1
|
Dacres H, Weihs F, Wang J, Anderson A, Trowell SC. Bioluminescence resonance energy transfer biosensor for measuring activity of a protease secreted by Pseudomonas fluorescens growing in milk. Anal Chim Acta 2023; 1270:341401. [PMID: 37311608 DOI: 10.1016/j.aca.2023.341401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/15/2023]
Abstract
Bacterial proteases are sporadic contributors to milk spoilage, reducing the quality of ultra-heat treated (UHT) milk and other dairy products. Current methods for measuring bacterial protease activity in milk are insensitive and too slow to be used in routine testing in dairy processing plants. We have designed a novel bioluminescence resonance energy transfer (BRET)-based biosensor to measure the activity of proteases secreted by bacteria in milk. The BRET-based biosensor is highly selective for bacterial protease activity compared with other proteases tested, notably including plasmin, which is abundant in milk. It incorporates a novel peptide linker that is selectively cleaved by P. fluorescens AprX proteases. The peptide linker is flanked by green fluorescent protein (GFP2) at the N-terminus and a variant Renilla luciferase (RLuc2) at the C-terminus. Complete cleavage of the linker by bacterial proteases from Pseudomonas fluorescens strain 65, leads to a 95% decrease in the BRET ratio. We applied an azocasein-based calibration method to the AprX biosensor using standard international enzyme activity units. In a 10-min assay, the detection limit for AprX protease activity in buffer was equivalent to 40 pg/mL (≈0.8 pM, 22 μU/mL) and 100 pg/mL (≈2pM, 54 μU/mL) in 50% (v/v) full fat milk. The EC50 values were 1.1 ± 0.3 ng/mL (87 μU/mL) and 6.8 ± 0.2 ng/mL (540 μU/mL), respectively. The biosensor was approximately 800x more sensitive than the established FITC-Casein method in a 2-h assay, the shortest feasible time for the latter method. The protease biosensor is sensitive and fast enough to be used in production settings. It is suitable for measuring bacterial protease activity in raw and processed milk, to inform efforts to mitigate the effects of heat-stable bacterial proteases and maximise the shelf-life of dairy products.
Collapse
Affiliation(s)
- H Dacres
- CSIRO Health & Biosecurity, Food Innovation Centre, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - F Weihs
- PPB Technology Pty Ltd, PO Box 265, Erindale Centre, ACT, 2903, Australia; CSIRO Health & Biosecurity, Canberra, ACT, 2601, Australia.
| | - J Wang
- CSIRO Health & Biosecurity, Canberra, ACT, 2601, Australia
| | - A Anderson
- CSIRO Health & Biosecurity, Canberra, ACT, 2601, Australia
| | - S C Trowell
- PPB Technology Pty Ltd, PO Box 265, Erindale Centre, ACT, 2903, Australia; CSIRO Health & Biosecurity, Canberra, ACT, 2601, Australia
| |
Collapse
|
2
|
Mishra A, Panthi RR, Beckman SL, Vijayaragavan KS, Anand S, Metzger LE. Effects of hydrodynamic cavitation and temperature on nanofiltration performance for concentrating ultrafiltered skim milk. INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Achyut Mishra
- Department of Dairy and Food Science Midwest Dairy Foods Research Center, South Dakota State University Brookings SD 57007 USA
| | - Ram R Panthi
- School of Food and Nutritional Sciences University College Cork Cork T12YN60 Ireland
| | - Steven L Beckman
- Department of Dairy and Food Science Midwest Dairy Foods Research Center, South Dakota State University Brookings SD 57007 USA
| | - Khrupa S Vijayaragavan
- Department of Dairy and Food Science Midwest Dairy Foods Research Center, South Dakota State University Brookings SD 57007 USA
| | - Sanjeev Anand
- Department of Dairy and Food Science Midwest Dairy Foods Research Center, South Dakota State University Brookings SD 57007 USA
| | - Lloyd E Metzger
- Department of Dairy and Food Science Midwest Dairy Foods Research Center, South Dakota State University Brookings SD 57007 USA
