1
|
Li L, Bae S. Quantitative detection and survival analysis of VBNC Salmonella Typhimurium in flour using droplet digital PCR and DNA-intercalating dyes. Microbiol Spectr 2024; 12:e0024924. [PMID: 38975767 PMCID: PMC11302299 DOI: 10.1128/spectrum.00249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 07/09/2024] Open
Abstract
The difficulty in detecting viable but non-culturable (VBNC) Salmonella by culture-dependent methods poses a risk to food safety. In our study, we applied a viability test to Salmonella following a lethal treatment and to flour samples inoculated with Salmonella to evaluate the effectiveness of viability polymerase chain reaction (PCR). Our findings revealed that the combination of both ddPCR and qPCR with those DNA-intercalating dyes could quantify viable cells at low concentrations when the plate counting method failed to detect them post-inactivation. Prolonged UV exposure did not induce cell membrane disruption, as confirmed with PMA-ddPCR, with insignificant differences in gene copies. However, samples exposed to DyeTox13 and DyeTox13 + EMA showed lower gene copy numbers, implying that enzymatic activity was decreased by UV exposure duration. In addition, temperature-dependent survival in flour revealed uniform decay rates and D values (time required for a 1 log reduction) of DNA in untreated samples across various temperatures. By contrast, different decay rates were observed with DNA-intercalating dyes (DyeTox13 and DyeTox13 + EMA), showing faster metabolic activity loss at higher temperatures in flour. The decay rates and D values, determined through plate counting and those DNA-intercalating dyes, indicated the potential presence of VBNC Salmonella. A strong correlation between DyeTox13 dyes and the plate counting method suggested DyeTox13 as a rapid alternative for detecting Salmonella in flour. The ddPCR with DNA-intercalating dyes could effectively evaluate Salmonella viability, facilitating more precise monitoring of VBNC in food. IMPORTANCE Salmonella, a major foodborne pathogen, poses significant risks, particularly to vulnerable groups like infants, older people, and the immunocompromised. Accurate detection is vital for public health and food safety, given its potential to cause severe and life-threatening symptoms. Our study demonstrated digital polymerase chain reaction (ddPCR) with DNA-intercalating dyes for identifying the different physiological statuses of Salmonella. Also, the application of ddPCR with DNA-intercalating dyes offers quantification of viable cells post-disinfection as an alternative method in food. Utilizing ddPCR and DNA-intercalating dyes, we enhanced the detection of VBNC Salmonella, a form often undetectable by conventional methods. This innovative approach could significantly improve the precision and efficiency of detection for viable Salmonella. By providing deeper insights into its transmission potential, our method is a critical tool in preventing outbreaks and ensuring the safety of food products. This research contributes substantially to global efforts in controlling foodborne illnesses and safeguarding public health.
Collapse
Affiliation(s)
- Liyan Li
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Guo M, Yi Z, Li H, Liu Y, Ding L, Babailov SP, Xiong C, Huang G, Zhang J. NMR Immunosensor Based on a Targeted Gadolinium Nanoprobe for Detecting Salmonella in Milk. Anal Chem 2024; 96:11334-11342. [PMID: 38943569 DOI: 10.1021/acs.analchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Detecting harmful pathogens in food is not only a crucial aspect of food quality management but also an effective way to ensure public health. In this paper, a complete nuclear magnetic resonance biosensor based on a novel gadolinium (Gd)-targeting molecular probe was developed for the detection of Salmonella in milk. First, streptavidin was conjugated to the activated macromolecular polyaspartic acid (PASP) via an amide reaction to generate SA-PASP. Subsequently, the strong chelating and adsorption properties of PASP toward the lanthanide metal gadolinium ions were exploited to generate the magnetic complex (SA-PASP-Gd). Finally, the magnetic complex was linked to biotinylated antibodies to obtain the bioprobe and achieve the capture of Salmonella. Under optimal experimental conditions, the sensor we have constructed can achieve a rapid detection of Salmonella within 1.5 h, with a detection limit of 7.1 × 103 cfu mL-1.
Collapse
Affiliation(s)
- Mengdi Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Zhibin Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Huo Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Liping Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Sergey P Babailov
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Avenue Lavrentyev 3, Novosibirsk 630090, Russian Federation
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | | |
Collapse
|
3
|
Cui S, Wei Y, Li C, Zhang J, Zhao Y, Peng X, Sun F. Visual Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid On-Site Detection of Escherichia coli O157: H7 in Milk Products. Foods 2024; 13:2143. [PMID: 38998648 PMCID: PMC11241362 DOI: 10.3390/foods13132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: Rapid on-site testing is an effective method for the detection of Escherichia coli O157: H7(E. coli O157: H7) in food ingredients and the environment. (2) Methods: In this study, we developed colorimetric loop-mediated isothermal amplification (LAMP) and immunochromatographic test strips (ICTs) for the rapid and visual detection of E. coli O157: H7. This study designed new specific LAMP primers for E. coli O157: H7 virulence island genes. After the LAMP amplification, the double-stranded DNA target sequence labeled with digoxin and fluorescein isothiocyanate (FITC) at both ends was bound to the anti-digoxin antibody on the gold nanoparticles. Subsequently, it was further bound to the anti-FITC antibody at the T line of the ICTs, forming a positive test result. Hydroxynaphthyl blue dye was directly added to the LAMP amplification product. A blue color indicated positive results, while a purple color indicated negative results. (3) Results: Two visualization methods showed high specificity for the target strains. The visualization tests had sensitivities of 5.7 CFU mL-1, and the detection limit of the Escherichia coli O157: H7 in artificially contaminated milk samples was 5.7 × 102 CFU mL-1, which was consistent with the results of the standard method (LAMP-electrophoresis method) used in commercial inspection. (4) Conclusions: Both methods could be useful in remote and under-resourced areas.
Collapse
Affiliation(s)
- Shuangshuang Cui
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yong Wei
- Xinjiang Tianrun Dairy Co., Ltd., Wuchang Road No. 2702, Urumqi 830000, China
| | - Can Li
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yunfeng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xiayu Peng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fengxia Sun
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
Xue Y, He S, Li M, Qiu Y. Development and Application of Four Foodborne Pathogens by TaqMan Multiplex Real-Time PCR. Foodborne Pathog Dis 2024. [PMID: 38563784 DOI: 10.1089/fpd.2023.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
A TaqMan multiplex real-time PCR (mRT-PCR) was developed to detect simultaneously Salmonella spp., Escherichia coli O157, Staphylococcus aureus, and Listeria monocytogenes in food samples. The method involves four sets of primers and probes tailored to the unique DNA sequences found in the invA, nuc, rfbE, and hly genes of each pathogen. The generated standard curves, correlating gene copy numbers with Ct values, demonstrated high accuracy (R2 > 0.99) and efficiency (92%-104%). Meanwhile, the limit of detection was 100 CFU/mL for the four target bacteria in artificially contaminated food samples after 6-8 h of enrichment. The assay's effectiveness was further verified by testing 80 naturally contaminated food samples, showing results largely in agreement with traditional culture methods. Overall, this newly developed TaqMan mRT-PCR, inclusive of a pre-enrichment step, proves to be a dependable and effective tool for detecting single or multiple pathogens in diverse food items, offering significant potential for in vitro diagnostics.
