1
|
Lipkin E, Strillacci MG, Cohen-Zinder M, Eitam H, Yishay M, Soller M, Ferrari C, Bagnato A, Shabtay A. Mapping genomic regions affecting sensitivity to bovine respiratory disease on chromosome X using selective DNA pooling. Sci Rep 2025; 15:4556. [PMID: 39915572 PMCID: PMC11802930 DOI: 10.1038/s41598-025-89020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Bovine respiratory disease is a leading health problem in feedlot cattle. Identification of affecting genes is essential for selection for decrease sensitivity. Chromosome X is a special attractive target for gene mapping in light of reports on both sexual dimorphism in immunity and higher susceptibility of males to this disease. However, diagnosis is challenging and clinical signs often go undetected. Kosher scoring of lung adhesions was used as a cost-effective proxy diagnosis. Selective DNA pooling was applied for cost-effective mapping of regions associated with sensitivity to the disease on chromosome X in Israeli Holstein male calves. A total of 9 regions were found, more than twice of any of the autosomes. All regions overlapped or were very close to previously reported regions. Bioinformatics survey found candidate-by-location genes in these regions. Functional analyses identified candidates-by-function among these genes. Network analyses connected the genes and found possible relations of the genes and the networks with morbidity, and specifically with sensitivity to bovine respiratory disease. The relatively large number of affecting regions and the candidate genes on the sex chromosome may explain part of the higher susceptibility of males and provide genomic and management targets for mitigating this disease.
Collapse
Affiliation(s)
- Ehud Lipkin
- Department of Genetics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Maria Giuseppina Strillacci
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Miri Cohen-Zinder
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
- Helmsley Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Harel Eitam
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Moran Yishay
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Morris Soller
- Department of Genetics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Carlotta Ferrari
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Ariel Shabtay
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel.
- Helmsley Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel.
| |
Collapse
|
2
|
de Carvalho FE, Ferraz JBS, Pedrosa VB, Matos EC, Eler JP, Silva MR, Guimarães JD, Bussiman F, Silva BCA, Mulim HA, Rocha AO, Araujo AC, Wen H, Campos GS, Brito LF. Genetic parameters and genome-wide association studies including the X chromosome for various reproduction and semen quality traits in Nellore cattle. BMC Genomics 2025; 26:26. [PMID: 39794685 PMCID: PMC11720523 DOI: 10.1186/s12864-024-11193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The profitability of the beef industry is directly influenced by the fertility rate and reproductive performance of both males and females, which can be improved through selective breeding. When performing genomic analyses, genetic markers located on the X chromosome have been commonly ignored despite the X chromosome being one of the largest chromosomes in the cattle genome. Therefore, the primary objectives of this study were to: (1) estimate variance components and genetic parameters for eighteen male and five female fertility and reproductive traits in Nellore cattle including X chromosome markers in the analyses; and (2) perform genome-wide association studies and functional genomic analyses to better understand the genetic background of male and female fertility and reproductive performance traits in Nellore cattle. RESULTS The percentage of the total direct heritability (h2total) explained by the X chromosome markers (h2x) ranged from 3 to 32% (average: 16.4%) and from 9 to 67% (average: 25.61%) for female reproductive performance and male fertility traits, respectively. Among the traits related to breeding soundness evaluation, the overall bull and semen evaluation and semen quality traits accounted for the highest proportion of h2x relative to h2total with an average of 39.5% and 38.75%, respectively. The total number of significant genomic markers per trait ranged from 7 (seminal vesicle width) to 43 (total major defects). The number of significant markers located on the X chromosome ranged from zero to five. A total of 683, 252, 694, 382, 61, and 77 genes overlapped with the genomic regions identified for traits related to female reproductive performance, semen quality, semen morphology, semen defects, overall bulls' fertility evaluation, and overall semen evaluation traits, respectively. The key candidate genes located on the X chromosome are PRR32, STK26, TMSB4X, TLR7, PRPS2, SMS, SMARCA1, UTP14A, and BCORL1. The main gene ontology terms identified are "Oocyte Meiosis", "Progesterone Mediated Oocyte Maturation", "Thermogenesis", "Sperm Flagellum", and "Innate Immune Response". CONCLUSIONS Our findings indicate the key role of genes located on the X chromosome on the phenotypic variability of male and female reproduction and fertility traits in Nellore cattle. Breeding programs aiming to improve these traits should consider adding the information from X chromosome markers in their genomic analyses.
