1
|
Wu J, Chen S, Van der Meeren P. Heat Stability Assessment of Milk: A Review of Traditional and Innovative Methods. Foods 2024; 13:2236. [PMID: 39063320 PMCID: PMC11275249 DOI: 10.3390/foods13142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
It is important to differentiate milk with different thermostabilities for diverse applications in food products and for the appropriate selection of processing and maintenance of manufacturing facilities. In this review, an overview of the chemical changes in milk subjected to high-temperature heating is given. An emphasis is given to the studies of traditional and state-of-the-art strategies for assessing the milk thermostability, as well as their influencing factors. Traditional subjective and objective techniques have been used extensively in many studies for evaluating thermostability, whereas recent research has been focused on novel approaches with greater objectivity and accuracy, including innovative physical, spectroscopic, and predictive tools.
Collapse
Affiliation(s)
- Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Simin Chen
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | | |
Collapse
|
2
|
Franceschi P, Sun W, Malacarne M, Luo Y, Formaggioni P, Martuzzi F, Summer A. Distribution of Calcium, Phosphorus and Magnesium in Yak (Bos grunniens) Milk from the Qinghai Plateau in China. Foods 2023; 12:foods12071413. [PMID: 37048234 PMCID: PMC10093724 DOI: 10.3390/foods12071413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
This research was aimed to assess the distribution of calcium, phosphorus and magnesium within the casein micelles of yak milk. To this aim, nine bulk yak milk samples (Y-milk), collected in three yak farms located in the Chinese province of Qinghai, were compared to nine bulk cow milk samples used as a reference. A quite similar content of colloidal calcium (0.80 vs. 0.77 mmol/g of casein; p > 0.05), a higher content of magnesium (0.05 vs. 0.04 mmol/g of casein; p ≤ 0.01) and a lower content of colloidal phosphorus (0.48 vs. 0.56 mmol/g of casein; p ≤ 0.01) between yak and cow casein micelles were found. Moreover, the yak casein micelles showed a lower value of prosthetic phosphorus (0.20 vs. 0.26 mmol/g of casein; p ≤ 0.05) compared to the cow micelles. The lower values of colloidal and prosthetic phosphorus in yak casein micelles suggest that the yak casein is less phosphorylated than the cow one.
Collapse
|
3
|
Abdallah M, Azevedo-Scudeller L, Hiolle M, Lesur C, Baniel A, Delaplace G. Review on mechanisms leading to fouling and stability issues related to heat treatment of casein-based RTD beverages. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
4
|
Blinov AV, Siddiqui SA, Blinova AA, Khramtsov AG, Oboturova NP, Nagdalian АА, Simonov AN, Ibrahim SA. Analysis of the dispersed composition of milk using photon correlation spectroscopy. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Wang Y, Wang H, Yang J, Yang M. Study on process of Yak and Holstein casein‐glucose Maillard reaction and functional properties of their products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Yucheng Wang
- College of Science Gansu Agricultural University Lanzhou 730070 China
- Institute of Agricultural Resources Chemistry and Application Gansu Agricultural University Lanzhou 730070 China
| | - Haixia Wang
- College of Science Gansu Agricultural University Lanzhou 730070 China
- Institute of Agricultural Resources Chemistry and Application Gansu Agricultural University Lanzhou 730070 China
| | - Jitao Yang
- College of Science Gansu Agricultural University Lanzhou 730070 China
- Institute of Agricultural Resources Chemistry and Application Gansu Agricultural University Lanzhou 730070 China
| | - Min Yang
- College of Science Gansu Agricultural University Lanzhou 730070 China
- Institute of Agricultural Resources Chemistry and Application Gansu Agricultural University Lanzhou 730070 China
| |
Collapse
|
6
|
Zhou Z, Zhu M, Zhang G, Hu X, Pan J. Novel insights into the interaction mechanism of 5-hydroxymethyl-2-furaldehyde with β-casein and its effects on the structure and function of β-casein. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Zhao X, Wang C, Cheng M, Zhang X, Jiang H. Influence of calcium on the properties of micellar casein in goat milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Wu KY, Yang TX, Li QY. The effects of pH and NaCl concentration on the structure of β-casein from buffalo milk. Food Sci Nutr 2021; 9:2436-2445. [PMID: 34026061 PMCID: PMC8121154 DOI: 10.1002/fsn3.2157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/07/2022] Open
Abstract
In the present study, we aimed to investigate the effects of pH and sodium chloride (NaCl) concentration on the structure of β-casein (β-CN) purified from buffalo milk using circular dichroism (CD), intrinsic tryptophan, and anilino-8-naphthalene sulfonate (ANS) fluorescence spectroscopy. We found that NaCl concentration played a critical role in the stability of the secondary structure of β-CN. The CD negative peak had a redshift as the NaCl concentration was increased and accompanied by a decrease of β-sheet content and an increase of α-helix content. ANS fluorescence spectroscopy also indicated that higher NaCl concentration and lower pH significantly affected the tertiary structure of β-CN. Dynamic light scattering (DLS) results showed that the particle size of buffalo β-CN had a blueshift, and then a redshift within the pH range of 5.0-7.5, and it showed a redshift when the NaCl concentration was increased.
