian Zheng
- Dairy Innovation Institute, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Luca Serventi
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand
| | - Charles S Brennan
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Christchurch 7647, New Zealand.
- Riddet Research Institute, Palmerston North 4442, New Zealand.
| |
Collapse
|
10
|
Kim KT, Hwang JE, Eum SJ, Paik HD. Physiochemical Analysis, Antioxidant Effects, and Sensory Characteristics of Quark Cheese Supplemented with Ginseng Extract. Food Sci Anim Resour 2019; 39:324-331. [PMID: 31149673 PMCID: PMC6533402 DOI: 10.5851/kosfa.2019.e26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/14/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to evaluate physicochemical and sensory
properties, the texture profile, and antioxidant activity of ginseng
extract-supplemented quark cheese as a new cheese product intended to improve
public health. After addition of less than 1.0% ginseng extract, the
moisture content of quark significantly decreased, while fat and protein levels
increased, although microbial counts and lactose and ash contents were not
affected significantly (p<0.05). In terms of color, L* values decreased
significantly with increasing concentration of ginseng extract, while a* values
increased significantly (p<0.05). The results of texture profiling showed
that cohesiveness and springiness were unaffected, whereas hardness, gumminess,
and chewiness increased significantly. The
2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS)
radical-scavenging activities of the cheese fortified with 0%,
0.5%, or 1.0% of the ginseng extract were
4.22%±0.12%, 20.14%±1.34%, and
56.32%±1.54%, respectively. The results of sensory analysis
indicated that bitterness, ginseng odor, and aftertaste significantly improved
with increasing concentration of ginseng extract (p<0.05). However, there
was no significant difference in the overall quality attributes of quark cheese
between the no-supplement control and samples with less than 0.5% of the
ginseng extract (p>0.05), suggesting that these products could help to
promote public health as functional foods.
Collapse
Affiliation(s)
- Kee-Tae Kim
- Research Laboratory, WithBio Inc., Seoul 05029, Korea
| | - Ji Eun Hwang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Su Jin Eum
- Division of Strategic Food Research, Korea Food Research Institute, Wanju 55365, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
11
|
Cerminati S, Paoletti L, Aguirre A, Peirú S, Menzella HG, Castelli ME. Industrial uses of phospholipases: current state and future applications. Appl Microbiol Biotechnol 2019; 103:2571-2582. [DOI: 10.1007/s00253-019-09658-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/18/2022]
|
12
|
Ferreiro T, Rodríguez-Otero JL. Evolution and distribution of phospholipids in cheese and whey during the manufacturing of fresh cheese from cows' milk. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tania Ferreiro
- Facultade de Veterinaria; Instituto de Investigación e Análises Alimentarias; Universidade de Santiago de Compostela; Lugo 27002 Spain
| | - José L Rodríguez-Otero
- Facultade de Veterinaria; Instituto de Investigación e Análises Alimentarias; Universidade de Santiago de Compostela; Lugo 27002 Spain
| |
Collapse
|
13
|
Investigation of the neurotrophic effect of dairy phospholipids on cortical neuron outgrowth and stimulation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Barry KM, Dinan TG, Kelly PM. Selective enrichment of dairy phospholipids in a buttermilk substrate through investigation of enzymatic hydrolysis of milk proteins in conjunction with ultrafiltration. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Santurino C, Calvo M, Gómez-Candela C, Fontecha J. Characterization of naturally goat cheese enriched in conjugated linoleic acid and omega-3 fatty acids for human clinical trial in overweight and obese subjects. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2016.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Dadousis C, Pegolo S, Rosa GJM, Gianola D, Bittante G, Cecchinato A. Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. J Dairy Sci 2016; 100:1223-1231. [PMID: 27988128 DOI: 10.3168/jds.2016-11587] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023]
Abstract
It is becoming common to complement genome-wide association studies (GWAS) with gene-set enrichment analysis to deepen the understanding of the biological pathways affecting quantitative traits. Our objective was to conduct a gene ontology and pathway-based analysis to identify possible biological mechanisms involved in the regulation of bovine milk technological traits: coagulation properties, curd firmness modeling, individual cheese yield (CY), and milk nutrient recovery into the curd (REC) or whey loss traits. Results from 2 previous GWAS studies using 1,011 cows genotyped for 50k single nucleotide polymorphisms were used. Overall, the phenotypes analyzed consisted of 3 traditional milk coagulation property measures [RCT: rennet coagulation time defined as the time (min) from addition of enzyme to the beginning of coagulation; k20: the interval (min) from RCT to the time at which a curd firmness of 20 mm is attained; a30: a measure of the extent of curd firmness (mm) 30 min after coagulant addition], 6 curd firmness modeling traits [RCTeq: RCT estimated through the CF equation (min); CFP: potential asymptotic curd firmness (mm); kCF: curd-firming rate constant (% × min-1); kSR: syneresis rate constant (% × min-1); CFmax: maximum curd firmness (mm); and tmax: time to CFmax (min)], 3 individual CY-related traits expressing the weight of fresh curd (%CYCURD), curd solids (%CYSOLIDS), and curd moisture (%CYWATER) as a percentage of weight of milk processed and 4 milk nutrient and energy recoveries in the curd (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY calculated as the % ratio between the nutrient in curd and the corresponding nutrient in processed milk), milk pH, and protein percentage. Each trait was analyzed separately. In total, 13,269 annotated genes were used in the analysis. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases were queried for enrichment analyses. Overall, 21 Gene Ontology and 17 Kyoto Encyclopedia of Genes and Genomes categories were significantly associated (false discovery rate at 5%) with 7 traits (RCT, RCTeq, kCF, %CYSOLIDS, RECFAT, RECSOLIDS, and RECENERGY), with some being in common between traits. The significantly enriched categories included calcium signaling pathway, salivary secretion, metabolic pathways, carbohydrate digestion and absorption, the tight junction and the phosphatidylinositol pathways, as well as pathways related to the bovine mammary gland health status, and contained a total of 150 genes spanning all chromosomes but 9, 20, and 27. This study provided new insights into the regulation of bovine milk coagulation and cheese ability that were not captured by the GWAS.
Collapse
Affiliation(s)
- C Dadousis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - G J M Rosa
- Department of Animal Sciences, University of Wisconsin, Madison 53706; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison 53706
| | - D Gianola
- Department of Animal Sciences, University of Wisconsin, Madison 53706; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison 53706
| | - G Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| |
Collapse
|
17
|
Pimentel L, Gomes A, Pintado M, Rodríguez-Alcalá LM. Isolation and Analysis of Phospholipids in Dairy Foods. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:9827369. [PMID: 27610267 PMCID: PMC5005530 DOI: 10.1155/2016/9827369] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimer's disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation) and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors.
Collapse
Affiliation(s)
- Lígia Pimentel
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Ana Gomes
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Manuela Pintado
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Luis Miguel Rodríguez-Alcalá
- Centro de Biotecnologia e Química Fina (CBQF), Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Fábrica N° 1990, Segundo Piso, Santiago, Chile
| |
Collapse
|