| |
Collapse
|
3
|
Bu Y, Qiao W, Zhai Z, Liu T, Gong P, Zhang L, Hao Y, Yi H. Establishment and Evaluation of a Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Pseudomonas fluorescens in Raw Milk. Front Microbiol 2022; 12:810511. [PMID: 35069513 PMCID: PMC8770903 DOI: 10.3389/fmicb.2021.810511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Raw milk is susceptible to microbial contamination during transportation and storage. Pseudomonas fluorescens producing heat-resistant enzymes have become the most common and harmful psychrophilic microorganisms in the cold chain logistics of raw milk. To rapidly detect P. fluorescens in raw milk, the protease gene aprX was selected as a detection target to construct a set of primers with strong specificity, and a loop-mediated isothermal amplification (LAMP) assay was established. The detection thresholds of the LAMP assay for pure cultured P. fluorescens and pasteurized milk were 2.57 × 102 and 3 × 102 CFU/mL, respectively. It had the advantages over conventional method of low detection threshold, strong specificity, rapid detection, and simple operation. This LAMP assay can be used for online monitoring and on-site detection of P. fluorescens in raw milk to guarantee the quality and safety of dairy products.
Collapse
Affiliation(s)
- Yushan Bu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Wenjun Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Mining marine metagenomes revealed a quorum-quenching lactonase with improved biochemical properties that inhibits the food spoilage bacteria Pseudomonas fluorescens. Appl Environ Microbiol 2021; 88:e0168021. [PMID: 34910563 DOI: 10.1128/aem.01680-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine environment presents great potential as a source of microorganisms that possess novel enzymes with unique activities and biochemical properties. Examples of such are the quorum-quenching (QQ) enzymes that hydrolyze bacterial quorum-sensing (QS) signaling molecules, such as N-acyl-homoserine lactones (AHLs). QS is a form of cell-to-cell communication that enables bacteria to synchronize gene expression in correlation with population density. Searching marine metagenomes for sequences homologous to an AHL lactonase from the phosphotriesterase-like lactonase (PLL) family, we identified new putative AHL lactonases (sharing 30-40% amino acid identity to a thermostable PLL member). Phylogenetic analysis indicated that these putative AHL lactonases comprise a new clade of marine enzymes in the PLL family. Following recombinant expression and purification, we verified the AHL lactonase activity for one of these proteins, named marine originated Lactonase Related Protein (moLRP). This enzyme presented greater activity and stability at a broad range of temperatures and pH, and tolerance to high salinity levels (up to 5M NaCl), as well as higher durability in bacterial culture, compared to another PLL member. The addition of purified moLRP to cultures of Pseudomonas fluorescens inhibited its extracellular protease activity, expression of the protease encoding gene, biofilm formation, and the sedimentation process in milk-based medium. These findings suggest that moLRP is adapted to the marine environment, and can potentially serve as an effective QQ enzyme, inhibiting the QS process in gram-negative bacteria involved in food spoilage. Importance Our results emphasize the potential of sequence and structure-based identification of new quorum-quenching (QQ) enzymes from environmental metagenomes, such as from the ocean, with improved stability or activity. The findings also suggest that purified QQ enzymes can present new strategies against food spoilage, in addition to their recognized involvement in inhibiting bacterial pathogen virulence factors. Future studies on the delivery and safety of enzymatic QQ strategy against bacterial food spoilage should be performed.