Collapse
Affiliation(s)
- Yinlei Xue
- Food Inspection and Testing Center of Yexian County, Yexian County, Henan, China
| | - Shengfang He
- Yinchuan Customs Technology Center, Yinchuan, Ningxia, China
| | - Meng Li
- Luoyang Giant-Bio Technology Co., Ltd., Luoyang, Henan, China
| | - Yuanhao Qiu
- Luoyang Giant-Bio Technology Co., Ltd., Luoyang, Henan, China
- Department of Pharmacy, College of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| |
Collapse
|
5
|
Dinu LD, Al-Zaidi QJ, Matache AG, Matei F. Improving the Efficiency of Viability-qPCR with Lactic Acid Enhancer for the Selective Detection of Live Pathogens in Foods. Foods 2024; 13:1021. [PMID: 38611327 PMCID: PMC11012224 DOI: 10.3390/foods13071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pathogenic Escherichia coli are the most prevalent foodborne bacteria, and their accurate detection in food samples is critical for ensuring food safety. Therefore, a quick technique named viability-qPCR (v-qPCR), which is based on the ability of a selective dye, such as propidium monoazide (PMA), to differentiate between alive and dead cells, has been developed. Despite diverse, successful applications, v-qPCR is impaired by some practical limitations, including the ability of PMA to penetrate the outer membrane of dead Gram-negative bacteria. The objective of this study is to evaluate the ability of lactic acid (LA) to improve PMA penetration and, thus, the efficiency of v-qPCR in detecting the live fraction of pathogens. The pre-treatment of E. coli ATCC 8739 cells with 10 mM LA greatly increased PMA penetration into dead cells compared to conventional PMA-qPCR assay, avoiding false positive results. The limit of detection when using LA-PMA qPCR is 1% viable cells in a mixture of dead and alive cells. The optimized LA-PMA qPCR method was reliably able to detect log 2 CFU/mL culturable E. coli in milk spiked with viable and non-viable bacteria. Lactic acid is cheap, has low toxicity, and can be used to improve the efficiency of the v-qPCR assay, which is economically interesting for larger-scale pathogen detection applications intended for food matrices.
Collapse
Affiliation(s)
- Laura-Dorina Dinu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
| | - Quthama Jasim Al-Zaidi
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
| | - Adelina Georgiana Matache
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
| | - Florentina Matei
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania; (Q.J.A.-Z.); (A.G.M.); (F.M.)
- Faculty of Food Industry and Tourism, Transilvania University of Brasov, 500015 Brasov, Romania
| |
Collapse
|
6
|
Zhuang L, Gong J, Zhao Y, Yang J, Liu G, Zhao B, Song C, Zhang Y, Shen Q. Progress in methods for the detection of viable Escherichia coli. Analyst 2024; 149:1022-1049. [PMID: 38273740 DOI: 10.1039/d3an01750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Escherichia coli (E. coli) is a prevalent enteric bacterium and a necessary organism to monitor for food safety and environmental purposes. Developing efficient and specific methods is critical for detecting and monitoring viable E. coli due to its high prevalence. Conventional culture methods are often laborious and time-consuming, and they offer limited capability in detecting potentially harmful viable but non-culturable E. coli in the tested sample, which highlights the need for improved approaches. Hence, there is a growing demand for accurate and sensitive methods to determine the presence of viable E. coli. This paper scrutinizes various methods for detecting viable E. coli, including culture-based methods, molecular methods that target DNAs and RNAs, bacteriophage-based methods, biosensors, and other emerging technologies. The review serves as a guide for researchers seeking additional methodological options and aiding in the development of rapid and precise assays. Moving forward, it is anticipated that methods for detecting E. coli will become more stable and robust, ultimately contributing significantly to the improvement of food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
7
|
Kabiraz MP, Majumdar PR, Mahmud MC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon 2023; 9:e15482. [PMID: 37151686 PMCID: PMC10161726 DOI: 10.1016/j.heliyon.2023.e15482] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne pathogens are a major public health concern and have a significant economic impact globally. From harvesting to consumption stages, food is generally contaminated by viruses, parasites, and bacteria, which causes foodborne diseases such as hemorrhagic colitis, hemolytic uremic syndrome (HUS), typhoid, acute, gastroenteritis, diarrhea, and thrombotic thrombocytopenic purpura (TTP). Hence, early detection of foodborne pathogenic microbes is essential to ensure a safe food supply and to prevent foodborne diseases. The identification of foodborne pathogens is associated with conventional (e.g., culture-based, biochemical test-based, immunological-based, and nucleic acid-based methods) and advances (e.g., hybridization-based, array-based, spectroscopy-based, and biosensor-based process) techniques. For industrial food applications, detection methods could meet parameters such as accuracy level, efficiency, quickness, specificity, sensitivity, and non-labor intensive. This review provides an overview of conventional and advanced techniques used to detect foodborne pathogens over the years. Therefore, the scientific community, policymakers, and food and agriculture industries can choose an appropriate method for better results.
Collapse
Affiliation(s)
- Meera Probha Kabiraz
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Priyanka Rani Majumdar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - M.M. Chayan Mahmud
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, VIC, 3125, Australia
| | - Shuva Bhowmik
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author. Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand.
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, 9054, New Zealand
- Corresponding author.
| |
Collapse
|
8
|
Dong Q, Yue X, Li S, Hu M, Gao X, Yang M, Huang G, Xiong C, Fu G, Zhang J. A novel rapid detection method for Salmonella based on NMR macromolecular Gd biosensor. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Point-of-Care Lateral Flow Detection of Viable Escherichia coli O157:H7 Using an Improved Propidium Monoazide-Recombinase Polymerase Amplification Method. Foods 2022; 11:3207. [PMCID: PMC9602316 DOI: 10.3390/foods11203207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The detection of both viable and viable but non-culturable (VBNC) Escherichia coli O157:H7 is a crucial part of food safety. Traditional culture-dependent methods are lengthy, expensive, laborious, and unable to detect VBNC. Hence, there is a need to develop a rapid, simple, and cost-effective detection method to differentiate between viable/dead E. coli O157:H7 and detect VBNC cells. In this work, recombinase polymerase amplification (RPA) was developed for the detection of viable E. coli O157:H7 through integration with propidium monoazide (PMAxx). Initially, two primer sets, targeting two different genes (rfbE and stx) were selected, and DNA amplification by RPA combined with PMAxx treatment and the lateral flow assay (LFA) was carried out. Subsequently, the rfbE gene target was found to be more effective in inhibiting the amplification from dead cells and detecting only viable E. coli O157:H7. The assay’s detection limit was found to be 102 CFU/mL for VBNC E. coli O157:H7 when applied to spiked commercial beverages including milk, apple juice, and drinking water. pH values from 3 to 11 showed no significant effect on the efficacy of the assay. The PMAxx-RPA-LFA was completed at 39 °C within 40 min. This study introduces a rapid, robust, reliable, and reproducible method for detecting viable bacterial counts. In conclusion, the optimised assay has the potential to be used by the food and beverage industry in quality assurance related to E. coli O157:H7.
