1
|
Dehghani Champiri I, Bamzadeh Z, Rahimi E, Rouhi L. Lacticaseibacillus paracasei LB12, a Potential Probiotic Isolated from Traditional Iranian Fermented Milk (Doogh). Curr Microbiol 2023; 80:333. [PMID: 37658854 DOI: 10.1007/s00284-023-03376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 06/13/2023] [Indexed: 09/05/2023]
Abstract
In Iran, dairy-based fermented foods, like yogurt, cheese, fermented milk, buttermilk, kashk, butter, and Doogh are essential dietary components. Doogh is typically made using fermented yogurt or buttermilk. However, a literature review revealed a lack of research on extracting probiotics from Doogh during processing. As dairy products contain lactic acid bacteria, the aim was to isolate and identify them using culture and PCR-sequencing techniques. Samples of traditional Doogh were collected throughout the Chaharmahal Bakhtiari province of Iran. A specific number of strains have been isolated and among them, the strain LB12 was selected for further characterization based on its probiotic properties. Probiotic properties like adhesion capability, antagonistic activity, resistance to the simulated stomach and intestinal fluids, pH, and bile salt were assessed according to National Standard ISO 19459 of Iran. The LB12 strain was identified as Lacticaseibacillus paracasei by partial 16 rDNA sequence analysis. This L. paracasei strain demonstrated its in vitro resilience to stomach conditions with 58.04% survival at pH 3 and more than 50% resistance to different bile salt concentrations. L. paracasei LB12 showed a cell surface hydrophobicity of 38.18% and a 6.2 log CFU/ml resistance to simulated gastric and intestinal fluids, and a rate of auto- and co-aggregation of 15% and 22%, respectively. L. parasei LB12 showed also a moderate adhesion to HT-29 cell line. In conclusion, L. paracasei LB12 is considered a promising potential probiotic suitable for the development of food supplement and pharmaceutical products.
Collapse
Affiliation(s)
- Iman Dehghani Champiri
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Bamzadeh
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Ebrahim Rahimi
- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Leila Rouhi
- Cellular and Developmental Research Center, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
2
|
Lactobacillus pentosus MJM60383 Inhibits Lipid Accumulation in Caenorhabditis elegans Induced by Enterobacter cloacae and Glucose. Int J Mol Sci 2022; 24:ijms24010280. [PMID: 36613723 PMCID: PMC9820548 DOI: 10.3390/ijms24010280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Gut microbiota are known to play an important role in obesity. Enterobacter cloacae, a Gram-negative bacterium, has been considered a pathogenic bacterium related to obesity in the gut. In this study, we established an obesity model of C. elegans by feeding E. cloacae combined with a high glucose diet (HGD), which significantly induced lipid accumulation. An anti-lipid mechanism study revealed that the fatty acid composition and the expression level of fat metabolism-related genes were altered by feeding E. cloacae to C. elegans under HGD conditions. Lactic acid bacteria that showed antagonistic activity against E. cloacae were used to screen anti-obesity candidates in this model. Among them, L. pentosus MJM60383 (MJM60383) showed good antagonistic activity. C. eleans fed with MJM60383 significantly reduced lipid accumulation and triglyceride content. The ratio of C18:1Δ9/C18:0 was also changed in C. elegans by feeding MJM60383. In addition, the expression level of genes related to fatty acid synthesis was significantly decreased and the genes related to fatty acid β-oxidation were up-regulated by feeding MJM60383. Moreover, MJM60383 also exhibited a high adhesive ability to Caco-2 cells and colonized the gut of C. elegans. Thus, L. pentosus MJM60383 can be a promising candidate for anti-obesity probiotics. To the best of our knowledge, this is the first report that uses E. cloacae combined with a high-glucose diet to study the interactions between individual pathogens and probiotics in C. elegans.
