1
|
Karam EA, Hassan ME, Elattal NA, Kansoh AL, Esawy MA. Cell immobilization for enhanced milk clotting enzyme production from Bacillus amyloliquefacien and cheese quality. Microb Cell Fact 2024; 23:283. [PMID: 39420351 PMCID: PMC11488252 DOI: 10.1186/s12934-024-02521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Milk clotting enzymes, essential for milk coagulation in cheese production, are obtained from the stomach of young ruminants, an expensive and limited source. This study was accomplished by finding a suitable alternative. Bacterial isolates recovered from honey were screened for milk clotting enzyme activity. and further, by immobilization of the microorganisms to enhance stability and facilitate their repeated use. RESULT The most effective enzyme was produced by a microbe identified as Bacillus amyloliquefaciens based on 16 S rRNA sequencing. The cells were encapsulated in Ca2+ alginate beads. These beads retained complete enzyme production after being used five times. Glucose and Soybean were selected as the most favorable carbon and nitrogen sources, respectively. The optimum temperature for activity was 35 ℃ for both free and immobilized cells but as the temperature was increased to 55 °C and above, the encapsulated form retained more activity than the free cells. The pH optimum shifted from 6.5 to 7 for the free cells to 7-7.5 for the immobilized cells. The immobilization process decreased the activation energy for enzyme production and activity, prolonged the enzyme half-life, and increased the deactivation energy. Enzyme produced by immobilized cells generated a more compact cheese. CONCLUSIONS The finding of this study was to identify a less expensive source of milk-clotting enzymes and confirm the success of cell immobilization in improving cell rigidity and stability. Also, immobilization of this B. amyloliquefaciens strain offers an enzyme source of value for industrial production of cheese.
Collapse
Affiliation(s)
- Eman A Karam
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Nouran A Elattal
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Amany L Kansoh
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
2
|
Xuan Z, Wang K, Duan F, Lu L. Non-carrier immobilization of yeast cells by genipin crosslinking for the synthesis of prebiotic galactooligosaccharides from plant-derived galactose. Int J Biol Macromol 2024; 277:133991. [PMID: 39089904 DOI: 10.1016/j.ijbiomac.2024.133991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Galactooligosaccharides (GOS), as mimics of human milk oligosaccharides, are important prebiotics for modulating the ecological balance of intestinal microbiota. A novel carrier-free cell immobilization method was established using genipin to cross-link Kluyveromyces lactis CGMCC 2.1494, which produced β-galactosidase, an enzyme essential for GOS synthesis. The resulting immobilized cells were characterized as stable by thermogravimetric analysis and confirmed to be crosslinked through scanning electron microscopy analysis (SEM) and Fourier transform infrared spectroscopy (FTIR). The Km and Vmax values of β-galactosidase in immobilized cells towards o-nitrophenyl β-D-galactoside were determined to be 3.446 mM and 2210 μmol min-1 g-1, respectively. The enzyme in the immobilized showed higher thermal and organic solvent tolerance compared to that in free cells. The immobilized cells were subsequently employed for GOS synthesis using plant-derived galactose as the substrate. The synthetic reaction conditions were optimized through both single-factor experiments and response surface methodology, resulting in a high yield of 49.1 %. Moreover, the immobilized cells showed good reusability and could be reused for at least 20 batches of GOS synthesis, with the enzyme activity remaining above 70 % at 35 °C.