Collapse
|
10
|
Yin HB, Chen CH, Katchman B, Newland C, May M, Patel J. Rapid detection of Salmonella enterica in leafy greens by a novel DNA microarray-based PathogenDx system. Food Microbiol 2022; 107:104086. [PMID: 35953180 DOI: 10.1016/j.fm.2022.104086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 11/04/2022]
Abstract
The diverse matrices pose great challenges for rapid detection of low Salmonella level (<10 CFU) in fresh produce. The applicability of microarray-based PathogenDx system for detecting low contamination of Salmonella Newport from leafy greens was evaluated. A pre-PCR preparation protocol including enrichment in universal pre-enrichment broth for 3 h followed by sample concentration using an InnovaPrep bio-concentrator or 6 h enrichment without a concentration step was used for detecting S. Newport from leafy greens with initial inoculum level at ∼6 CFU/25 g. Among 205 samples tested, 98%, 93%, 76%, and 60% of Romaine lettuce, Iceberg lettuce, kale, and spinach samples were tested positive after 3 h of enrichment with sample concentration. After 6 h of enrichment, 100%, 98%, 90%, and 82% of Romaine lettuce, Iceberg lettuce, kale, and spinach samples were positive. The samples were parallelly tested by the FDA bacterial analytical manual (BAM) method and 100% of spiked produce samples were tested positive. The overall analysis time of this methodology was between 8 and 11 h, including all pre-enrichment and concentration steps, in contrast to 4-5 days required for BAM method. The system correctly differentiated all 108 Salmonella strains and 35 non-Salmonella strains used in the study. This novel microarray approach provides a rapid method for detecting Salmonella in leafy greens.
Collapse
Affiliation(s)
- Hsin-Bai Yin
- U.S.Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Chi-Hung Chen
- U.S.Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA; Oak Ridge Institute for Science and Education (ORISE), Research Participation Program, USA
| | | | | | | | - Jitendra Patel
- U.S.Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA.
| |
Collapse
|
11
|
Liang T, Long H, Zhan Z, Zhu Y, Kuang P, Mo N, Wang Y, Cui S, Wu X. Simultaneous detection of viable Salmonella spp., Escherichia coli, and Staphylococcus aureus in bird's nest, donkey-hide gelatin, and wolfberry using PMA with multiplex real-time quantitative PCR. Food Sci Nutr 2022; 10:3165-3174. [PMID: 36171769 PMCID: PMC9469859 DOI: 10.1002/fsn3.2916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp., Escherichia coli, and Staphylococcus aureus are common microbial contaminants within the homology of medicine and food that can cause serious food poisoning. This study describes a highly efficient, sensitive, specific, and simple multiplex real-time quantitative PCR (mRT-qPCR) method for the simultaneous detection of viable Salmonella spp., E. coli, and S. aureus. Primers and probes were designed for the amplification of the target genes invA, uidA, and nuc. Dead bacterial genetic material was excluded by propidium monoazide (PMA) treatment, facilitating the detection of only viable bacteria. This method was capable of detecting Salmonella spp., E. coli, and S. aureus at 102, 102, and 101 CFU/ml, respectively, in pure culture. PMA combined with mRT-qPCR can reliably distinguish between dead and viable bacteria with recovery rates from 95.7% to 105.6%. This PMA-mRT-qPCR technique is a highly sensitive and specific method for the simultaneous detection of three pathogens within the homology of medicine and food.
Collapse
Affiliation(s)
- Taobo Liang
- Jiangxi Institute for Food ControlNanchangChina
| | - Hui Long
- Nanchang Center for Disease Control and PreventionNanchangChina
| | | | - Yingfei Zhu
- Jiangxi Institute for Food ControlNanchangChina
| | | | - Ni Mo
- Jiangxi Institute for Food ControlNanchangChina
| | - Yuping Wang
- Chengdu Institute of Food and Drug ControlChengduChina
| | - Shenghui Cui
- National Institutes for Food and Drug ControlBeijingChina
| | - Xin Wu
- Jiangxi Institute for Food ControlNanchangChina
| |
Collapse
|
12
|
Andrés-Lasheras S, Jelinski M, Zaheer R, McAllister TA. Bovine Respiratory Disease: Conventional to Culture-Independent Approaches to Studying Antimicrobial Resistance in North America. Antibiotics (Basel) 2022; 11:antibiotics11040487. [PMID: 35453238 PMCID: PMC9025279 DOI: 10.3390/antibiotics11040487] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous antimicrobial resistance (AMR) surveillance studies have been conducted in North American feedlot cattle to investigate the major bacterial pathogens of the bovine respiratory disease (BRD) complex, specifically: Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis. While most bacterial isolates recovered from healthy cattle are susceptible to a repertoire of antimicrobials, multidrug resistance is common in isolates recovered from cattle suffering from BRD. Integrative and conjugative elements (ICE) have gained increasing notoriety in BRD-Pasteurellaceae as they appear to play a key role in the concentration and dissemination of antimicrobial resistant genes. Likewise, low macrolide susceptibility has been described in feedlot isolates of M. bovis. Horizontal gene transfer has also been implicated in the spread of AMR within mycoplasmas, and in-vitro experiments have shown that exposure to antimicrobials can generate high levels of resistance in mycoplasmas via a single conjugative event. Consequently, antimicrobial use (AMU) could be accelerating AMR horizontal transfer within all members of the bacterial BRD complex. While metagenomics has been applied to the study of AMR in the microbiota of the respiratory tract, the potential role of the respiratory tract microbiome as an AMR reservoir remains uncertain. Current and prospective molecular tools to survey and characterize AMR need to be adapted as point-of-care technologies to enhance prudent AMU in the beef industry.
Collapse
Affiliation(s)
- Sara Andrés-Lasheras
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Murray Jelinski
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada; (S.A.-L.); (R.Z.)