Collapse
|
5
|
Nogueira LS, Tavares IMDC, Santana NB, Ferrão SPB, Teixeira JM, Costa FS, Silva TP, Pereira HJV, Irfan M, Bilal M, de Oliveira JR, Franco M. Thermostable trypsin-like protease by Penicillium roqueforti secreted in cocoa shell fermentation: Production optimization, characterization, and application in milk clotting. Biotechnol Appl Biochem 2021; 69:2069-2080. [PMID: 34617635 DOI: 10.1002/bab.2268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022]
Abstract
The increased demand for cheese and the limited availability of calf rennet justifies the search for milk-clotting enzymes from alternative sources. Trypsin-like protease by Penicillium roqueforti was produced by solid-state fermentation using cocoa shell waste as substrate. The production of a crude enzyme extract that is rich in this enzyme was optimized using a Doehlert-type multivariate experimental design. The biochemical characterization showed that the enzyme has excellent activity and stability at alkaline pH (10-12) and an optimum temperature of 80°C, being stable at temperatures above 60°C. Enzymatic activity was maximized in the presence of Na+ (192%), Co2+ (187%), methanol (153%), ethanol (141%), and hexane (128%). Considering the biochemical characteristics obtained and the milk coagulation activity, trypsin-like protease can be applied in the food industry, such as in milk clotting and in the fabrication of cheeses.
Collapse
Affiliation(s)
- Laísa Santana Nogueira
- Department of Rural and Animal Technology, State University of Southwest Bahia, Itapetinga, Bahia, Brazil
| | | | - Nívio Batista Santana
- Department of Rural and Animal Technology, State University of Southwest Bahia, Itapetinga, Bahia, Brazil
| | | | | | | | - Tatielle Pereira Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | | | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
6
|
Abstract
Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of ‘omics’ era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.
Collapse
|
7
|
Biodiversity and technological features of Weissella isolates obtained from Brazilian artisanal cheese-producing regions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Arbita AA, Paul NA, Cox J, Zhao J. Extraction, partial purification and characterization of proteases from the red seaweed Gracilaria edulis with similar cleavage sites on κ-casein as calf rennet. Food Chem 2020; 330:127324. [PMID: 32569938 DOI: 10.1016/j.foodchem.2020.127324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/26/2020] [Accepted: 06/10/2020] [Indexed: 11/18/2022]
Abstract
Enzymes currently used in cheesemaking have various drawbacks, and there is a continual need to find new coagulants. This study describes the extraction and biochemical characterization of two proteases from the red alga Gracilaria edulis. The proteases were extracted with phosphate buffer and partially purified by ammonium sulphate precipitation and dialysis. The enzymes exhibited optimum caseinolytic activity at 60 °C and a pH range of 6-8. They showed a high ratio of milk-clotting over caseinolytic activity, indicating they had an excellent milk-clotting ability. The proteases were confirmed to be serine protease and metalloprotease with molecular weight (MW) of 44 and 108 kDa. They exhibited high hydrolytic activity on κ-caseins, cleaving κ-casein at four main sites, one of which being the same as that of calf rennet, which is the first reported for an algal protease. The findings demonstrated that the proteases could potentially be used as a milk coagulant in cheesemaking.
Collapse
Affiliation(s)
- Ariestya Arlene Arbita
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; School of Chemical Engineering, Faculty of Industrial and Technology, Parahyangan Catholic University, Ciumbuleuit 94, Bandung 40141, Indonesia
| | - Nicholas A Paul
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4558, Australia
| | - Julian Cox
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jian Zhao
- Food Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
9
|
Enhancement of the activity, stability and reusability of an extracellular protease from Pseudomonas fluorescens 07A via three different strategies of immobilization. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2020. [DOI: 10.1007/s43153-020-00059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Takahashi S, Morooka Y, Kumakura T, Abe K, Kera Y. Enzymatic characterization and regulation of gene expression of PhoK alkaline phosphatase in Sphingobium sp. strain TCM1. Appl Microbiol Biotechnol 2019; 104:1125-1134. [DOI: 10.1007/s00253-019-10291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022]
|
11
|
Fusieger A, Martins MCF, de Freitas R, Nero LA, de Carvalho AF. Technological properties of Lactococcus lactis subsp. lactis bv. diacetylactis obtained from dairy and non-dairy niches. Braz J Microbiol 2019; 51:313-321. [PMID: 31734902 DOI: 10.1007/s42770-019-00182-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/25/2019] [Indexed: 12/29/2022] Open
Abstract