Collapse
Affiliation(s)
- Felipe E de Carvalho
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil.
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| | - José Bento S Ferraz
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Elisangela C Matos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Joanir P Eler
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Marcio R Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - José D Guimarães
- Department of Veterinary Medicine, Federal University of Vicosa, Vicosa, MG, Brazil
| | - Fernando Bussiman
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Barbara C A Silva
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Artur Oliveira Rocha
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Hui Wen
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Gabriel S Campos
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Sinclair KD. Developmental epigenetics: Understanding genetic and sexually dimorphic responses to parental diet and outcomes following assisted reproduction. J Dairy Sci 2024:S0022-0302(24)01392-4. [PMID: 39701526 DOI: 10.3168/jds.2024-25811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
The developmental integrity and wellbeing of offspring are influenced by events that occur in utero, particularly around the time of conception. While extraneous factors such as environmental temperature and exposure to environmental chemicals can each have a bearing on these events, the epigenetic mechanisms that direct cellular differentiation during early development in ruminants are best described for studies which have investigated the effects of parental nutrition or pregnancy outcomes following assisted reproduction. In this article the case is made that the genetic constitution of an individual directs epigenetic responses to environmental stimuli, and consideration in this regard is also given to the origins of sexual dimorphism and mechanisms of germline intergenerational inheritance. These aspects are considered in the context of epigenetic modifications that take place during the normal course of gametogenesis and embryogenesis, and again following either dietary or procedural interventions such as embryo culture. A recurring feature of such interventions, irrespective of species, is that one carbon metabolic pathways are invariably disrupted, and this affects the provision of methyl groups for chromatin and RNA methylation. Inter-specific variation in how these pathways operate, both within the liver and in germ cells, indicates that ruminants may be particularly sensitive in this regard. Recent advances in genomic technologies should enable rapid progress in these areas. Knowledge gained can be integrated into breed improvement programs and used to tailor management practices to specific breeds and strains (including sexes) within breeds. Ultimately, consideration should be given to integrating metagenomics into analyses of genetic-directed epigenetic programming of animal development.
Collapse
Affiliation(s)
- Kevin D Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, UK, LE12 5RD.
| |
Collapse
|
4
|
Trebes H, Wang Y, Reynolds E, Tiplady K, Harland C, Lopdell T, Johnson T, Davis S, Harris B, Spelman R, Couldrey C. Identification of candidate novel production variants on the Bos taurus chromosome X. J Dairy Sci 2023; 106:7799-7815. [PMID: 37562645 DOI: 10.3168/jds.2022-23095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/26/2023] [Indexed: 08/12/2023]
Abstract
Chromosome X is often excluded from bovine genetic studies due to complications caused by the sex specific nature of the chromosome. As chromosome X is the second largest cattle chromosome and makes up approximately 6% of the female genome, finding ways to include chromosome X in dairy genetic studies is important. Using female animals and treating chromosome X as an autosome, we performed X chromosome inclusive genome-wide association studies in the selective breeding environment of the New Zealand dairy industry, aiming to identify chromosome X variants associated with milk production traits. We report on the findings of these genome-wide association studies and their potential effect within the dairy industry. We identify missense mutations in the MOSPD1 and CCDC160 genes that are associated with decreased milk volume and protein production and increased fat production. Both of these mutations are exonic SNP that are more prevalent in the Jersey breed than in Holstein-Friesians. Of the 2 candidates proposed it is likely that only one is causal, though we have not been able to identify which is more likely.