- Correspondence: ; Tel.: +1-403-317-2240
| |
Collapse
|
13
|
Li J, Zhou D, Xie G, Deng M, Feng X, Xu H. PMAxx Combined with Recombinase Aided Amplification Technique for Specific and Rapid Detection of Salmonella in Milk. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02249-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Multiplex SYBR Green real-time PCR for Lactobacillus acidophilus group species targeting biomarker genes revealed by a pangenome approach. Microbiol Res 2022; 259:127013. [DOI: 10.1016/j.micres.2022.127013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/16/2022] [Accepted: 03/16/2022] [Indexed: 11/19/2022]
|
15
|
Hybrid RCA-DLS assay combined with aPCR for sensitive Salmonella enteritidis detection. Anal Biochem 2022; 646:114647. [DOI: 10.1016/j.ab.2022.114647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/23/2022]
|
16
|
Ding S, Hu H, Yue X, Feng K, Gao X, Dong Q, Yang M, Tamer U, Huang G, Zhang J. A fluorescent biosensor based on quantum dot-labeled streptavidin and poly-l-lysine for the rapid detection of Salmonella in milk. J Dairy Sci 2022; 105:2895-2907. [PMID: 35181133 DOI: 10.3168/jds.2021-21229] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023]
Abstract
Salmonella, as a common foodborne pathogen in dairy products, poses a great threat to human health. We studied a new detection method based on quantum dots (QD). A fluorescent biosensor with multiple fluorescent signal amplification based on a streptavidin (SA) biotin system and the polyamino linear polymer poly-l-lysine (PLL) were established to detect Salmonella in milk. First, Salmonella was captured on a black 96-well plate with paired Salmonella mAb to form a double-antibody sandwich. Second, SA was immobilized on biotin-modified mAb by SA-biotin specific bond. Then, the biotin-modified polylysine (BT-PLL) was bound on SA and specifically bonded again through the SA-biotin system. Finally, water-soluble CdSe/ZnS QD-labeled SA was added to a black 96-well plate for covalent coupling with BT-PLL. The fluorescent signal was amplified in a dendritic manner by the layer-by-layer overlap of SA and biotin and the covalent coupling of biotinylated PLL. Under optimal conditions, the detection limit was 4.9 × 103 cfu/mL in PBS. The detection limit was 10 times better than that of the conventional sandwich ELISA. In addition, the proposed biosensor was well specific and could be used for detecting Salmonella in milk samples.
Collapse
Affiliation(s)
- Shuangyan Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Hailiang Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xianglin Yue
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Kaiwen Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Xiaoyu Gao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Qiuling Dong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Mingqi Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ugur Tamer
- Department of Analytical Chemistry, Faculty of Pharmacy, Gazi University, 06500, Ankara, Turkey
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Jinsheng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| |
Collapse
|
17
|
Bai X, Chen G, Wang Z, Xie G, Deng M, Xu H. Simultaneous detection of Bacillus cereus and Staphylococcus aureus by teicoplanin functionalized magnetic beads combined with triplex PCR. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Mu D, Zhou D, Xie G, Liu J, Wang Z, Xiong Q, Xu H. Real-time recombinase-aided amplification with PMAxx for the rapid detection of viable Escherichia coli O157:H7 in milk. J Dairy Sci 2022; 105:1028-1038. [PMID: 34998542 DOI: 10.3168/jds.2021-21074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli O157:H7, the causative agent of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome in humans, generates a effective harm to community health because of its high pathogenicity. A real-time recombinase-aided amplification (rRAA) is an emerging method for nucleic acid detection. However, genomic DNA of bacteria could exist in food and the environment for a long time after death and could be amplified by rRAA assay, resulting in false-positive signal; thus, developing a fast and sensitive method is necessary to detect viable foodborne pathogens in food products. In our research, rRAA assay coupled with an enhanced nucleic acid binding dye named improved propidium monoazide (PMAxx) was established and applied in viable E. coli O157:H7 identification in skim milk. The PMAxx could eliminate interference from dead bacteria by permeating impaired membranes and covalently linking to DNA to prevent DNA amplification. The PMAxx-rRAA assay was performed with high sensitivity and good specificity. The PMAxx-rRAA assay could detect as low as 5.4 × 100 cfu/mL of viable E. coli O157:H7 in pure culture, and 7.9 × 100 cfu/mL of viable E. coli O157:H7 in skim milk. In addition, the PMAxx-rRAA assay was performed in the presence of a high concentration of dead bacteria or nontarget bacteria in skim milk to verify the capacity to resist interference from dead bacteria and nontarget bacteria. Therefore, the established PMAxx-rRAA assay is a valuable tool for the identification of viable E. coli O157:H7 in complex food matrix.
Collapse
Affiliation(s)
- Dan Mu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center (Ningbo Customs Port Outpatient Department), Ningbo, 315010, PR China
| | - Guoyang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Ju Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Zhengzheng Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Qin Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
19
|
Zhou B, Ye Q, Chen M, Li F, Xiang X, Shang Y, Wang C, Zhang J, Xue L, Wang J, Wu S, Pang R, Ding Y, Wu Q. Novel species-specific targets for real-time PCR detection of four common pathogenic Staphylococcus spp. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108478] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
Feng K, Li T, Ye C, Gao X, Yang T, Liang X, Yue X, Ding S, Dong Q, Yang M, Xiong C, Huang G, Zhang J. A label-free electrochemical immunosensor for rapid detection of salmonella in milk by using CoFe-MOFs-graphene modified electrode. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108357] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Mu D, Zhou D, Xie G, Liu J, Xiong Q, Feng X, Xu H. The fluorescent probe-based recombinase-aided amplification for rapid detection of Escherichia coli O157:H7. Mol Cell Probes 2021; 60:101777. [PMID: 34737039 DOI: 10.1016/j.mcp.2021.101777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a common foodborne morbigenous microorganism, which can spread through fecal-oral transmission. Humans can be infected by ingesting foods and water contaminated with E. coli O157:H7, which can cause various symptoms. In present study, we have successfully developed a quick and hypersensitive fluorescent probe-based Recombinase-aided amplification (RAA) method and applied in E. coli O157:H7 detection at 39 °C in 20 min. The sensitivity of the assay in pure E. coli O157:H7 suspension was 5.6 × 100 CFU/mL. The fluorescent probe-based RAA assay was further applied in three samples, and the limit of detection (LOD) in skimmed milk, lettuces and lake water was 5.4 × 101 CFU/mL, 7.9 × 101 CFU/mL and 5.2 × 101 CFU/mL, separately. This method showed a high sensitivity and short detection time, which has the feasible application in on-site test in real samples.
