1
|
Cox JF, Carrasco A, Navarrete F, Allende R, Saravia F, Dorado J. Unveiling the Role of IGF-I in Fertility: Effect of Long-Acting Bovine Somatotropin (bST) on Terminal Follicular Development and Fertility during an Annual Reproductive Cycle in Sheep. Animals (Basel) 2024; 14:1097. [PMID: 38612336 PMCID: PMC11011003 DOI: 10.3390/ani14071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
The study aimed to assess the effect of long-acting bST treatment, in a dose that only increases IGF-I plasma concentrations, on ovarian and fertility markers of estrous synchronized ewes that were fed to keep their bodyweight. Three experiments were designed to evaluate this effect: in Experiment 1, 18 ewes were distributed in groups (bST 0, 30, 50 mg) to measure plasma IGF-I and insulin for 15 days; in Experiment 2, 92 ewes (5 replicates) in two groups (0 and 30 mg bST) were synchronized using a 6-day progesterone protocol during the breeding season to assess the effect of bST on follicular and luteal performances, estrous and ovulation, and fertility after mating. In Experiment 3, 50 ewes (3 replicates) were used to repeat the study before but during anestrus. Results indicate that 50 mg bST increased IGF-I and insulin plasma concentrations, but 30 mg bST only increased IGF-I concentrations; and that only during the breeding season did 30 mg bST increase the number of lambs born and the reproductive success of ovulatory-sized follicles compared to controls. This occurred without it affecting any other reproductive marker. In conclusion, 30 mg bST treatment may improve oocyte competence for fertility during the breeding season.
Collapse
Affiliation(s)
- José Francisco Cox
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile (F.S.)
| | - Albert Carrasco
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile (F.S.)
| | - Felipe Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile (F.S.)
| | - Rodrigo Allende
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile (F.S.)
| | - Fernando Saravia
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile (F.S.)
| | - Jesús Dorado
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Cordoba, Campus Rabanales, 14014 Cordoba, Spain
| |
Collapse
|
2
|
Tebbe AW, Hanson J, Weiss WP. Effects of metabolizable protein concentration, amino acid profile, and fiber source on the messenger RNA expression of skeletal muscle in peripartum dairy cows. J Dairy Sci 2021; 104:7888-7901. [PMID: 33814155 DOI: 10.3168/jds.2021-20176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/25/2021] [Indexed: 01/11/2023]
Abstract
After parturition, dairy cows mobilize AA from skeletal muscle to meet metabolizable protein (MP) requirements. High mobilization may compromise cow health and longer-term milk production. Postpartum diets with higher MP concentrations, improved AA profiles, or MP increased at the expense of forages rather than nonforage fiber sources may attenuate muscle catabolism; however, the molecular mechanisms responsible need investigation. We evaluated mRNA expression in the longissimus dorsi of cows fed postpartum diets differing in MP concentration, AA profile, and fiber source. From 0 to 25 d after parturition, 40 multiparous cows received the following diets: (1) 13% deficient in MP (D-MP), (2) adequate in MP using primarily soy protein (A-MP), (3) adequate in MP using blends of proteins and individual AA to improve the AA profile (Blend), or (4) similar to Blend except additional protein replaced forage (Blend-fNDF). Biopsies were taken approximately -5, 7, and 25 d relative to parturition. Greater dietary MP concentration (D-MP vs. A-MP and Blend) decreased expression of genes related to protein synthesis (MTOR, RPS6KB1) and degradation (FOXO1), inflammation (IFNG, TLR4), and endoplasmic reticulum (ER) stress (HSPA5, DDIT) and increased genes associated with lipogenesis (PPARG) and glucose oxidation (LDH, MB). In Blend versus A-MP (i.e., effect of AA profile), expression related to apoptosis (CASP8) and inflammation (TNFA) decreased and genes associated with cell cycle progression (E2F1) and fast-twitch glycolytic muscle fiber type (MYH4) increased. Less forage (Blend-fNDF vs. Blend) decreased genes associated with lipogenesis (PPARG, ACACA) and ER stress (BCL2, DDIT3, EIF2AK3, PPP1R15A) and increased genes associated with inflammation (TNF), inhibition of myogenesis (MSTN), and autophagy (PEBP1). In summary and based on mRNA expression, increasing MP supply may attenuate muscle turnover and ER stress. However, an unbalanced AA supply reduced cell cycle progression and protein synthesis. Lower energy supplies may reduce cell growth and cause autophagy.
