1
|
Huang J, Li J, Ning Y, Ren Y, Shao Y, Zhang H, Zong X, Shi H. Enhancement of PPARα-Inhibited Leucine Metabolism-Stimulated β-Casein Synthesis and Fatty Acid Synthesis in Primary Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16184-16193. [PMID: 37853551 DOI: 10.1021/acs.jafc.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Leucine, a kind of branched-chain amino acid, plays a regulatory role in the milk production of mammalian mammary glands, but its regulatory functions and underlying molecular mechanisms remain unknown. This work showed that a leucine-enriched mixture (LEUem) supplementation increased the levels of milk protein and milk fat synthesis in primary bovine mammary epithelial cells (BMECs). RNA-seq of leucine-treated BMECs indicated alterations in lipid metabolism, translation, ribosomal structure and biogenesis, and inflammatory response signaling pathways. Meanwhile, the supplementation of leucine resulted in mTOR activation and increased the expression of BCKDHA, FASN, ACC, and SCD1. Interestingly, the expression of PPARα was independently correlated with the leucine-supplemented dose. PPARα activated by WY-14643 caused significant suppression of lipogenic genes expression. Furthermore, WY-14643 attenuated leucine-induced β-casein synthesis and enhanced the level of BCKDHA expression. Moreover, promoter analysis revealed a peroxisome-proliferator-response element (PPRE) site in the bovine BCKDHA promoter, and WY-14643 promoted the recruitment of PPARα onto the BCKDHA promoter. Together, the present data indicate that leucine promotes the synthesis of β-casein and fatty acid and that PPARα-involved leucine catabolism is the key target.
Collapse
Affiliation(s)
- Jiangtao Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jintao Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yong Ning
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yalun Ren
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuexin Shao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huawen Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xueyang Zong
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Zeng L, Zhou J, Zhang Y, Wang X, Li Y, Song J, Shao J, Su P. Paternal cadmium exposure induces glucolipid metabolic reprogramming in offspring mice via PPAR signaling pathway. CHEMOSPHERE 2023; 339:139592. [PMID: 37482320 DOI: 10.1016/j.chemosphere.2023.139592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
In industrialized societies, the prevalence of metabolic diseases has substantially increased over the past few decades, yet the underlying causes remain unclear. Cadmium (Cd) is a hazardous heavy metal and pervasive environmental endocrine disruptor. Here, we investigate the effects of paternal Cd exposure on offspring glucolipid metabolism. Paternal Cd exposure (1 mg kg-1 body weight) impaired glucose tolerance, increased random serum glucose and fasting serum insulin, elevated serum total cholesterol, and low-density lipoprotein in offspring mice. Untargeted metabolomics analysis of male offspring liver tissue revealed that paternal Cd exposure can affect offspring glucolipid metabolic reprogramming, which involved biosynthesis of phenylalanine, tyrosine and tryptophan, biosynthesis of unsaturated fatty acids, metabolism of linoleic acid, arachidonic acid and α-linolenic acid. Transcriptome sequencing of male offspring liver tissue showed that arachidonic acid metabolism, AMPK signaling pathway, PPAR signaling pathway and adipocytokine signaling pathway were significantly inhibited in the Cd-exposed group. The mRNA expression levels of PPAR signaling pathway related genes (Acsl1, Cyp4a14, Cyp4a10, Cd36, Ppard and Pck1) were significantly decreased. The protein expression levels of ACSL1, CD36, PPARD and PCK1 were also significantly reduced. Collectively, our findings suggest that paternal Cd exposure affect offspring glucolipid metabolic reprogramming via PPAR signaling pathway.
Collapse
Affiliation(s)
- Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yamin Li
- Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China.
| | - Jieping Song
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China.