Collapse
Affiliation(s)
- Dan Mu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center (Ningbo Customs Port Outpatient Department), Ningbo, 315010, PR China.
| | - Guoyang Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Ju Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Qin Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
22
|
|
23
|
Bouju-Albert A, Saltaji S, Dousset X, Prévost H, Jaffrès E. Quantification of Viable Brochothrix thermosphacta in Cold-Smoked Salmon Using PMA/PMAxx-qPCR. Front Microbiol 2021; 12:654178. [PMID: 34335490 PMCID: PMC8316974 DOI: 10.3389/fmicb.2021.654178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to develop a rapid and accurate PMA-qPCR method to quantify viable Brochothrix thermosphacta in cold-smoked salmon. B. thermosphacta is one of the main food spoilage bacteria. Among seafood products, cold-smoked salmon is particularly impacted by B. thermosphacta spoilage. Specific and sensitive tools that detect and quantify this bacterium in food products are very useful. The culture method commonly used to quantify B. thermosphacta is time-consuming and can underestimate cells in a viable but not immediately culturable state. We designed a new PCR primer set from the single-copy rpoC gene. QPCR efficiency and specificity were compared with two other published primer sets targeting the rpoC and rpoB genes. The viability dyes PMA or PMAxx were combined with qPCR and compared with these primer sets on viable and dead B. thermosphacta cells in BHI broth and smoked salmon tissue homogenate (SSTH). The three primer sets displayed similar specificity and efficiency. The efficiency of new designed rpoC qPCR on viable B. thermosphacta cells in SSTH was 103.50%, with a linear determination coefficient (r2) of 0.998 and a limit of detection of 4.04 log CFU/g. Using the three primer sets on viable cells, no significant difference was observed between cells treated or untreated with PMA or PMAxx. When dead cells were used, both viability dyes suppressed DNA amplification. Nevertheless, our results did not highlight any difference between PMAxx and PMA in their efficiency to discriminate viable from unviable B. thermosphacta cells in cold-smoked salmon. Thus, this study presents a rapid, specific and efficient rpoC-PMA-qPCR method validated in cold-smoked salmon to quantify viable B. thermosphacta in foods.
Collapse
|
24
|
Feng X, Meng X, Xiao F, Aguilar ZP, Xu H. Vancomycin-dendrimer based multivalent magnetic separation nanoplatforms combined with multiplex quantitative PCR assay for detecting pathogenic bacteria in human blood. Talanta 2021; 225:121953. [PMID: 33592708 DOI: 10.1016/j.talanta.2020.121953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/22/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Sepsis caused by bacteria has high morbidity and mortality, and it is neccerssay to establish a fast, convenient, and facility assays for detection of bacteria. In this study, we have developed established a simple, rapid, and ultrasensitive vancomycin (Van) and dendrimer nanoparticles-based method to isolate and detect bacteria in human blood using a multivalent binding strategy. The proposed Bio-den-Van multivalent capture nanoplatform combined with m-qPCR for simultaneous detection of two kinds of bacteria was demonstrated with rapid 2 min bacteria isolation with a linear range at 3.2 × 101-3.2 × 106 CFU·mL-1 for L. monocytogenes and 4.1 × 101-4.1 × 106 CFU·mL-1 for S. aureus, respectively. The limit of detection (LOD) for simultaneous detection of L. monocytogenes and S. aureus were 32 and 41 CFU·mL-1 in spiked human blood samples, respectively. Other bacteria had an insignificant interference with the test results. This Bio-den-Van multivalent capture nanoplatform combined with m-qPCR detection exhibited rapid, high sensitivity and specificity in simultaneous detection of various bacteria. To our knowledge, this is the first time that Bio-den-Van multivalent capture nanoplatform was used with Van as a recognition molecule for the simultaneous capture and subsequent detection of two bacteria from spiked human blood sample. This method holds great potential for future clinical applications.
Collapse
Affiliation(s)
- Xiaoyan Feng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xiangyu Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Fangbin Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | | | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
25
|
Maier C, Hofmann K, Huptas C, Scherer S, Wenning M, Lücking G. Simultaneous quantification of the most common and proteolytic Pseudomonas species in raw milk by multiplex qPCR. Appl Microbiol Biotechnol 2021; 105:1693-1708. [PMID: 33527148 PMCID: PMC7880948 DOI: 10.1007/s00253-021-11109-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022]
Abstract
Abstract The heat-stable peptidase AprX, secreted by psychrotolerant Pseudomonas species in raw milk, is a major cause of destabilization and premature spoilage of ultra-high temperature (UHT) milk and milk products. To enable rapid detection and quantification of seven frequent and proteolytic Pseudomonas species (P. proteolytica, P. gessardii, P. lactis, P. fluorescens, P. protegens, P. lundensis, and P. fragi) in raw milk, we developed two triplex qPCR assays taking into account species-dependent differences in AprX activity. Besides five species-specific hydrolysis probes, targeting the aprX gene, a universal rpoB probe was included in the assay to determine the total Pseudomonas counts. For all six probes, linear regression lines between Cq value and target DNA concentration were obtained in singleplex as well as in multiplex approaches, yielding R2 values of > 0.975 and amplification efficiencies of 85–97%. Moreover, high specificity was determined using genomic DNA of 75 Pseudomonas strains, assigned to 57 species, and 40 other bacterial species as templates in the qPCR. Quantification of the target species and total Pseudomonas counts resulted in linear detection ranges of approx. 103–107 cfu/ml, which correspond well to common Pseudomonas counts in raw milk. Application of the assay using 60 raw milk samples from different dairies showed good agreement of total Pseudomonas counts calculated by qPCR with cell counts derived from cultivation. Furthermore, a remarkably high variability regarding the species composition was observed for each milk sample, whereby P. lundensis and P. proteolytica/P. gessardii were the predominant species detected. Key points • Multiplex qPCR for quantification of seven proteolytic Pseudomonas species and total Pseudomonas counts in raw milk • High specificity and sensitivity via hydrolysis probes against aprX and rpoB • Rapid method to determine Pseudomonas contamination in raw milk and predict spoilage potential Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11109-0.
Collapse
Affiliation(s)
- Christopher Maier
- ZIEL Institute for Food and Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 1, 85354, Freising, Germany
| | - Katharina Hofmann
- ZIEL Institute for Food and Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 1, 85354, Freising, Germany
| | - Christopher Huptas
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Siegfried Scherer
- ZIEL Institute for Food and Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 1, 85354, Freising, Germany.,Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Mareike Wenning
- Bavarian Health and Food Safety Authority (LGL), Veterinärstr. 2, 85764, Oberschleißheim, Germany
| | - Genia Lücking
- ZIEL Institute for Food and Health, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 1, 85354, Freising, Germany.
| |
Collapse
|
26
|
Liu C, Fang S, Tian Y, Wu Y, Wu M, Wang Z, Xu D, Hou D, Liu Q. An Aggregation-Induced Emission Material Labeling Antigen-Based Lateral Flow Immunoassay Strip for Rapid Detection of Escherichia coli O157:H7. SLAS Technol 2021; 26:377-383. [PMID: 33435797 DOI: 10.1177/2472630320981935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is a dangerous foodborne pathogen, mainly found in beef, milk, fruits, and their products, causing harm to human health or even death. Therefore, the detection of E. coli O157:H7 in food is particularly important. In this paper, we report a lateral flow immunoassay strip (LFIS) based on aggregation-induced emission (AIE) material labeling antigen as a fluorescent probe for the rapid detection of E. coli O157:H7. The detection sensitivity of the strip is 105 CFU/mL, which is 10 times higher than that of the colloidal gold test strip. This method has good specificity and stability and can be used to detect about 250 CFU of E. coli O157:H7 successfully in 25 g or 25 mL of beef, jelly, and milk. AIE-LFIS might be valuable in monitoring food pathogens for rapid detection.