Lactococcus lactis subsp. lactis bv. diacetylactis strains are often used as starter cultures by the dairy industry due to their production of acetoin and diacetyl, important substances that add buttery flavor notes in dairy products. Twenty-three L. lactis subsp. lactis isolates were obtained from dairy products (milk and cheese) and dairy farms (silage), identified at a biovar level, fingerprinted by rep-PCR and characterized for some technological features. Fifteen isolates presented molecular and phenotypical (diacetyl and citrate) characteristics coherent with L. lactis subsp. lactis bv. diacetylactis and rep-PCR allowed the identification of 12 distinct profiles (minimum similarity of 90%). Based on technological features, only two isolates were not able to coagulate skim milk and 10 were able to produce proteases. All isolates were able to acidify skim milk: two isolates, in special, presented high acidifying ability due to their ability in reducing more than two pH units after 24 h. All isolates were also able to grow at different NaCl concentrations (0 to 10%, w/v), and isolates obtained from peanut and grass silages presented the highest NaCl tolerance (10%, w/v). These results indicate that the L. lactis subsp. lactis bv. diacetylactis isolates presented interesting technological features for potential application in fermented foods production. Despite presenting promising technological features, the isolates must be assessed according to their safety before being considered as starter cultures.
Collapse
Affiliation(s)
- Andressa Fusieger
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Rosângela de Freitas
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| | | |
Collapse
|
12
|
Yuan L, Sadiq FA, Burmølle M, Wang NI, He G. Insights into Psychrotrophic Bacteria in Raw Milk: A Review. J Food Prot 2019; 82:1148-1159. [PMID: 31225978 DOI: 10.4315/0362-028x.jfp-19-032] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HIGHLIGHTS Levels of psychrotrophic bacteria in raw milk are affected by to habitats and farm hygiene. Biofilms formed by psychrotrophic bacteria are persistent sources of contamination. Heat-stable enzymes produced by psychrotrophic bacteria compromise product quality. Various strategies are available for controlling dairy spoilage caused by psychrotrophic bacteria.
Collapse
Affiliation(s)
- Lei Yuan
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China.,2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Faizan A Sadiq
- 3 School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Mette Burmølle
- 2 Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - N I Wang
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Guoqing He
- 1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
13
|
Role of structural ions on the dynamics of the Pseudomonas fluorescens 07A metalloprotease. Food Chem 2019; 286:309-315. [DOI: 10.1016/j.foodchem.2019.01.204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
|
14
|
Hahne J, Isele D, Berning J, Lipski A. The contribution of fast growing, psychrotrophic microorganisms on biodiversity of refrigerated raw cow's milk with high bacterial counts and their food spoilage potential. Food Microbiol 2019; 79:11-19. [DOI: 10.1016/j.fm.2018.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023]
|
15
|
Zhang C, Bijl E, Svensson B, Hettinga K. The Extracellular Protease AprX fromPseudomonasand its Spoilage Potential for UHT Milk: A Review. Compr Rev Food Sci Food Saf 2019; 18:834-852. [DOI: 10.1111/1541-4337.12452] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Chunyue Zhang
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| | - Etske Bijl
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| | - Birgitta Svensson
- Tetra Pak Processing Systems ABRuben Rausings gata 221 86 Lund Sweden
| | - Kasper Hettinga
- Dairy Science and Technology, Food Quality and Design GroupWageningen Univ. and Research P.O. Box 17 6700 AA Wageningen the Netherlands
| |
Collapse
|
16
|
Characteristics of the First Protein Tyrosine Phosphatase with Phytase Activity from a Soil Metagenome. Genes (Basel) 2019; 10:genes10020101. [PMID: 30700057 PMCID: PMC6409689 DOI: 10.3390/genes10020101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 11/30/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) fulfil multiple key regulatory functions. Within the group of PTPs, the atypical lipid phosphatases (ALPs) are known for their role as virulence factors associated with human pathogens. Another group of PTPs, which is capable of using inositol-hexakisphosphate (InsP6) as substrate, are known as phytases. Phytases play major roles in the environmental phosphorus cycle, biotechnology, and pathogenesis. So far, all functionally characterized PTPs, including ALPs and PTP-phytases, have been derived exclusively from isolated microorganisms. In this study, screening of a soil-derived metagenomic library resulted in identification of a gene (pho16B), encoding a PTP, which shares structural characteristics with the ALPs. In addition, the characterization of the gene product (Pho16B) revealed the capability of the protein to use InsP6 as substrate, and the potential of soil as a source of phytases with so far unknown characteristics. Thus, Pho16B represents the first functional environmentally derived PTP-phytase. The enzyme has a molecular mass of 38 kDa. The enzyme is promiscuous, showing highest activity and affinity toward naphthyl phosphate (Km 0.966 mM). Pho16B contains the HCXXGKDR[TA]G submotif of PTP-ALPs, and it is structurally related to PtpB of Mycobacterium tuberculosis. This study demonstrates the presence and functionality of an environmental gene codifying a PTP-phytase homologous to enzymes closely associated to bacterial pathogenicity.