| | - JingFan Shao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
3
|
Al-Rashed F, Haddad D, Al Madhoun A, Sindhu S, Jacob T, Kochumon S, Obeid LM, Al-Mulla F, Hannun YA, Ahmad R. ACSL1 is a key regulator of inflammatory and macrophage foaming induced by short-term palmitate exposure or acute high-fat feeding. iScience 2023; 26:107145. [PMID: 37416456 PMCID: PMC10320618 DOI: 10.1016/j.isci.2023.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/29/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Foamy and inflammatory macrophages play pathogenic roles in metabolic disorders. However, the mechanisms that promote foamy and inflammatory macrophage phenotypes under acute-high-fat feeding (AHFF) remain elusive. Herein, we investigated the role of acyl-CoA synthetase-1 (ACSL1) in favoring the foamy/inflammatory phenotype of monocytes/macrophages upon short-term exposure to palmitate or AHFF. Palmitate exposure induced a foamy/inflammatory phenotype in macrophages which was associated with increased ACSL1 expression. Inhibition/knockdown of ACSL1 in macrophages suppressed the foamy/inflammatory phenotype through the inhibition of the CD36-FABP4-p38-PPARδ signaling axis. ACSL1 inhibition/knockdown suppressed macrophage foaming/inflammation after palmitate stimulation by downregulating the FABP4 expression. Similar results were obtained using primary human monocytes. As expected, oral administration of ACSL1 inhibitor triacsin-C in mice before AHFF normalized the inflammatory/foamy phenotype of the circulatory monocytes by suppressing FABP4 expression. Our results reveal that targeting ACSL1 leads to the attenuation of the CD36-FABP4-p38-PPARδ signaling axis, providing a therapeutic strategy to prevent the AHFF-induced macrophage foaming and inflammation.
Collapse
Affiliation(s)
- Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Dania Haddad
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Ashraf Al Madhoun
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Texy Jacob
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Lina M. Obeid
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| | - Yusuf A. Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Dasman 15462, Kuwait
| |
Collapse
|
4
|
Zhang W, Zhang C, Luo J, Xu H, Liu J, Loor JJ, Shi H. The LXRB-SREBP1 network regulates lipogenic homeostasis by controlling the synthesis of polyunsaturated fatty acids in goat mammary epithelial cells. J Anim Sci Biotechnol 2022; 13:120. [PMID: 36336695 PMCID: PMC9639257 DOI: 10.1186/s40104-022-00774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/05/2022] [Indexed: 11/09/2022] Open
Abstract
Background In rodents, research has revealed a role of liver X receptors (LXR) in controlling lipid homeostasis and regulating the synthesis of polyunsaturated fatty acids (PUFA). Recent data suggest that LXRB is the predominant LXR subtype in ruminant mammary cells, but its role in lipid metabolism is unknown. It was hypothesized that LXRB plays a role in lipid homeostasis via altering the synthesis of PUFA in the ruminant mammary gland. We used overexpression and knockdown of LXRB in goat primary mammary epithelial cells (GMEC) to evaluate abundance of lipogenic enzymes, fatty acid profiles, content of lipid stores and activity of the stearoyl-CoA desaturase (SCD1) promoter. Results Overexpression of LXRB markedly upregulated the protein abundance of LXRB while incubation with siRNA targeting LXRB markedly decreased abundance of LXRB protein. Overexpression of LXRB plus T0901317 (T09, a ligand for LXR) dramatically upregulated SCD1 and elongation of very long chain fatty acid-like fatty acid elongases 5–7 (ELOVL 5–7), which are related to PUFA synthesis. Compared with the control, cells overexpressing LXRB and stimulated with T09 had greater concentrations of C16:0, 16:1, 18:1n7,18:1n9 and C18:2 as well as desaturation and elongation indices of C16:0. Furthermore, LXRB-overexpressing cells incubated with T09 had greater levels of triacylglycerol and cholesterol. Knockdown of LXRB in cells incubated with T09 led to downregulation of genes encoding elongases and desaturases. Knockdown of LXRB attenuated the increase in triacylglycerol and cholesterol that was induced by T09. In cells treated with dimethylsulfoxide, knockdown of LXRB increased the concentration of C16:0 at the expense of C18:0, while a significant decrease in C18:2 was observed in cells incubated with both siLXRB and T09. The abundance of sterol regulatory element binding transcription factor 1 precursor (pSREBP1) and its mature fragment (nSREBP1) was upregulated by T09, but not LXRB overexpression. In the cells cultured with T09, knockdown of LXRB downregulated the abundance for pSREBP1 and nSREBP1. Luciferase reporter assays revealed that the activities of wild type SCD1 promoter or fragment with SREBP1 response element (SRE) mutation were decreased markedly when LXRB was knocked down. Activity of the SCD1 promoter that was induced by T09 was blocked when the SRE mutation was introduced. Conclusion The current study provides evidence of a physiological link between the LXRB and SREBP1 in the ruminant mammary cell. An important role was revealed for the LXRB-SREBP1 network in the synthesis of PUFA via the regulation of genes encoding elongases and desaturases. Thus, targeting this network might elicit broad effects on lipid homeostasis in ruminant mammary gland. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00774-4.