Collapse
|
3
|
Zawistowska-Rojek A, Kośmider A, Stępień K, Tyski S. Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Arch Microbiol 2022; 204:285. [PMID: 35478049 PMCID: PMC9046290 DOI: 10.1007/s00203-022-02889-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
Abstract
The adhesion and aggregation are characteristic attributes of probiotic strains belonging to Lactobacillaceae genus. Due to these properties the host organisms can avoid colonisation of the intestinal tract by enteropathogenic bacteria. The presented research includes a comparison of the properties of various strains belonging to different Lactobacillaceae species and isolated from different sources The aim of this study was to investigate the ability of Lactocaseibacillus rhamnosus, Lactiplantibacillus plantarum, and Lactobacillus strains (L. acidophilus, L. gasseri, L. ultunensis) from probiotic products and clinical specimens to direct and competitive adherence to Caco-2 and HT-29 cell lines. Furthermore, the ability of lactobacilli and enteropathogenic bacteria, E. coli, E. faecalis, and S. Typhimurium, to auto- and co-aggregation was also investigated. The results showed that all tested strains adhered to Caco-2 and HT-29 cell lines. Though, the factor of adhesion depended on the species and origin of the strain. L. rhamnosus strains showed a lowest degree of adherence as compared to L. plantarum and Lactobacillus sp. strains. On the other side both, L. rhamnosus and L. acidophilus strains reduced the pathogenic bacteria in competition adherence test most effectively. All tested lactobacilli strains were characterised by auto- and co-aggregation abilities, to various degrees. The properties of Lactobacillaceae strains analysed in this study, like adhesion abilities, competitive adherence, auto- and co-aggregation, may affect the prevention of colonisation and elimination of pathogenic bacteria in gastrointestinal tract.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland. .,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland.
| | - Anita Kośmider
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland.,Department of Cancer Biology, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Karolina Stępień
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland.,Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Anjum M, Laitila A, Ouwehand AC, Forssten SD. Current Perspectives on Gastrointestinal Models to Assess Probiotic-Pathogen Interactions. Front Microbiol 2022; 13:831455. [PMID: 35173703 PMCID: PMC8841803 DOI: 10.3389/fmicb.2022.831455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/06/2022] [Indexed: 12/12/2022] Open
Abstract
There are different models available that mimic the human intestinal epithelium and are thus available for studying probiotic and pathogen interactions in the gastrointestinal tract. Although, in vivo models make it possible to study the overall effects of a probiotic on a living subject, they cannot always be conducted and there is a general commitment to reduce the use of animal models. Hence, in vitro methods provide a more rapid tool for studying the interaction between probiotics and pathogens; as well as being ethically superior, faster, and less expensive. The in vitro models are represented by less complex traditional models, standard 2D models compromised of culture plates as well as Transwell inserts, and newer 3D models like organoids, enteroids, as well as organ-on-a-chip. The optimal model selected depends on the research question. Properly designed in vitro and/or in vivo studies are needed to examine the mechanism(s) of action of probiotics on pathogens to obtain physiologically relevant results.
Collapse
Affiliation(s)
| | | | | | - Sofia D. Forssten
- International Flavors and Fragrances, Health and Biosciences, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
5
|
Zhou Y, Shi L, Wang J, Yuan J, Liu J, Liu L, Da R, Cheng Y, Han B. Probiotic Potential Analysis and Safety Evaluation of Enterococcus durans A8-1 Isolated From a Healthy Chinese Infant. Front Microbiol 2022; 12:799173. [PMID: 34970251 PMCID: PMC8712863 DOI: 10.3389/fmicb.2021.799173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