Collapse
Affiliation(s)
- Zehui Xuan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feiyu Duan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lili Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Kurchenko V, Halavach T, Yantsevich A, Shramko M, Alieva L, Evdokimov I, Lodygin A, Tikhonov V, Nagdalian A, Ali Zainy FM, AL-Farga A, ALFaris NA, Shariati MA. Chitosan and its derivatives regulate lactic acid synthesis during milk fermentation. Front Nutr 2024; 11:1441355. [PMID: 39351492 PMCID: PMC11439701 DOI: 10.3389/fnut.2024.1441355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction The influence of chitosan's physicochemical characteristics on the functionality of lactic acid bacteria and the production of lactic acid remains very obscure and contradictory to date. While some studies have shown a stimulatory effect of oligochitosans on the growth of Lactobacillus spp, other studies declare a bactericidal effect of chitosan. The lack and contradiction of knowledge prompted us to study the effect of chitosan on the growth and productivity of L. bulgaricus in the presence of chitosan and its derivatives. Methods We used high molecular weight chitosan (350 kDa) and oligochitosans (25.4 and 45.3 kDa). The experiment was carried out with commercial strain of L. bulgaricus and the low fat skim cow milk powder reconstituted with sterile distilled water. After fermentation, dynamic viscosity, titratable acidity, pH, content of lactic acid, colony forming units, chitosan and oligochitosans radii were measured in the samples. Fermented dairy products were also examined using sodium dodecyl sulfate electrophoretic analysis, gas chromatography-mass spectrometry and light microscopy. Results and discussion The results of the study showed that when L. bulgaricus was cultured in the presence of 25.4 kDa oligochitosans at concentrations of 0.0025%, 0.005%, 0.0075% and 0.01%, the average rate of LA synthesis over 24 hours was 11.0 × 10-3 mol/L/h, 8.7 × 10-3 mol/L/h, 6.8 × 10-3 mol/L/h, 5.8 × 10-3 mol/L/h, respectively. The 45.3 kDa oligochitosans had a similar effect, while the average rate of lactic acid synthesis in the control sample was only 3.5 × 10-3 mol/L/h. Notably, 350 kDa chitosan did not affect the rate of lactic acid synthesis compared with the control sample. Interestingly, interaction of chitosan with L. bulgaricus led to a slowdown in the synthesis of propanol, an increase in the content of unsaturated and saturated fatty acids, and a change in the composition and content of other secondary metabolites. The quantity of L. bulgaricus in a sample with 0.01% chitosan exceeded their content in the control sample by more than 1,700 times. At the same chitosan concentration, the fermentation process was slowed down, increasing the shelf life of the fermented milk product from 5 to 17 days while maintaining a high content of L. bulgaricus (6.34 × 106 CFU/g).
Collapse
Affiliation(s)
- Vladimir Kurchenko
- Department of Biology, Belarusian State University, Minsk, Belarus
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | | | - Alexey Yantsevich
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Mariya Shramko
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Lyudmila Alieva
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Ivan Evdokimov
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Alexey Lodygin
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Vladimir Tikhonov
- Laboratory of Heterochain Polymers, A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| | - Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University, Stavropol, Russia
| | - Faten M. Ali Zainy
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Ammar AL-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Nora Abdullah ALFaris
- Department of Physical Sports Sciences, College of Sports Sciences and Physical Activity, Education, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohammad Ali Shariati
- Scientific Department, Semey Branch of the Kazakh Research Institute of Processing and Food Industry, Almaty, Kazakhstan
| |
Collapse
|
4
|
Mirsalami SM, Mirsalami M, Ghodousian A. Techniques for immobilizing enzymes to create durable and effective biocatalysts. RESULTS IN CHEMISTRY 2024; 7:101486. [DOI: 10.1016/j.rechem.2024.101486] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
|
5
|
Liu P, Chen Y, Ma C, Ouyang J, Zheng Z. β-Galactosidase: a traditional enzyme given multiple roles through protein engineering. Crit Rev Food Sci Nutr 2023:1-20. [PMID: 38108277 DOI: 10.1080/10408398.2023.2292282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
β-Galactosidases are crucial carbohydrate-active enzymes that naturally catalyze the hydrolysis of galactoside bonds in oligo- and disaccharides. These enzymes are commonly used to degrade lactose and produce low-lactose and lactose-free dairy products that are beneficial for lactose-intolerant people. β-galactosidases exhibit transgalactosylation activity, and they have been employed in the synthesis of galactose-containing compounds such as galactooligosaccharides. However, most β-galactosidases have intrinsic limitations, such as low transglycosylation efficiency, significant product inhibition effects, weak thermal stability, and a narrow substrate spectrum, which greatly hinder their applications. Enzyme engineering offers a solution for optimizing their catalytic performance. The study of the enzyme's structure paves the way toward explaining catalytic mechanisms and increasing the efficiency of enzyme engineering. In this review, the structure features of β-galactosidases from different glycosyl hydrolase families and the catalytic mechanisms are summarized in detail to offer guidance for protein engineering. The properties and applications of β-galactosidases are discussed. Additionally, the latest progress in β-galactosidase engineering and the strategies employed are highlighted. Based on the combined analysis of structure information and catalytic mechanisms, the ultimate goal of this review is to furnish a thorough direction for β-galactosidases engineering and promote their application in the food and dairy industries.