Collapse
Affiliation(s)
- H Trebes
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand.
| | - Y Wang
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - E Reynolds
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - K Tiplady
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - C Harland
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - T Lopdell
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - T Johnson
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - S Davis
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - B Harris
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - R Spelman
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - C Couldrey
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| |
Collapse
|
5
|
Sanchez MP, Escouflaire C, Baur A, Bottin F, Hozé C, Boussaha M, Fritz S, Capitan A, Boichard D. X-linked genes influence various complex traits in dairy cattle. BMC Genomics 2023; 24:338. [PMID: 37337145 DOI: 10.1186/s12864-023-09438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The search for quantitative trait loci (QTL) affecting traits of interest in mammals is frequently limited to autosomes, with the X chromosome excluded because of its hemizygosity in males. This study aimed to assess the importance of the X chromosome in the genetic determinism of 11 complex traits related to milk production, milk composition, mastitis resistance, fertility, and stature in 236,496 cows from three major French dairy breeds (Holstein, Montbéliarde, and Normande) and three breeds of regional importance (Abondance, Tarentaise, and Vosgienne). RESULTS Estimates of the proportions of heritability due to autosomes and X chromosome (h²X) were consistent among breeds. On average over the 11 traits, h²X=0.008 and the X chromosome explained ~ 3.5% of total genetic variance. GWAS was performed within-breed at the sequence level (~ 200,000 genetic variants) and then combined in a meta-analysis. QTL were identified for most breeds and traits analyzed, with the exception of Tarentaise and Vosgienne and two fertility traits. Overall, 3, 74, 59, and 71 QTL were identified in Abondance, Montbéliarde, Normande, and Holstein, respectively, and most were associated with the most-heritable traits (milk traits and stature). The meta-analyses, which assessed a total of 157 QTL for the different traits, highlighted new QTL and refined the positions of some QTL found in the within-breed analyses. Altogether, our analyses identified a number of functional candidate genes, with the most notable being GPC3, MBNL3, HS6ST2, and DMD for dairy traits; TMEM164, ACSL4, ENOX2, HTR2C, AMOT, and IRAK1 for udder health; MAMLD1 and COL4A6 for fertility; and NRK, ESX1, GPR50, GPC3, and GPC4 for stature. CONCLUSIONS This study demonstrates the importance of the X chromosome in the genetic determinism of complex traits in dairy cattle and highlights new functional candidate genes and variants for these traits. These results could potentially be extended to other species as many X-linked genes are shared among mammals.
Collapse
Affiliation(s)
- Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France.
| | | | | | - Fiona Bottin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| |
Collapse
|
6
|
Id-Lahoucine S, Casellas J, Fonseca PAS, Suárez-Vega A, Schenkel FS, Cánovas A. Deviations from Mendelian Inheritance on Bovine X-Chromosome Revealing Recombination, Sex-of-Offspring Effects and Fertility-Related Candidate Genes. Genes (Basel) 2022; 13:genes13122322. [PMID: 36553588 PMCID: PMC9778079 DOI: 10.3390/genes13122322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Transmission ratio distortion (TRD), or significant deviations from Mendelian inheritance, is a well-studied phenomenon on autosomal chromosomes, but has not yet received attention on sex chromosomes. TRD was analyzed on 3832 heterosomal single nucleotide polymorphisms (SNPs) and 400 pseudoautosomal SNPs spanning the length of the X-chromosome using 436,651 genotyped Holstein cattle. On the pseudoautosomal region, an opposite sire-TRD pattern between male and female offspring was identified for 149 SNPs. This finding revealed unique SNPs linked to a specific-sex (Y- or X-) chromosome and describes the accumulation of recombination events across the pseudoautosomal region. On the heterosomal region, 13 SNPs and 69 haplotype windows were identified with dam-TRD. Functional analyses for TRD regions highlighted relevant biological functions responsible to regulate spermatogenesis, development of Sertoli cells, homeostasis of endometrium tissue and embryonic development. This study uncovered the prevalence of different TRD patterns across both heterosomal and pseudoautosomal regions of the X-chromosome and revealed functional candidate genes for bovine reproduction.