Collapse
|
17
|
Flores-Fernández CN, Cárdenas-Fernández M, Dobrijevic D, Jurlewicz K, Zavaleta AI, Ward JM, Lye GJ. Novel extremophilic proteases from Pseudomonas aeruginosa M211 and their application in the hydrolysis of dried distiller's grain with solubles. Biotechnol Prog 2018; 35:e2728. [PMID: 30304581 DOI: 10.1002/btpr.2728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022]
Abstract
Proteases are the most important group of industrial enzymes and they can be used in several fields including biorefineries for the valorization of industrial byproducts. In this study, we purified and characterized novel extremophilic proteases produced by a Pseudomonas aeruginosa strain isolated from Mauritia flexuosa palm swamps soil samples in Peruvian Amazon. In addition, we tested their ability to hydrolyze distillers dried grains with solubles (DDGS) protein. Three alkaline and thermophilic serine proteases named EI, EII, and EIII with molecular weight of 35, 40, and 55 kDa, respectively, were purified. EI and EIII were strongly inhibited by EDTA and Pefabloc being classified as serine-metalloproteases, while EII was completely inhibited only by Pefabloc being classified as a serine protease. In addition, EI and EII exhibited highest enzymatic activity at pH 8, while EIII at pH 11 maintaining almost 100% of it at pH 12. All the enzymes demonstrated optimum activity at 60°C. Enzymatic activity of EI was strongly stimulated in presence of Mn2+ (6.9-fold), EII was stimulated by Mn2+ (3.7-fold), while EIII was slightly stimulated by Zn2+ , Ca2+ , and Mg2+ . DDGS protein hydrolysis using purified Pseudomonas aeruginosa M211 proteases demonstrated that, based on glycine released, EIII presented the highest proteolytic activity toward DDGS. This enzyme enabled the release 63% of the total glycine content in wheat DDGS protein, 2.2-fold higher that when using the commercial Pronase®. Overall, our results indicate that this novel extremopreoteases have a great potential to be applied in DDGS hydrolysis. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2728, 2019.