To evaluate the probiotic characteristics and safety of Enterococcus durans isolate A8-1 from a fecal sample of a healthy Chinese infant, we determined the tolerance to low pH, survival in bile salts and NaCl, adhesion ability, biofilm formation, antimicrobial activity, toxin gene distribution, hemolysis, gelatinase activity, antibiotic resistance, and virulence to Galleria mellonella and interpreted the characters by genome resequencing. Phenotypically, E. durans A8-1 survived at pH 5.0 in 7.0% NaCl and 3% bile salt under aerobic and anaerobic condition. The bacterium had higher adhesion ability toward mucin, collagen, and Bovine Serum Albumin (BSA) in vitro and showed high hydrophobicity (79.2% in chloroform, 49.2% in xylene), auto-aggregation activity (51.7%), and could co-aggregate (66.2%) with Salmonella typhimurium. It had adhesion capability to intestinal epithelial Caco-2 cells (38.74%) with moderate biofilm production and antimicrobial activity against several Gram-positive pathogenic bacteria. A8-1 can antagonize the adhesion of S. typhimurium ATCC14028 on Caco-2 cells to protect the integrity of the cell membrane by detection of lactate dehydrogenase (LDH) and AKP activities. A8-1 also helps the cell relieve the inflammation induced by lipopolysaccharide by reducing the expression of cytokine IL-8 (P = 0.002) and TNF-α (P > 0.05), and increasing the IL-10 (P < 0.001). For the safety evaluation, A8-1 showed no hemolytic activity, no gelatinase activity, and had only asa1 positive in the seven detected virulence genes in polymerase chain reaction (PCR), whereas it was not predicted in the genome sequence. It was susceptible to benzylpenicillin, ampicillin, ciprofloxacin, levofloxacin, moxifloxacin, tigecycline, nitrofurantoin, linezolid, vancomycin, erythromycin, and quinupristin/dalofopine except clindamycin, which was verified by the predicted lasA, lmrB, lmrC, and lmrD genes contributing to the clindamycin resistance. The virulence test of G. mellonella showed that it had toxicity lower than 10% at 1 × 107 CFU. According to the results of these evaluated attributes, E. durans strain A8-1 could be a promising probiotic candidate for applications.
Collapse
Affiliation(s)
- Yi Zhou
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lu Shi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Juan Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jia Yuan
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jin Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Lijuan Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Rong Da
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China
| |
Collapse
|
6
|
Amirkhanova Z, Akhmetova S, Kozhakhmetov S, Kushugulova A, Bodeeva R, Issina Z, Tusbayev M. Screening of Antimicrobial and Adhesive Activity of Lactobacilli Isolated from the National Food Products from Different Districts of the Karaganda Region (Kazakhstan). Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: It is a national priority to look for new probiotic bacteria with highly active biological properties to create a new generation of probiotics, ferments, therapeutic, and prophylactic fermented milk products, taking into account ethnocultural and regional characteristics.
AIM: The aim of the study is to assess probiotic properties of strains of lactobacilli (antimicrobial and adhesive), which are isolated from national lactic acid products from different districts of the Karaganda region (Kazakhstan).
MATERIALS AND METHODS: There were modern microbiological methods applied during the experiment. To determine the morpho-cultural properties, the following methods were used: Gram staining, a catalase test, serial dilutions. The Matrix Supported Laser Desorption/Ionization Flight Time Mass Spectrometry was used for identification, and the deferred-antagonism method was used to determine the antimicrobial activity. The buccal epithelial cells were used for the cell object as a test system to determine the adhesive activity.
RESULTS: In this experiment, 26 lactobacillus isolates were isolated from 68 samples of national lactic acid products produced in a traditional homemade way in different districts of the Karaganda region (Kazakhstan). As a result of the studies carried out on the cultural and morphological characteristics and identification by the mass spectrometer, the following lactobacilli were obtained: Lactobacillus acidophilus (two strains), Lactobacillus delbrueckii subsp. bulgaricum (two strains), Lactobacillus rhamnosus (seven strains), Lactobacillus plantarum (two strains), Lactobacillus paracasei (11 strains), and Lactobacillus fermentum (two strains). Twenty-six isolates of lactobacilli were tested for antimicrobial activity, 13 isolates of which showed an inhibitory effect, but the degree of antagonism varied among lactobacillus isolates. In general, the inhibitory activity of lactobacillus isolates was shown against the Gram-negative indicator microorganisms Salmonella typhimurium NCTC 12023, Escherichia coli NCTC 12923. The antibacterial activity was shown against the Staphylococcus aureus NCTC 12973 indicator microorganism in nine isolates of lactobacilli. Only six isolates of lactobacilli showed antifungal activity against the test strain of Candida albicans NCPF 3179. Out of 13 isolates of lactobacilli, nine isolates of medium and high activity competed for binding to buccal epithelial cells.