Collapse
Affiliation(s)
- Samir Id-Lahoucine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joaquim Casellas
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Pablo A. S. Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Aroa Suárez-Vega
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Flavio S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
7
|
Effect of genomic X-chromosome regions on Nelore bull fertility. J Appl Genet 2021; 62:655-659. [PMID: 34145524 DOI: 10.1007/s13353-021-00645-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Scrotal circumference (SC) is a commonly used trait related to sexual precocity in bulls. Genome-wide association studies have uncovered a lot of genes related to this trait, however, only those present on autosomes. The inclusion of the second biggest chromosome (BTAX) can improve the knowledge of the genetic architecture of this trait. In this study, we performed a weighted, single-step, genome-wide association study using a 777 k BovineHD BeadChip (IllumHD) to analyze the association between SNPs and SC in Brazilian Nelore cattle. Phenotypes from 79,300 males and 3263 genotypes (2017 from females and 1246 from males)-(39,367 SNPs markers located at ChrX) were used. We identified eight regions on chromosome X that displayed important associations with SC. The results showed that together the genomic windows explained 28.52% of the genetic variance for the examined trait. Genes with potential functions in reproduction and fertility regulation were highlighted as candidates for sexual precocity rates in Nelore cattle (AFF2 and PJA1). Moreover, we found 10 genes that had not previously been identified as being associated with sexual precocity traits in cattle. These findings will further advance our understanding of the genetic architecture, considering mainly the presence of the chromosome X, for indicine cattle reproductive traits, being useful in the context of genomic prediction in beef cattle.
Collapse
|
8
|
Balaton BP, Fornes O, Wasserman WW, Brown CJ. Cross-species examination of X-chromosome inactivation highlights domains of escape from silencing. Epigenetics Chromatin 2021; 14:12. [PMID: 33597016 PMCID: PMC7890635 DOI: 10.1186/s13072-021-00386-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Background X-chromosome inactivation (XCI) in eutherian mammals is the epigenetic inactivation of one of the two X chromosomes in XX females in order to compensate for dosage differences with XY males. Not all genes are inactivated, and the proportion escaping from inactivation varies between human and mouse (the two species that have been extensively studied). Results We used DNA methylation to predict the XCI status of X-linked genes with CpG islands across 12 different species: human, chimp, bonobo, gorilla, orangutan, mouse, cow, sheep, goat, pig, horse and dog. We determined the XCI status of 342 CpG islands on average per species, with most species having 80–90% of genes subject to XCI. Mouse was an outlier, with a higher proportion of genes subject to XCI than found in other species. Sixteen genes were found to have discordant X-chromosome inactivation statuses across multiple species, with five of these showing primate-specific escape from XCI. These discordant genes tended to cluster together within the X chromosome, along with genes with similar patterns of escape from XCI. CTCF-binding, ATAC-seq signal and LTR repeats were enriched at genes escaping XCI when compared to genes subject to XCI; however, enrichment was only observed in three or four of the species tested. LINE and DNA repeats showed enrichment around subject genes, but again not in a consistent subset of species. Conclusions In this study, we determined XCI status across 12 species, showing mouse to be an outlier with few genes that escape inactivation. Inactivation status is largely conserved across species. The clustering of genes that change XCI status across species implicates a domain-level control. In contrast, the relatively consistent, but not universal correlation of inactivation status with enrichment of repetitive elements or CTCF binding at promoters demonstrates gene-based influences on inactivation state. This study broadens enrichment analysis of regulatory elements to species beyond human and mouse.