Collapse
Affiliation(s)
- Wenying Zhang
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Changhui Zhang
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Jun Luo
- grid.144022.10000 0004 1760 4150College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Huifen Xu
- grid.108266.b0000 0004 1803 0494College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
| | - Jianxin Liu
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Juan J. Loor
- grid.35403.310000 0004 1936 9991Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Hengbo Shi
- grid.13402.340000 0004 1759 700XInstitute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
5
|
Huang QX, Yang J, Hu M, Lu W, Zhong K, Wang Y, Yang G, Loor JJ, Han L. Milk fat globule membrane proteins are involved in controlling the size of milk fat globules during conjugated linoleic acid-induced milk fat depression. J Dairy Sci 2022; 105:9179-9190. [PMID: 36175227 DOI: 10.3168/jds.2022-22131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
Milk fat globule membrane (MFGM) proteins surround the triacylglycerol core comprising milk fat globules (MFG). We previously detected a decrease in the size of fat globules during conjugated linoleic acid (CLA)-induced milk fat depression (MFD), and other studies have reported that some MFGM proteins play a central role in regulating mammary cellular lipid droplet size. However, little is known about the relationship between MFD, MFG size, and MFGM proteins in bovine milk. The aim of this study was to investigate the profile of MFGM proteins during MFD induced by CLA. Sixteen mid-lactating Holstein cows (145 ± 24 d in milk) with similar body condition and parity were divided into control and CLA groups over a 10-d period. Cows were fed a basal diet (control, n = 8) or control plus 15 g/kg of dry matter (DM) CLA (n = 8) to induce MFD. Cow performance, milk composition, and MFG size were measured daily. On d 10, MFGM proteins were extracted and identified by quantitative proteomic analysis, and western blotting was used to verify a subset of the identified MFGM proteins. Compared with controls, supplemental CLA did not affect milk production, DM intake, or milk protein and lactose contents. However, CLA reduced milk fat content (3.73 g/100 mL vs. 2.47 g/100 mL) and the size parameters volume-related diameter D[4,3] (3.72 μm vs. 3.35 μm) and surface area-related diameter D[3,2] (3.13 μm vs. 2.80 μm), but increased specific surface area of MFG (1,905 m2/kg vs. 2,188 m2/kg). In total, 177 differentially expressed proteins were detected in milk from cows with CLA-induced MFD, 60 of which were upregulated and 117 downregulated. Correlation analysis showed that MFG size was negatively correlated with various proteins, including XDH and FABP3, and positively correlated with MFG-E8, RAB19, and APOA1. The results provide evidence for an important role of MFGM proteins in regulating MFG diameter, and they facilitate a mechanistic understanding of diet-induced MFD.
Collapse
Affiliation(s)
- Qi Xue Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Jingna Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Mingyue Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Wenyan Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Kai Zhong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Yueying Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Guoyu Yang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, P. R. China
| | - Juan J Loor
- Department of Animal Science and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Liqiang Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, P. R. China.