CONCLUSION: The obtained isolates from traditional dairy products are considered to be promising candidates and competitive isolates with some probiotic potential. This study calls for further researches to be made in this area.
Collapse
|
7
|
Lactobacillus animalis pZL8a: a potential probiotic isolated from pig feces for further research. 3 Biotech 2021; 11:132. [PMID: 33680697 DOI: 10.1007/s13205-021-02681-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to screen a potential anti-diarrheal probiotic for pigs to meet the growing demand for antibiotic alternatives in livestock. Six intestinal pathogens, Escherichia coli (O157: H7) ATCC 43888, Staphylococcus aureus ATCC 6538, Listeria monocytogenes ATCC 19115, Salmonella Typhimurium ATCC 14028, Shigella boydii ATCC 9207, and Staphylococcus haemolyticus ZSY2 were employed as indicator bacteria. Our result showed that Lactobacillus animalis pZL8a isolated from pig feces had extensive and higher antibacterial activity against indicator pathogens among 9 tested strains. In addition, valuable attributes of pZL8a such as great tolerance of low pH (3.0) and bile salts (0.3%), high-level adhesion to Caco-2 cells, and similar susceptibility to the reference strain Lactobacillus rhamnosus GG (LGG) were observed. Compared with control, pZL8a supplement significantly improved the level of immunoglobulin G (IgG), immunoglobulin M (IgM), and interleukin-2 (IL-2) in mouse serum. Therefore, L. animalis pZL8a was proposed as a potential probiotic for further research and hope to reduce or replace the application of antibiotics in animal production.
Collapse
|
8
|
Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microb Pathog 2020; 147:104420. [DOI: 10.1016/j.micpath.2020.104420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
|
9
|
Lin T, Chen B, Chen C, Chen Y, Wu H. Comparative analysis of spray‐drying microencapsulation of
Bifidobacterium adolescentis
and
Lactobacillus acidophilus
cultivated in different growth media. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ta‐Chen Lin
- College of Food Engineering, Beibu Gulf University Qinzhou Guangxi China
- Guangxi Colleges and University Key Laboratory of Development and High‐value Utilization of Beibu Gulf Seafood ResourcesBeibu Gulf University Qinzhou China
- Qinzhou Key Laboratory of Characteristic Fruits and Vegetables FermentationBeibu Gulf University China
| | - Bang‐Yuan Chen
- Department of Food ScienceFu Jen Catholic University New Taipei City Taiwan
| | - Chun‐Yeh Chen
- Department of Food Science and TechnologyHungkuang University Taichung City Taiwan
| | - Yuh‐Shuen Chen
- Department of Food Science and TechnologyHungkuang University Taichung City Taiwan
| | - Haibo Wu
- College of Food Engineering, Beibu Gulf University Qinzhou Guangxi China
- Guangxi Colleges and University Key Laboratory of Development and High‐value Utilization of Beibu Gulf Seafood ResourcesBeibu Gulf University Qinzhou China
| |
Collapse
|
10
|
Grilli DJ, Mansilla ME, Giménez MC, Sohaefer N, Ruiz MS, Terebiznik MR, Sosa M, Arenas GN. Pseudobutyrivibrio xylanivorans adhesion to epithelial cells. Anaerobe 2019; 56:1-7. [PMID: 30615946 DOI: 10.1016/j.anaerobe.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 01/09/2023]
Abstract
The ruminal bacteria Pseudobutyrivibrio xylanivorans strain 2 (P. xylanivorans 2), that mediates the digestion of plant fiber, is considered an attractive candidate for probiotics. Adherence to the epithelium of the digestive tract of the host is one of the major requirements for probiotics. In this study, we assessed the adhesion of P. xylanivorans 2 to SW480 cells and characterized this process utilizing multiple microscopy approaches. Our results indicate that a multiplicity of infection of 200 CFU/cell allows the highest bacteria to cell binding ratio, with a lower percentage of auto-agglutination events. The comparison of the adherence capacity subjected heat-shock treatment (100 °C, 1 min), which produces the denaturalization of proteins at the bacterial surface, as opposed untreated P. xylanivorans, suggested that this bacteria may attach to SW480 cells utilizing a proteinaceous structure. Confocal microscopy analyses indicate that P. xylanivorans 2 attachment induces the formation of F-actin-enriched areas on the surface of SW480 cells. Transmission electron microscopy (TEM) revealed the formation of a structure similar to a pedestal in the area of the epithelial cell surface, where the bacterium rests. Finally, a casual finding of TEM analysis of transverse and longitudinal thin-sections of P. xylanivorans 2, revealed irregular intra-cytoplasmic structures compatibles with the so-called bacterial microcompartments. This is the first ultrastructural description of bacterial microcompartments-like structures in the genus Pseudobutyrivibrio.