Collapse
Affiliation(s)
- Bradley P Balaton
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada
| | - Oriol Fornes
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Wyeth W Wasserman
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, Vancouver, Canada.,Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
9
|
Del Pilar Solar Diaz I, de Camargo GMF, Rocha da Cruz VA, da Costa Hermisdorff I, Carvalho CVD, de Albuquerque LG, Costa RB. Effect of the X chromosome in genomic evaluations of reproductive traits in beef cattle. Anim Reprod Sci 2020; 225:106682. [PMID: 33360620 DOI: 10.1016/j.anireprosci.2020.106682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/19/2023]
Abstract
The aim of this study was to evaluate whether there are predictive advantages for breeding values with inclusion of X chromosome genomic markers for reproductive (occurrence of early pregnancy - P16 and age at first calving - AFC) and andrological (scrotal circumference -SC) variables in beef cattle. There were 3263 genotypes of females and males evaluated. There were breeding value estimates for SC, AFC and P16 considering two scenarios: 1) only autosomal markers or 2) autosomal and X chromosome markers. To evaluate effects of inclusion of X chromosome markers on selection, responses to selection were compared including or not including genomic marker information from the X chromosome. There were greater heritability estimates for SC (0.40 and 0.31), AFC (0.11 and 0.09) and P16 (0.43 and 0.38) when analyses included, compared with not including, genomic marker information from the X chromosome. When selection is based on results from analyses that did not include information for the X chromosome, there was about a 7 % lesser mean genomic breeding value for the SC traits for selected animals. For P16, there was an approximate 4% lesser breeding value without inclusion of genomic marker information from the X chromosome, while this inclusion did not have as great an effect on the breeding value for AFC. There was an average predictive correlation of 0.79, 0.98 and 0.84 for SC, AFC and P16, respectively. These estimates indicate inclusion of the X chromosome genomic marker information in the analysis can improve prediction of genomic breeding values, especially for SC.
Collapse
Affiliation(s)
- Iara Del Pilar Solar Diaz
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), 40170-110, Salvador, BA, Brazil
| | | | | | - Isis da Costa Hermisdorff
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), 40170-110, Salvador, BA, Brazil
| | | | - Lucia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, SP, Brazil
| | - Raphael Bermal Costa
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), 40170-110, Salvador, BA, Brazil.
| |
Collapse
|
10
|
Diaz IDPS, de Camargo GMF, Cruz VARD, Hermisdorff IDC, Carvalho CVD, de Albuquerque LG, Costa RB. Mapping genomic regions for reproductive traits in beef cattle: Inclusion of the X chromosome. Reprod Domest Anim 2020; 55:1650-1654. [PMID: 32853424 DOI: 10.1111/rda.13810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022]
Abstract
Although the second largest chromosome of the genome, the X chromosome is usually excluded from genome-wide association studies (GWAS). Considering the presence and importance of genes on this chromosome that are involved in reproduction, the aim of this study was to evaluate the effect of its inclusion in GWAS on reproductive traits (scrotal circumference [SC], early pregnancy [P16] and age at first calving [AFC]) in a Nelore herd. Genotype data from 3,263 animals with the above-mentioned phenotypes were used. The results showed an increase in the variances explained by the autosomal markers for all traits when the X chromosome was not included. For SC, there was an increase of more than 10% for the windows on chromosomes 2 and 6. For P16, the effect was increased by almost 20% for windows on chromosome 5. The same pattern was found for AFC, with an increase of more than 10% for the most important windows. The results indicate that the noninclusion of the X chromosome can overestimate the effects of autosomes on SC, P16 and AFC not only because of the additive effect of the X chromosome itself but also because of its epistatic effect on autosomal genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Lucia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, Brazil
| | - Raphael Bermal Costa
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| |
Collapse
|
11
|
Lamb HJ, Ross EM, Nguyen LT, Lyons RE, Moore SS, Hayes BJ. Characterization of the poll allele in Brahman cattle using long-read Oxford Nanopore sequencing. J Anim Sci 2020; 98:5823688. [PMID: 32318708 DOI: 10.1093/jas/skaa127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Brahman cattle (Bos indicus) are well adapted to thrive in tropical environments. Since their introduction to Australia in 1933, Brahman's ability to grow and reproduce on marginal lands has proven their value in the tropical beef industry. The poll phenotype, which describes the absence of horns, has become desirable in the cattle industry for animal welfare and handler safety concerns. The poll locus has been mapped to chromosome one. Four alleles, each a copy number variant, have been reported across this locus in B. indicus and Bos taurus. However, the causative mutation in Brahman cattle has not been fully characterized. Oxford Nanopore Technologies' minION sequencer was used to sequence four homozygous poll (PcPc), four homozygous horned (pp), and three heterozygous (Pcp) Brahmans to characterize the poll allele in Brahman cattle. A total of 98 Gb were sequenced and an average coverage of 3.33X was achieved. Read N50 scores ranged from 9.9 to 19 kb. Examination of the mapped reads across the poll locus revealed insertions approximately 200 bp in length in the poll animals that were absent in the horned animals. These results are consistent with the Celtic poll allele, a 212-bp duplication that replaces 10 bp. This provides direct evidence that the Celtic poll allele is segregating in the Australian Brahman population.