Collapse
Affiliation(s)
- Carol N Flores-Fernández
- Facultad de Farmacia y Bioquímica, Laboratorio de Biología Molecular, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Max Cárdenas-Fernández
- Dept. of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, WC1E 6BT, U.K
| | - Dragana Dobrijevic
- Dept. of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, WC1E 6BT, U.K
| | - Kosma Jurlewicz
- Dept. of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, WC1E 6BT, U.K
| | - Amparo I Zavaleta
- Facultad de Farmacia y Bioquímica, Laboratorio de Biología Molecular, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - John M Ward
- Dept. of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, WC1E 6BT, U.K
| | - Gary J Lye
- Dept. of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, WC1E 6BT, U.K
| |
Collapse
|
18
|
Ribeiro Júnior JC, Teider Junior PI, Oliveira AL, Rios EA, Tamanini R, Beloti V. Proteolytic and lipolytic potential of Pseudomonas spp. from goat and bovine raw milk. PESQUISA VETERINÁRIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Pseudomonas, the main genus of gram-negative microorganisms isolated from milk, is psychrotrophic, biofilm-forming, and thermo-resistant deteriorating enzyme producers. The aim of this study was to quantify Pseudomonas spp. in goat’s and cow’s milk produced in the Paraná state, Brazil, to evaluate the deteriorating activity of the isolates at mesophilic and psychrotrophic conditions and to identify, at the species level, the isolates with alkaline metalloprotease (aprX gene) production potential. Microbiological, biochemical and molecular methods were used for isolating, confirming and identifying of isolates. The mean counts were 1.6 (±6.3)x104 and 0.89(±3)x102 CFU/mL for goat and bovine milk samples, respectively, immediately after milking. Of the Pseudomonas colonies isolated from goat milk (n=60), 91.7% showed proteolytic potential when incubated at 35°C/48 h and 80% at 7°C/10 days, and lipolytic potential was observed in 95% of the isolates incubated in mesophilic and 78.3% at refrigeration conditions. From the isolates of bovine milk (n=20), 35% showed proteolytic activity only when incubated at 35°C/48 h, and lipolytic potential was observed in 25% of the isolates incubated at 7°C/10d and 35°C/48h. It was observed that 83.3% and 25% of the isolates genetically confirmed as Pseudomonas spp. of goat and bovine milk showed the potential for alkaline metalloprotease production, with the species P. azotoformans, P. koreensis, P. gessardii, P. monteilii and P. lurida being the most frequent in goat milk and P. aeruginosa the only species identified in cow milk.
Collapse
|
19
|
Rossi C, Chaves‐López C, Serio A, Anniballi F, Valbonetti L, Paparella A. Effect of
Origanum vulgare
essential oil on biofilm formation and motility capacity of
Pseudomonas fluorescens
strains isolated from discoloured Mozzarella cheese. J Appl Microbiol 2018; 124:1220-1231. [DOI: 10.1111/jam.13707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/20/2017] [Accepted: 01/11/2018] [Indexed: 01/24/2023]
Affiliation(s)
- C. Rossi
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - C. Chaves‐López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - A. Serio
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - F. Anniballi
- Department of Veterinary Public Health and Food Safety National Reference Centre for Botulism Istituto Superiore di Sanità Rome RM Italy
| | - L. Valbonetti
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| | - A. Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Teramo TE Italy
| |
Collapse
|
20
|
Alves MP, Salgado RL, Eller MR, Dias RS, Oliveira de Paula S, Fernandes de Carvalho A. Temperature modulates the production and activity of a metalloprotease from Pseudomonas fluorescens 07A in milk. J Dairy Sci 2018; 101:992-999. [PMID: 29248219 DOI: 10.3168/jds.2017-13238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/31/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Maura P Alves
- Inovaleite Laboratory, Department of Food Science and Technology, Viçosa, Minas Gerais, Brazil 36570000
| | - Rafael L Salgado
- Department of Biochemistry and Molecular Biology, Viçosa, Minas Gerais, Brazil 36570000
| | - Monique R Eller
- Department of Food Science and Technology, and Viçosa, Minas Gerais, Brazil 36570000
| | - Roberto Sousa Dias
- Department of Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 36570000
| | | | | |
Collapse
|
21
|
Boulkour Touioui S, Zaraî Jaouadi N, Bouacem K, Ben Ayed R, Rekik H, Zenati B, Kourdali S, Boudjella H, Sabaou N, Bejar S, El Hattab M, Badis A, Annane R, Jaouadi B. Biochemical and molecular characterization of a novel metalloprotease from Pseudomonas fluorescens strain TBS09. Int J Biol Macromol 2018; 107:2351-2363. [DOI: 10.1016/j.ijbiomac.2017.10.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|