Collapse
Affiliation(s)
- Kong Yang Wu
- College of Life ScienceLuoyang Normal UniversityLuoyangChina
| | - Tong Xiang Yang
- College of Food and BioengineeringHenan University of Science and TechnologyLuoyangChina
| | - Quan Yang Li
- College of Light Industry and Food EngineeringGuangxi UniversityNanningChina
| |
Collapse
|
9
|
Wu S, Cronin K, Fitzpatrick J, Miao S. Updating insights into the rehydration of dairy-based powder and the achievement of functionality. Crit Rev Food Sci Nutr 2021; 62:6664-6681. [PMID: 33792423 DOI: 10.1080/10408398.2021.1904203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dairy-based powder had considerable development in the recent decade. Meanwhile, the increased variety of dairy-based powder led to the complex difficulties of rehydrating dairy-based powder, which could be the poor wetting or dissolution of powder. To solve these various difficulties, previous studies investigated the rehydration of powder by mechanical and chemical methods on facilitating rehydration, while strategies were designed to improve the rate-limiting rehydration steps of different powder. In this review, special emphasis is paid to the surface and structure of the dairy-based powder, which was accountable for understanding rehydration and the rate-limiting step. Besides, the advantage and disadvantage of methods employed in rehydration were described and compared. The achievement of the powder functionality was finally discussed and correlated with the rehydration methods. It was found that the surface and structure of dairy-based powder were decided by the components and production of powder. Post-drying methods like agglomeration and coating can tailor the surface and structure of powder afterwards to obtain better rehydration. The merit of the mechanical method is that it can be applied to rehydrate dairy-based powder without any addition of chemicals. Regarding chemical methods, calcium chelation is proved to be an effective chemical in rehydration casein-based powder.
Collapse
Affiliation(s)
- Shaozong Wu
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland.,Process & Chemical Engineering, School of Engineering, University College Cork, Cork, Ireland
| | - Kevin Cronin
- Process & Chemical Engineering, School of Engineering, University College Cork, Cork, Ireland
| | - John Fitzpatrick
- Process & Chemical Engineering, School of Engineering, University College Cork, Cork, Ireland
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
| |
Collapse
|
10
|
Qin YS, Jiang H, Wang CF, Cheng M, Wang LL, Huang MY, Zhao QX, Jiang HH. Physicochemical and functional properties of goat milk whey protein and casein obtained during different lactation stages. J Dairy Sci 2021; 104:3936-3946. [PMID: 33551171 DOI: 10.3168/jds.2020-19454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022]
Abstract
During lactation, goat milk contains colostrum, transitional milk, mature milk, and end milk. The protein present in goat milk during different lactation periods has different characteristics. This study aimed to characterize the protein profile of goat milk samples obtained at different lactation stages and to identify changes in the physicochemical and functional properties of whey protein and casein from goat milk collected at 1, 3, 15, 100, and 200 d after calving. The results demonstrated that the lactation period had a great influence on the physicochemical and functional properties of goat milk whey protein and casein, especially the protein properties of colostrum on the first day after delivery. The denaturation temperature, hydrophobicity, and turbidity of whey protein were significantly higher on the first day postpartum than at other lactation periods. Correspondingly, the colostrum whey protein also had better functional properties, such as emulsification, oil holding capacity, and foaming properties on the first day postpartum than at other lactation periods. For casein, the turbidity, particle size, water holding capacity, and foaming properties on the first day after delivery were significantly higher than those at other lactation periods, whereas the denaturation temperature, oil holding capacity, and emulsification followed the opposite trend. For both whey protein and casein, the 2 indicators of emulsifying properties, namely, emulsifying activity index and the emulsion stability, also followed an opposite trend relative to lactation stage, whereas the changes in foaming capacity with the lactation period were completely consistent with the change of foaming stability. These findings could provide useful information for the use of goat milk whey protein and casein obtained during different lactation stages in the dairy industry.