Collapse
Affiliation(s)
- Harrison J Lamb
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Elizabeth M Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Loan T Nguyen
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Russell E Lyons
- Neogen Australasia, University of Queensland, Gatton, QLD, Australia
| | - Stephen S Moore
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Ben J Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
12
|
Posynick BJ, Brown CJ. Escape From X-Chromosome Inactivation: An Evolutionary Perspective. Front Cell Dev Biol 2019; 7:241. [PMID: 31696116 PMCID: PMC6817483 DOI: 10.3389/fcell.2019.00241] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/02/2019] [Indexed: 12/14/2022] Open
Abstract
Sex chromosomes originate as a pair of homologus autosomes that then follow a general pattern of divergence. This is evident in mammalian sex chromosomes, which have undergone stepwise recombination suppression events that left footprints of evolutionary strata on the X chromosome. The loss of genes on the Y chromosome led to Ohno’s hypothesis of dosage equivalence between XY males and XX females, which is achieved through X-chromosome inactivation (XCI). This process transcriptionally silences all but one X chromosome in each female cell, although 15–30% of human X-linked genes still escape inactivation. There are multiple evolutionary pathways that may lead to a gene escaping XCI, including remaining Y chromosome homology, or female advantage to escape. The conservation of some escape genes across multiple species and the ability of the mouse inactive X to recapitulate human escape status both suggest that escape from XCI is controlled by conserved processes. Evolutionary pressures to minimize dosage imbalances have led to the accumulation of genetic elements that favor either silencing or escape; lack of dosage sensitivity might also allow for the escape of flanking genes near another escapee, if a boundary element is not present between them. Delineation of the elements involved in escape is progressing, but mechanistic understanding of how they interact to allow escape from XCI is still lacking. Although increasingly well-studied in humans and mice, non-trivial challenges to studying escape have impeded progress in other species. Mouse models that can dissect the role of the sex chromosomes distinct from sex of the organism reveal an important contribution for escape genes to multiple diseases. In humans, with their elevated number of escape genes, the phenotypic consequences of sex chromosome aneuplodies and sexual dimorphism in disease both highlight the importance of escape genes.