Collapse
Affiliation(s)
- Cheng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shuiqin Fang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yachen Tian
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Youxue Wu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Meijiao Wu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zheng Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongpo Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongjun Hou
- China Animal Disease Control Centre, Beijing, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Rapid detection of flagellated and non-flagellated Salmonella by targeting the common flagellar hook gene flgE. Appl Microbiol Biotechnol 2020; 104:9719-9732. [PMID: 33009938 DOI: 10.1007/s00253-020-10925-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/06/2023]
Abstract
Salmonella spp. can cause animal and human salmonellosis. In this study, we established a simple method to detect all Salmonella species by amplifying a specific region within the flgE gene encoding the flagellar hook protein. Our preliminary sequence analysis among flagella-associated genes of Salmonella revealed that although Salmonella Gallinarum and Salmonella Pullorum are lacking flagella, they did have flagella-associated genes, including flgE. To investigate in detail, a comparative flgE sequence analysis was conducted using different bacterial strains including flagellated and non-flagellated Salmonella as well as non-Salmonella strains. Two unique regions (481-529 bp and 721-775 bp of the reference sequence) within the flgE open reading frame were found to be highly conserved and specific to all Salmonella species. Next, we designed a pair of PCR primers (flgE-UP and flgE-LO) targeting the above two regions, and performed a flgE-tailored PCR using as template DNA prepared from a total of 76 bacterial strains (31 flagellated Salmonella strains, 26 non-flagellated Salmonella strains, and 19 other non-Salmonella bacteria strains). Results showed that specific positive bands with expected size were obtained from all Salmonella (including flagellated and non-flagellated Salmonella) strains, while no specific product was generated from non-Salmonella bacterial strains. PCR products from the positive bands were confirmed by DNA sequencing. The minimum detection amount for genomic DNA and bacteria cells reached 18.3 pg/μL and 100 colony-forming unit (CFU) per PCR reaction, respectively. Using the flgE-PCR method to detect Salmonella in artificially contaminated milk samples, as low as 1 CFU/mL Salmonella was detectable after an 8-h pre-culture. Meanwhile, the flgE-tailored PCR method was applied to evaluate 247 clinical samples infected with Salmonella from different chicken breeding farms. The detection results indicated that flgE-PCR could be used to specifically detect Salmonella in concordance with the traditional bacterial culture-based detection method. It is worthwhile noticed that identification results using flgE-tailored PCR should be completed within less than 1 day, expanding the result of much faster than the standard method, which took more than 5 days. Overall, the flgE-tailored PCR method can specifically detect flagellated and non-flagellated Salmonella and can serve as a powerful tool for rapid, simple, and sensitive detection of Salmonella species. KEY POINTS : • Targeting flgE gene for all Salmonella spp. found. • The established PCR assay is used to specifically detect all Salmonella spp. • The PCR method is applied to detect clinical Salmonella spp. samples within less than 1 day.
Collapse
|
28
|
Qi X, Xu H, Liu W, Guo A. Development of a rapid
FLISA
detection of
Salmonella
spp. based on
CdTe
/
ZnS
quantum dots. J Food Saf 2020. [DOI: 10.1111/jfs.12830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaobao Qi
- Key Laboratory of Environment Correlative Dietology, Ministry of Education Huazhong Agricultural University Wuhan People's Republic of China
| | - Huanhuan Xu
- National Research and Development Center for Egg Processing Huazhong Agriculture University Wuhan People's Republic of China
| | - Wukang Liu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education Huazhong Agricultural University Wuhan People's Republic of China
| | - Ailing Guo
- Key Laboratory of Environment Correlative Dietology, Ministry of Education Huazhong Agricultural University Wuhan People's Republic of China
- National Research and Development Center for Egg Processing Huazhong Agriculture University Wuhan People's Republic of China
| |
Collapse
|
29
|
Zhang J, Wang XY, Wang YH, Wang DD, Song Z, Zhang CD, Wang HS. Colorable Zeolitic Imidazolate Frameworks for Colorimetric Detection of Biomolecules. Anal Chem 2020; 92:12670-12677. [PMID: 32842725 DOI: 10.1021/acs.analchem.0c02895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a series of colorable zeolitic imidazolate framework (ZIF)-based nanomaterials prepared by encapsulating starches (amylopectin, dextrin, or amylose) or tannic acid in the frameworks of ZIFs and first applied them in colorimetric assay of microRNA/DNA by adding I2/KI or FeCl3 solutions as chromogenic reagents. We found that iodine molecules can lead to rapid degradation of the ZIF-8 framework, while ZIF-90 remains stable. Therefore, ZIF-90 was selected for encapsulating the starches or tannic acid, and then assembled with polyethylenimine (PEI) and aptamers of microRNA/DNA. After interacting with the target microRNA/DNA, the aptamers (Ap) move away from the surface of the prepared Ap-starch@ZIF-90 or Ap-tan@ZIF-90, and the I2/KI or FeCl3 solution is added into the system to interact the starches (amylopectin, dextrin, or amylose) or tannic acid to generate different colors. According to the absorbance spectra, good linear correlations between the logarithm of absorbance intensity and the concentration of microRNA (1-180 nM) can be observed, and the naked eye can distinguish the change from ∼60 to ∼180 nM with a concentration gradient of 20 nM. A similar colorimetric assay ability for pathogenic bacteria can also be realized by detecting the gene fragments IS200 and eaeA. The detection limits can be potentially optimized by changing the amount of adsorbed PEI and aptamers on the surface of Ap-starch@ZIF-90 (or Ap-tan@ZIF-90) nanoparticles. This method could be a promising alternative for simple and cost-effective assay of microRNA/DNA.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Xing-Yu Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yi-Hui Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Dan-Dan Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Chang-Dong Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Huai-Song Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.,Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
30
|
Qin H, Shi X, Yu L, Li K, Wang J, Chen J, Yang F, Xu H, Xu H. Multiplex real-time PCR coupled with sodium dodecyl sulphate and propidium monoazide for the simultaneous detection of viable Listeria monocytogenes, Cronobacter sakazakii, Staphylococcus aureus and Salmonella spp. in milk. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Liang T, Wu X, Chen B, Liu J, Aguilar ZP, Xu H. The PCR-HCR dual signal amplification strategy for ultrasensitive detection of Escherichia coli O157:H7 in milk. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Zhang R, Belwal T, Li L, Lin X, Xu Y, Luo Z. Nanomaterial‐based biosensors for sensing key foodborne pathogens: Advances from recent decades. Compr Rev Food Sci Food Saf 2020; 19:1465-1487. [DOI: 10.1111/1541-4337.12576] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Ruyuan Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