Collapse
Affiliation(s)
- Y S Qin
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - H Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - C F Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353.
| | - M Cheng
- Qingdao Research Institute of Husbandry and Veterinary, Qingdao, China 266100
| | - L L Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - M Y Huang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - Q X Zhao
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - H H Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| |
Collapse
|
11
|
Monteiro SHMC, Silva EK, Guimarães JT, Freitas MQ, Meireles MAA, Cruz AG. High-intensity ultrasound energy density: How different modes of application influence the quality parameters of a dairy beverage. ULTRASONICS SONOCHEMISTRY 2020; 63:104928. [PMID: 31952002 DOI: 10.1016/j.ultsonch.2019.104928] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 05/09/2023]
Abstract
This study evaluated the influence of the high-intensity ultrasound (HIUS) technology on the quality parameters of a model dairy beverage (chocolate whey beverage), operating under the same energy density (5000 J/mL), but applied at different ways. Two processes were performed varying nominal power and processing time: HIUS-A (160 W and 937 s), and HIUS-B (720 W and 208 s). Our objective was to understand how different modes of application of the same HIUS energy density could influence the microstructure, droplet size distribution, zeta potential, phase separation kinetic, color parameters and mineral profile of the chocolate whey beverage. The results demonstrated that the different modes of application of the same HIUS energy density directly influenced the final quality of the product, resulting in whey beverages with distinct physical and microstructural characteristics. The HIUS-B processing was characterized as a thermal processing, since the final processing temperature reached 71 °C, while the HIUS-A processing was a non-thermal process, reaching a final temperature of 34 °C. Moreover, HIUS-B process greatly reduced the droplet size and increased the lightness value in relation to the HIUS-A processing. Both treatments resulted in whey beverages with similar phase separation kinetics and were more stable than the untreated sample. The HIUS processes did not modify the mineral content profile. Overall, the study emphasizes the versatility of the HIUS technology, highlighting that the processing must not be based only on the applied energy density, since different powers and processing times produce dairy beverages with distinct characteristics.
Collapse
Affiliation(s)
- Sara H M C Monteiro
- Food Department (School of Veterinary Medicine)/UFF (University Federal Fluminense), 64, Vital Brazil Street, Niterói, Rio de Janeiro CEP: 24230 340, Brazil
| | - Eric Keven Silva
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Campinas, SP CEP: 13083-862, Brazil.
| | - Jonas T Guimarães
- Food Department (School of Veterinary Medicine)/UFF (University Federal Fluminense), 64, Vital Brazil Street, Niterói, Rio de Janeiro CEP: 24230 340, Brazil.
| | - Monica Q Freitas
- Food Department (School of Veterinary Medicine)/UFF (University Federal Fluminense), 64, Vital Brazil Street, Niterói, Rio de Janeiro CEP: 24230 340, Brazil
| | - M Angela A Meireles
- LASEFI/DEA/FEA (School of Food Engineering)/UNICAMP (University of Campinas), Campinas, SP CEP: 13083-862, Brazil
| | - Adriano G Cruz
- Food Department, IFRJ (Federal Institute of Science and Technology of Rio de Janeiro), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Jiang Y, Li N, Wang Q, Liu Z, Lee YK, Liu X, Zhao J, Zhang H, Chen W. Microbial diversity and volatile profile of traditional fermented yak milk. J Dairy Sci 2020; 103:87-97. [DOI: 10.3168/jds.2019-16753] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/10/2019] [Indexed: 01/03/2023]
|
13
|
Li XY, Cheng M, Li J, Zhao X, Qin YS, Chen D, Wang JM, Wang CF. Change in the structural and functional properties of goat milk protein due to pH and heat. J Dairy Sci 2019; 103:1337-1351. [PMID: 31785880 DOI: 10.3168/jds.2019-16862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/02/2019] [Indexed: 01/11/2023]
Abstract
This study was carried out to investigate the effects of pH and heat on the structure and function of milk proteins by comparing goat milk treated under different pH and temperature conditions. The results showed that pH had a significant effect on the thermal stability of goat milk proteins, and the proteins were least thermally stable at pH 7.7. Except for the pH 6.9 goat milk, the surface hydrophobicities of the milk proteins at various pH values reached their maxima at 85°C. The particle size, zeta potential, and content of regular secondary structure also decreased significantly at 85°C, and the turbidity of milk proteins under alkaline pH conditions was lower than that under acidic conditions. It was concluded that alkaline conditions resulted in better emulsion stability and oil-holding capacity, and acidic conditions offered better foaming ability, foam stability, and water-holding capacity for goat milk protein during heat processing. It can also be seen that 85°C was the key temperature for milk proteins after changing the pH of the milk. This paper provides a theoretical basis for optimizing the processing conditions for goat milk and the applications of goat milk proteins.
Collapse
Affiliation(s)
- X Y Li
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China, 250353
| | - M Cheng
- Qingdao Research Institute of Husbandry and Veterinary, Qingdao, China, 266100
| | - J Li
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China, 250353
| | - X Zhao
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China, 250353
| | - Y S Qin
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China, 250353
| | - D Chen
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China, 250353
| | - J M Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China, 271018
| | - C F Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China, 250353.
| |
Collapse
|