Collapse
Affiliation(s)
- Alexander W Tebbe
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - Juliette Hanson
- Food Animal Health Research Program, The Ohio State University, Wooster 44691
| | - William P Weiss
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691.
| |
Collapse
|
3
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
4
|
Belli AL, Reis RB, Veronese A, Moreira R, Flanagan K, Driver J, Nelson CD, Clapper JA, Ballou MA, Jeong KC, Chebel RC. Effects of treatment of preweaning dairy calves with recombinant bovine somatotropin on immune responses and somatotropic axis. J Dairy Sci 2018; 101:6602-6615. [PMID: 29655555 DOI: 10.3168/jds.2017-13917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/26/2018] [Indexed: 01/30/2023]
Abstract
Weaning may be associated with negative energy balance and body weight loss when calves are still immunologically immature, predisposing them to infectious diseases. The aim of the present experiment was to investigate the effects of treatment of preweaning dairy calves with recombinant bovine somatotropin (rbST) on the somatotropic axis, selected immune parameters, and hematology of calves around weaning. Thirty-six Holstein female calves were randomly assigned to receive 1.5 to 1.8 mg of rbST (Posilac, Elanco Animal Health, Greenfield, IN) per kilogram of body weight or to receive injections of saline (saline solution 0.9%, Valley Vet Supply, Marysville, KS) every 7 d from 21 to 63 d of life. Calves were fed milk replacer ad libitum from birth to 38 d of age (d -11), when progressive weaning started, and calves were weaned at 49 d of age (d 0). Calves were weighed at birth and weekly from 21 to 63 d of age, when wither height also was measured. Calves were vaccinated with 0.5 mg of ovalbumin on study d -28 and -7. Blood samples were collected on d -28, -25, -21, -11, 0, 3, 7, and 14. Polymorphonuclear leukocytes were isolated and challenged ex vivo with Escherichia coli to determine phagocytosis and oxidative burst capacity. Additionally, expression of cluster of differentiation (CD)62L and CD18 by granulocyte, lymphocyte, and CD14+ monocyte were determined. Blood samples were also used to determine hematological parameters and concentrations of growth hormone, insulin-like growth factor-1, insulin, glucose, fatty acids, β-hydroxybutyrate, haptoglobin, and anti-ovalbumin IgG. Calves treated with rbST had greater concentrations of growth hormone and insulin-like growth factor-1 from d -25 to 14 than control calves, whereas insulin, fatty acid, and β-hydroxybutyrate concentrations did not differ. On d -11, glucose concentration was greater for rbST-treated calves. Treatment did not affect polymorphonuclear lymphocyte phagocytosis and oxidative burst, but intensity of expression of CD62L and CD18 by granulocytes tended to be increased by rbST treatment. Treatment did not affect the concentration of anti-ovalbumin IgG in serum. Haptoglobin concentration was reduced in rbST treated calves on d 3 and we noted a tendency for hematocrit to be lower in rbST-treated calves. Treatment did not affect body weight, wither height, and average daily gain, despite the fact that rbST-treated calves had lower daily milk replacer intake. The relatively minor improvements in immune responses resulting from rbST treatment of weaning calves may not be sufficient to reduce the incidence of infectious diseases.
Collapse
Affiliation(s)
- A L Belli
- Department of Animal Science, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte 567; Department of Large Animal Clinical Sciences, University of Florida, Gainesville 32608
| | - R B Reis
- Department of Animal Science, Escola de Veterinária da Universidade Federal de Minas Gerais, Belo Horizonte 567
| | - A Veronese
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville 32608
| | - R Moreira
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville 32608
| | - K Flanagan
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville 32608
| | - J Driver
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - C D Nelson
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - J A Clapper
- Department of Animal Science, South Dakota State University, Brookings 57007
| | - M A Ballou
- Department of Animal and Food Sciences, Texas Tech University, Lubbock 79409
| | - K C Jeong
- Department of Animal Sciences, University of Florida, Gainesville 32608
| | - R C Chebel
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville 32608; Department of Animal Sciences, University of Florida, Gainesville 32608.
| |
Collapse
|
5
|
Du X, Zhu Y, Peng Z, Cui Y, Zhang Q, Shi Z, Guan Y, Sha X, Shen T, Yang Y, Li X, Wang Z, Li X, Liu G. High concentrations of fatty acids and β-hydroxybutyrate impair the growth hormone-mediated hepatic JAK2-STAT5 pathway in clinically ketotic cows. J Dairy Sci 2018; 101:3476-3487. [DOI: 10.3168/jds.2017-13234] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
|
6
|
Silva P, Nelson C, Driver J, Thatcher W, Chebel R. Effect of recombinant bovine somatotropin on leukocyte mRNA expression for genes related to cell energy metabolism, cytokine production, phagocytosis, oxidative burst, and adaptive immunity. J Dairy Sci 2017; 100:8471-8483. [DOI: 10.3168/jds.2016-12106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/18/2017] [Indexed: 01/25/2023]
|
7
|
Silva P, Soares H, Braz W, Bombardelli G, Clapper J, Keisler D, Chebel R. Effects of treatment of periparturient dairy cows with recombinant bovine somatotropin on health and productive and reproductive parameters. J Dairy Sci 2017; 100:3126-3142. [DOI: 10.3168/jds.2016-11737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022]
|