- Ningbo Research Institute, Zhejiang University Ningbo People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou People's Republic of China
- Ningbo Research Institute, Zhejiang University Ningbo People's Republic of China
- Fuli Institute of Food Science Hangzhou People's Republic of China
| |
Collapse
|
33
|
Liu P, Wang Y, Han L, Cai Y, Ren H, Ma T, Li X, Petrenko VA, Liu A. Colorimetric Assay of Bacterial Pathogens Based on Co 3O 4 Magnetic Nanozymes Conjugated with Specific Fusion Phage Proteins and Magnetophoretic Chromatography. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9090-9097. [PMID: 32023032 DOI: 10.1021/acsami.9b23101] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is important to detect pathogens rapidly, sensitively, and selectively for clinical medicine, homeland security, food safety, and environmental control. We report here a specific and sensitive colorimetric assay that incorporated a bovine serum albumin-templated Co3O4 magnetic nanozyme (Co3O4 MNE) with a novel specific fusion phage protein and magnetophoretic chromatography to detect Staphylococcus aureus. The Co3O4 MNE was conjugated to S. aureus-specific fusion-pVIII (Co3O4 MNE@fusion-pVIII), screened from the S. aureus-specific phage AQTFLGEQD (the phage monoclone is denoted by the peptide sequence). The as-prepared triple-functional Co3O4 MNE@fusion-pVIII particles were capable of capturing S. aureus in sterile milk, which were then isolated from milk magnetically. Assisted by polyethylene glycol, the Co3O4 MNE@fusion-pVIII@S. aureus complex was separated from the free Co3O4 MNE@fusion-pVIII by magnetophoretic chromatography in an external magnetic field. After transferring the isolated Co3O4 MNE@fusion-pVIII@S. aureus complexes into a 96-well plate, diammonium salt of 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) and H2O2 were added to develop color because of the peroxidase mimetics activity of the Co3O4 MNE. A S. aureus concentration within 10-10,000 cfu/mL in milk can be detected (detection limit: 8 cfu/mL). The as-developed method is simple, cost-efficient, and sensitive, which is useful for rapidly diagnosing pathogenic bacteria and helpful to prevent disease outbreaks induced by pathogens in developing countries.
Collapse
Affiliation(s)
- Pei Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
- Faculty of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration , HuaiYin Institute of Technology , 1 Meicheng East Road , Huaian 223003 , China
| | - Yanbo Wang
- Institute for Chemical Biology & Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , 700 Changcheng Road , Qingdao 266109 , China
| | - Yuanyuan Cai
- School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| | - Han Ren
- School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| | - Tengxin Ma
- Institute for Chemical Biology & Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
| | - Xiangqian Li
- Faculty of Life Science and Food Engineering, Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration , HuaiYin Institute of Technology , 1 Meicheng East Road , Huaian 223003 , China
| | - Valery A Petrenko
- Department of Pathobiology , Auburn University , 269 Greene Hall , Auburn , Alabama 36849-5519 , United States
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, and College of Life Sciences , Qingdao University , 308 Ningxia Road , Qingdao 266071 , China
- School of Pharmacy, Medical College , Qingdao University , Qingdao 266021 , China
| |
Collapse
|
34
|
Baymiev AK, Baymiev AK, Kuluev BR, Shvets KY, Yamidanov RS, Matniyazov RT, Chemeris DA, Zubov VV, Alekseev YI, Mavzyutov AR, Ivanenkov YA, Chemeris AV. Modern Approaches to Differentiation of Live and Dead Bacteria Using Selective Amplification of Nucleic Acids. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
35
|
Ruan Y, Xu H, Yu J, Chen Q, Gu L, Guo A. A fluorescence immunoassay based on CdTe : Zn/ZnS quantum dots for the rapid detection of bacteria, taking Delftia tsuruhatensis CM’13 as an example. RSC Adv 2020; 10:1042-1049. [PMID: 35494437 PMCID: PMC9049142 DOI: 10.1039/c9ra08651j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/09/2019] [Indexed: 11/21/2022] Open
Abstract
A fluorescence immunoassay has been widely applied in different fields due to its high sensitivity, simple operations, and high accuracy.
Collapse
Affiliation(s)
- Yao Ruan
- National Research and Development Center for Egg Processing
- Huazhong Agriculture University
- Wuhan 430070
- China
| | - Huanhuan Xu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
- Ministry of Education
- Wuhan 430070
- China
| | - Jinlu Yu
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
- Ministry of Education
- Wuhan 430070
- China
| | - Qian Chen
- National Research and Development Center for Egg Processing
- Huazhong Agriculture University
- Wuhan 430070
- China
| | - Lihong Gu
- National Research and Development Center for Egg Processing
- Huazhong Agriculture University
- Wuhan 430070
- China
| | - Ailing Guo
- National Research and Development Center for Egg Processing
- Huazhong Agriculture University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| |
Collapse
|
36
|
Quantitative detection of viable Escherichia coli O157:H7 using a photoreactive DNA-binding dye propidium monoazide in irrigation water. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Zhou P, Xie G, Liang T, Yu B, Aguilar Z, Xu H. Rapid and quantitative detection of viable emetic Bacillus cereus by PMA-qPCR assay in milk. Mol Cell Probes 2019; 47:101437. [DOI: 10.1016/j.mcp.2019.101437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
38
|
Zhao X, Cui Y, Wang J, Wang J. Preparation of Fluorescent Molecularly Imprinted Polymers via Pickering Emulsion Interfaces and the Application for Visual Sensing Analysis of Listeria Monocytogenes. Polymers (Basel) 2019; 11:E984. [PMID: 31167356 PMCID: PMC6630558 DOI: 10.3390/polym11060984] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 01/28/2023] Open
Abstract
In this work, a novel molecularly imprinted polymer (MIP) with water-soluble CdTe quantum dots (QDs) was synthesized by oil-in-water Pickering emulsion polymerization using whole Listeria monocytogenes as the template. Listeria monocytogenes was first treated by acryloyl-functionalized chitosan with QDs to form a bacteria-chitosan network as the water phase. This was then stabilized in an oil-in-water emulsion comprising a cross-linker, monomer, and initiator, causing recognition sites on the surface of microspheres embedded with CdTe QDs. The resulting MIP microspheres enabled selective capture of the target bacteria via recognition cavities. The target bacteria Listeria monocytogenes was detected. Scanning electron microscopy (SEM) characterization showed that the MIPs had a rough spherical shape. There was visual fluorescence detection via quenching in the presence of the target molecule, which offered qualitative detection of Listeria monocytogenes in milk and pork samples. The developed method simplified the analysis process and did not require any sample pretreatment. In addition, the fluorescence sensor provided an effective, fast, and convenient method for Listeria monocytogenes detection in food samples.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Tianjin University of Science and Technology, No. 29 The Thirteenth Road, Tianjin Economy and Technology, Development Area, Tianjin 300457, China.