Collapse
Affiliation(s)
- Bronwyn J Posynick
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Carvalho CVD, Hermisdorff IDC, Souza IS, Junqueira GSB, Magalhães AFB, Fonseca LFS, de Albuquerque LG, Tonhati H, Carvalheiro R, de Camargo GMF, Costa RB. Influence of X-chromosome markers on reproductive traits of beef cattle. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Johnson T, Keehan M, Harland C, Lopdell T, Spelman RJ, Davis SR, Rosen BD, Smith TPL, Couldrey C. Short communication: Identification of the pseudoautosomal region in the Hereford bovine reference genome assembly ARS-UCD1.2. J Dairy Sci 2019; 102:3254-3258. [PMID: 30712931 DOI: 10.3168/jds.2018-15638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/04/2018] [Indexed: 11/19/2022]
Abstract
In cattle, the X chromosome accounts for approximately 3 and 6% of the genome in bulls and cows, respectively. In spite of the large size of this chromosome, very few studies report analysis of the X chromosome in genome-wide association studies and genomic selection. This lack of genetic interrogation is likely due to the complexities of undertaking these studies given the hemizygous state of some, but not all, of the X chromosome in males. The first step in facilitating analysis of this gene-rich chromosome is to accurately identify coordinates for the pseudoautosomal boundary (PAB) to split the chromosome into a region that may be treated as autosomal sequence (pseudoautosomal region) and a region that requires more complex statistical models. With the recent release of ARS-UCD1.2, a more complete and accurate assembly of the cattle genome than was previously available, it is timely to fine map the PAB for the first time. Here we report the use of SNP chip genotypes, short-read sequences, and long-read sequences to fine map the PAB (X chromosome:133,300,518) and simultaneously determine the neighboring regions of reduced homology and true pseudoautosomal region. These results greatly facilitate the inclusion of the X chromosome in genome-wide association studies, genomic selection, and other genetic analysis undertaken on this reference genome.
Collapse
Affiliation(s)
- T Johnson
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - M Keehan
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - C Harland
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - T Lopdell
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - R J Spelman
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - S R Davis
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand
| | - B D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705
| | - T P L Smith
- US Meat Animal Research Center, Agricultural Research Service USDA, Clay Center, NE 68933
| | - C Couldrey
- Research and Development, Livestock Improvement Corporation, Hamilton 3240, New Zealand.
| |
Collapse
|
15
|
Duan JE, Shi W, Jue NK, Jiang Z, Kuo L, O'Neill R, Wolf E, Dong H, Zheng X, Chen J, Tian XC. Dosage Compensation of the X Chromosomes in Bovine Germline, Early Embryos, and Somatic Tissues. Genome Biol Evol 2019; 11:242-252. [PMID: 30566637 PMCID: PMC6354180 DOI: 10.1093/gbe/evy270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Dosage compensation of the mammalian X chromosome (X) was proposed by Susumu Ohno as a mechanism wherein the inactivation of one X in females would lead to doubling the expression of the other. This would resolve the dosage imbalance between eutherian females (XX) versus male (XY) and between a single active X versus autosome pairs (A). Expression ratio of X- and A-linked genes has been relatively well studied in humans and mice, despite controversial results over the existence of upregulation of X-linked genes. Here we report the first comprehensive test of Ohno’s hypothesis in bovine preattachment embryos, germline, and somatic tissues. Overall an incomplete dosage compensation (0.5 < X:A < 1) of expressed genes and an excess X dosage compensation (X:A > 1) of ubiquitously expressed “dosage-sensitive” genes were seen. No significant differences in X:A ratios were observed between bovine female and male somatic tissues, further supporting Ohno’s hypothesis. Interestingly, preimplantation embryos manifested a unique pattern of X dosage compensation dynamics. Specifically, X dosage decreased after fertilization, indicating that the sperm brings in an inactive X to the matured oocyte. Subsequently, the activation of the bovine embryonic genome enhanced expression of X-linked genes and increased the X dosage. As a result, an excess compensation was exhibited from the 8-cell stage to the compact morula stage. The X dosage peaked at the 16-cell stage and stabilized after the blastocyst stage. Together, our findings confirm Ohno’s hypothesis of X dosage compensation in the bovine and extend it by showing incomplete and over-compensation for expressed and “dosage-sensitive” genes, respectively.
Collapse
Affiliation(s)
| | - Wei Shi
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Nathaniel K Jue
- School of Natural Sciences, California State University, Monterey Bay, CA
| | - Zongliang Jiang
- School of Animal Science, Louisiana State University, Agricultural Center, Baton Rouge, LA
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Rachel O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT
| | - Eckhard Wolf
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität Muünchen, Germany
| | - Hong Dong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | - Xinbao Zheng
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | - Jingbo Chen
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | | |
Collapse
|