| |
Collapse
|
6
|
Mu T, Hu H, Ma Y, Feng X, Zhang J, Gu Y. Regulation of Key Genes for Milk Fat Synthesis in Ruminants. Front Nutr 2021; 8:765147. [PMID: 34901115 PMCID: PMC8659261 DOI: 10.3389/fnut.2021.765147] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Milk fat is the most important and energy-rich substance in milk and plays an important role in the metabolism of nutrients during human growth and development. It is mainly used in the production of butter and yogurt. Milk fat not only affects the flavor and nutritional value of milk, but also is the main target trait of ruminant breeding. There are many key genes involve in ruminant milk fat synthesis, including ACSS2, FASN, ACACA, CD36, ACSL, SLC27A, FABP3, SCD, GPAM, AGPAT, LPIN, DGAT1, PLIN2, XDH, and BTN1A1. Taking the de novo synthesis of fatty acids (FA) and intaking of long-chain fatty acids (LCFA) in blood to the end of lipid droplet secretion as the mainline, this manuscript elucidates the complex regulation model of key genes in mammary epithelial cells (MECs) in ruminant milk fat synthesis, and constructs the whole regulatory network of milk fat synthesis, to provide valuable theoretical basis and research ideas for the study of milk fat regulation mechanism of ruminants.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaling Gu
- School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
7
|
Associations among perfluorooctanesulfonic/perfluorooctanoic acid levels, nuclear receptor gene polymorphisms, and lipid levels in pregnant women in the Hokkaido study. Sci Rep 2021; 11:9994. [PMID: 33976266 PMCID: PMC8113244 DOI: 10.1038/s41598-021-89285-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
The effect of interactions between perfluorooctanesulfonic (PFOS)/perfluorooctanoic acid (PFOA) levels and nuclear receptor genotypes on fatty acid (FA) levels, including those of triglycerides, is not clear understood. Therefore, in the present study, we aimed to analyse the association of PFOS/PFOA levels and single-nucleotide polymorphisms (SNPs) in nuclear receptors with FA levels in pregnant women. We analysed 504 mothers in a birth cohort between 2002 and 2005 in Japan. Serum PFOS/PFOA and FA levels were measured using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Maternal genotypes in PPARA (rs1800234; rs135561), PPARG (rs3856806), PPARGC1A (rs2970847; rs8192678), PPARD (rs1053049; rs2267668), CAR (rs2307424; rs2501873), LXRA (rs2279238) and LXRB (rs1405655; rs2303044; rs4802703) were analysed. When gene-environment interaction was considered, PFOS exposure (log10 scale) decreased palmitic, palmitoleic, and oleic acid levels (log10 scale), with the observed β in the range of - 0.452 to - 0.244; PPARGC1A (rs8192678) and PPARD (rs1053049; rs2267668) genotypes decreased triglyceride, palmitic, palmitoleic, and oleic acid levels, with the observed β in the range of - 0.266 to - 0.176. Interactions between PFOS exposure and SNPs were significant for palmitic acid (Pint = 0.004 to 0.017). In conclusion, the interactions between maternal PFOS levels and PPARGC1A or PPARD may modify maternal FA levels.
Collapse
|
8
|
Tian H, Luo J, Shi H, Chen X, Wu J, Liang Y, Li C, Loor JJ. Role of peroxisome proliferator-activated receptor-α on the synthesis of monounsaturated fatty acids in goat mammary epithelial cells. J Anim Sci 2020; 98:5739815. [PMID: 32067038 DOI: 10.1093/jas/skaa062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
A key member of the nuclear receptor superfamily is the peroxisome proliferator-activated receptor alpha (PPARA) isoform, which in nonruminants is closely associated with fatty acid oxidation. Whether PPARA plays a role in milk fatty acid synthesis in ruminants is unknown. The main objective of the present study was to use primary goat mammary epithelial cells (GMEC) to activate PPARA via the agonist WY-14643 (WY) or to silence it via transfection of small-interfering RNA (siRNA). Three copies of the peroxisome proliferator-activated receptor response element (PPRE) contained in a luciferase reporter vector were transfected into GMEC followed by incubation with WY at 0, 10, 20, 30, 50, or 100 µM. A dose of 50 µM WY was most effective at activating PPRE without influencing PPARA mRNA abundance. Transfecting siRNA targeting PPARA decreased its mRNA abundance to 20% and protein level to 50% of basal levels. Use of WY upregulated FASN, SCD1, ACSL1, DGAT1, FABP4, and CD36 (1.1-, 1.5-, 2-, 1.4-, 1.5-, and 5-fold, respectively), but downregulated DGAT2 and PGC1A (-20% and -40%, respectively) abundance. In contrast, triacylglycerol concentration decreased and the content and desaturation index of C16:1 and C18:1 increased. Thus, activation of PPARA via WY appeared to channel fatty acids away from esterification. Knockdown of PPARA via siRNA downregulated ACACA, SCD1, AGPAT6, CD36, HSL, and SREBF1 (-43%, -67%, -16%, -56%, -26%, and -29%, respectively), but upregulated ACSL1, DGAT2, FABP3, and PGC1A (2-, 1.4-, 1.3-, and 2.5-fold, respectively) mRNA abundance. A decrease in the content and desaturation index of C16:1 and C18:1 coupled with an increase in triacylglycerol content accompanied those effects at the mRNA level. Overall, data suggest that PPARA could promote the synthesis of MUFA in GMEC through its effects on mRNA abundance of genes related to fatty acid synthesis, oxidation, transport, and triacylglycerol synthesis.
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hengbo Shi
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL
| |
Collapse
|