| | - Yan Cui
- Tianjin University of Science and Technology, No. 29 The Thirteenth Road, Tianjin Economy and Technology, Development Area, Tianjin 300457, China.
| | - Junping Wang
- Tianjin University of Science and Technology, No. 29 The Thirteenth Road, Tianjin Economy and Technology, Development Area, Tianjin 300457, China.
| | - Junying Wang
- The Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, No 12, Zhongguancun South Street, Beijing 100081, China.
| |
Collapse
|
39
|
Zhan Z, Yu B, Li H, Yan L, Aguilar ZP, Xu H. Catalytic hairpin assembly combined with graphene oxide for the detection of emetic Bacillus cereus in milk. J Dairy Sci 2019; 102:4945-4953. [DOI: 10.3168/jds.2018-15812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/03/2019] [Indexed: 11/19/2022]
|
40
|
Liang T, Zhou P, Zhou B, Xu Q, Zhou Z, Wu X, Aguilar ZP, Xu H. Simultaneous quantitative detection of viable Escherichia coli O157:H7, Cronobacter spp., and Salmonella spp. using sodium deoxycholate-propidium monoazide with multiplex real-time PCR. J Dairy Sci 2019; 102:2954-2965. [DOI: 10.3168/jds.2018-15736] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/20/2018] [Indexed: 01/18/2023]
|
41
|
Zou D, Jin L, Wu B, Hu L, Chen X, Huang G, Zhang J. Rapid detection of Salmonella in milk by biofunctionalised magnetic nanoparticle cluster sensor based on nuclear magnetic resonance. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.11.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Liu Y, Cao Y, Wang T, Dong Q, Li J, Niu C. Detection of 12 Common Food-Borne Bacterial Pathogens by TaqMan Real-Time PCR Using a Single Set of Reaction Conditions. Front Microbiol 2019; 10:222. [PMID: 30814987 PMCID: PMC6381072 DOI: 10.3389/fmicb.2019.00222] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/28/2019] [Indexed: 01/21/2023] Open
Abstract
Food safety has become an important public health issue worldwide. However, conventional methods for detection of food-borne pathogens are complicated, and labor-intensive. Moreover, the sensitivity is often low, and it is difficult to achieve high-throughput detection. This study developed a TaqMan real-time polymerase chain reaction (PCR) assay for the simultaneous detection and quantification of 12 common pathogens in a single reaction, including Escherichia coli O157:H7, Listeria monocytogenes/ivanovii, Salmonella enterica, Vibrio parahaemolyticus, β-streptococcus hemolyticus, Yersinia enterocolitica, Enterococcus faecalis, Shigella spp., Proteus mirabilis, Vibrio fluvialis, Staphylococcus aureus, and Campylobacter jejuni in food and drinking water. Based on published sequence data, specific primers, and fluorescently-labeled hybridization probes were designed targeting based on the virulence genes of the 12 pathogens, and these primers and probes were optimized to achieve consistent reaction conditions. The assay was evaluated using 106 pure bacterial culture strains. There was no cross-reaction among the different pathogens. The analytical sensitivity was 1 copy/μL for E. coli O157:H7, L. monocytogenes/ivanovii, β-streptococcus hemolyticus, Shigella spp., P. mirabilis, and V. fluvialis, 10 copies/μL for S. enterica, V. parahaemolyticus, Y. enterocolitica, E. faecalis, S. aureus, and C. jejuni, respectively. The limit of detection (LOD) was 296, 500, 177, 56, 960, 830, 625, 520, 573, 161, 875, and 495 CFU/mL for E. coli O157:H7, L. monocytogenes/ivanovii, S. enterica, V. parahaemolyticus, β-streptococcus hemolyticus, Y. enterocolitica, E. faecalis, Shigella spp., P. mirabilis, V. fluvialis, S. aureus, and C. jejuni, respectively. The limit of detection for the assay in meat samples was 103 CFU/g for V. parahaemolyticus and 104 CFU/g for other 11 strains. Together, these results indicate that the optimized TaqMan real-time PCR assay will be useful for routine detection of pathogenic bacteria due to its rapid analysis, low cost, high-throughput, high specificity, and sensitivity.
Collapse
Affiliation(s)
- Ying Liu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yang Cao
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tao Wang
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Qingyang Dong
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Junwen Li
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chao Niu
- Department of Environmental Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
43
|
Samad A, Abbas F, Ahmad Z, Tanveer Z, Ahmad I, Patching SG, Nawaz N, Asmat MT, Raziq A, Asadullah, Naeem M, Akhtar MA, Pokryshko O, Mustafa MZ. Multiplex polymerase chain reaction detection of Shiga toxin genes and antibiotic sensitivity ofEscherichia coliO157:H7 isolated from beef meat in Quetta, Pakistan. J Food Saf 2018. [DOI: 10.1111/jfs.12540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdul Samad
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Ferhat Abbas
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Zafar Ahmad
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Zunera Tanveer
- Department of PhysiologyUniversity Medical and Dental College Faisalabad Pakistan
- Institute of Molecular Biology and BiotechnologyThe University of Lahore Lahore Pakistan
| | - Irshad Ahmad
- School of Biomedical Sciences and Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds United Kingdom
- Institute of Basic Medical SciencesKhyber Medical University Peshawar Pakistan
| | - Simon G. Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular BiologyUniversity of Leeds Leeds United Kingdom
| | - Nighat Nawaz
- Department of ChemistryIslamia College Peshawar Peshawar Pakistan
| | - Muhammad Tauseef Asmat
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Abdul Raziq
- Department of StatisticsUniversity of Balochistan Quetta Pakistan
| | - Asadullah
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Muhammad Naeem
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| | - Muhammad Aleem Akhtar
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
- Department of PharmacyUniversity of Balochistan Quetta Pakistan
- Department of Physiology and EndocrinologyUniversity of Balochistan Quetta Pakistan
| | - Olena Pokryshko
- Department of Microbiology, Virology and ImmunologyTernopil State Medical University Ukraine
| | - Mohammad Zahid Mustafa
- Center for Advanced Studies in Vaccinology and BiotechnologyUniversity of Balochistan Quetta Pakistan
| |
Collapse
|