Collapse
Affiliation(s)
- Diego Javier Grilli
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP 5519, Mendoza, Argentina; Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo, Casilla de Correo 56, CP 5500, Mendoza, Argentina; Área de Microbiología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, CP 5500, Mendoza, Argentina.
| | - Maria Eugenia Mansilla
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo, Casilla de Correo 56, CP 5500, Mendoza, Argentina; Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP 5519, Mendoza, Argentina
| | - María Cecilia Giménez
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP 5519, Mendoza, Argentina; Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo, Casilla de Correo 56, CP 5500, Mendoza, Argentina; Departments of Biological Sciences and Cell and Systems Biology, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | - Noelia Sohaefer
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP 5519, Mendoza, Argentina
| | - María Soledad Ruiz
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP 5519, Mendoza, Argentina
| | - Mauricio R Terebiznik
- Departments of Biological Sciences and Cell and Systems Biology, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | - Miguel Sosa
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo, Casilla de Correo 56, CP 5500, Mendoza, Argentina
| | - Graciela Nora Arenas
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP 5519, Mendoza, Argentina; Área de Microbiología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, CP 5500, Mendoza, Argentina; Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Av. Acceso Este Lateral Sur 2245, CP 5519, Mendoza, Argentina
| |
Collapse
|
11
|
Adhesion-Related Immunomodulatory Activity of the Screened Lactobacillus plantarum from Sichuan Pickle. Curr Microbiol 2018; 76:29-36. [DOI: 10.1007/s00284-018-1580-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/03/2018] [Indexed: 01/19/2023]
|
12
|
Shen Q, Wang Y, Shen J, Jiang L, Wei C, Zhang H. Growth and Cell Properties of Modified Lactobacillus plantarum CICC21001 with Supplementing C 18-FFAs to Growth Medium in vitro. Curr Microbiol 2018; 75:1133-1141. [PMID: 29704124 DOI: 10.1007/s00284-018-1499-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/23/2018] [Indexed: 01/18/2023]
Abstract
Fatty acids (FAs) are one of the important factors that can influence cell growth and membrane composition. The aim of this study was to investigate the influence of supplementing MLM+ growth medium with C18 free fatty acids (C18-FFAs), including stearic (C18:0), oleic (C18:1), linoleic (C18:2), and linolenic (C18:3) acid, on the growth of Lactobacillus plantarum CICC21001 by forming ion pairs with lysine to increase the solubility of FAs in liquid medium. The utilization of C18-FFAs was further confirmed by GC-FID. The investigation of cell properties, including cell surface hydrophobicity and zeta potential, was carried out for the modified L. plantarum and control group (non-supplementation). Furthermore, cell survival was measured in real time under heat (at 55 and 62 °C for 5 min), acid (pH 2.2), and bile salt stress. Our results indicated that the action of L. plantarum was modulated by assimilating C18-FFAs. This study suggested that C18-FFAs altered the life cycles and physiochemical properties of L. plantarum, which provided a guideline for probiotics production and their medical application.
Collapse
Affiliation(s)
- Qinke Shen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuxian Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jian Shen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Ce Wei
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hongman Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|