Collapse
Affiliation(s)
- Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Yuehua Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
Najim AA, Ismail ZZ, Hummadi KK. Immobilization of mixed bacteria by novel biocarriers extracted from Cress and Chia seeds for biotreatment of anionic surfactant (SDS)-bearing real wastewaters. Prep Biochem Biotechnol 2022:1-10. [PMID: 36332156 DOI: 10.1080/10826068.2022.2140354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Selection of biocarrier type is an essential element for successful bacterial cells immobilization. The present investigation aimed to evaluate a novel application of Cress and Chia seeds as biocarriers for immobilization of mixed bacterial cells. Being an environmentally friendly, non-polluting, inexpensive, and non-toxic substances makes them promising biocarriers. On the other hand, there is an increasing concern about contamination by surfactants, sodium dodecyl sulfate (SDS) is among the most commonly used surfactant. The Cress and Chia seeds were cross-linked with PVA to prepare two types of beads; CrE-PVA and ChE-PVA, respectively. The beads were utilized for the SDS biodegradation in four kinds of actual SDS-bearing wastewaters originated from; carwash garage (CWW), laundry facility (LWW), and household detergent industry (HWW), in addition to domestic wastewater (DWW). The results revealed that maximum efficiencies of SDS elimination in DWW, LWW, HWW, and CWW were 98.12, 94.32, 93.04, and 99.08%, respectively, using CrE-PVA and 99.04, 94.96, 94.71, and 99.27%, respectively using ChE-PVA. Finally, both types of beads were recycled for five times without losing their stability and efficiency for SDS biodegradation. Four kinetic models were adopted which were Blackman, Monod, Haldane, and Teissier. Results revealed that Teissier model well fitted the experimental data.
Collapse
Affiliation(s)
- Aya A. Najim
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| | - Zainab Z. Ismail
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| | - Khalid K. Hummadi
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
7
|
Souza AFCE, Gabardo S, Coelho RDJS. Galactooligosaccharides: Physiological benefits, production strategies, and industrial application. J Biotechnol 2022; 359:116-129. [DOI: 10.1016/j.jbiotec.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
|
8
|
Singh RV, Sambyal K. β-galactosidase as an industrial enzyme: production and potential. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Using nanomaterials to increase the efficiency of chemical production in microbial cell factories: A comprehensive review. Biotechnol Adv 2022; 59:107982. [DOI: 10.1016/j.biotechadv.2022.107982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 12/24/2022]
|
10
|
Immobilization Techniques on Bioprocesses: Current Applications Regarding Enzymes, Microorganisms, and Essential Oils. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Purified lactases versus whole-cell lactases-the winner takes it all. Appl Microbiol Biotechnol 2021; 105:4943-4955. [PMID: 34115184 DOI: 10.1007/s00253-021-11388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Lactose-free dairy products are in great demand worldwide due to the high prevalence of lactose intolerance. To make lactose-free dairy products, commercially available β-galactosidase enzymes, also termed lactases, are used to break down lactose to its constituent monosaccharides, glucose and galactose. In this mini-review, the characteristics of lactase enzymes, their origin, and ways of use are discussed in light of their potential for hydrolyzing lactose. We also discuss whole-cell lactase catalysts, which appear to have great potential in terms of cost reduction and convenience, and which are more natural alternatives to purified enzymes. Lactic acid bacteria (LAB) already used in food fermentations seem to be optimal candidates for whole-cell lactases. However, they have not been industrially exploited yet due to technical hurdles. For whole-cell lactases to be efficient, the lactase enzymes inside the cells must be made available for lactose hydrolysis, and thus, cells need to be permeabilized or disrupted prior to use. Here we review state-of-the-art approaches for disrupting or permeabilizing microorganisms. Lastly, based on recent scientific achievements, we propose a novel, resource-efficient, and low-cost scenario for achieving lactose hydrolysis at a dairy plant using a LAB whole-cell lactase.Key points• Lactases (β-galactosidase) are essential for producing lactose-free dairy products• Novel permeabilization techniques facilitate the use of LAB lactases• Whole-cell lactase catalysts have great potential for reducing costs and resources Graphical abstract.
Collapse
|
12
|
Febbraio F, Ionata E, Marcolongo L. Forty years of study on the thermostable β-glycosidase from S. solfataricus: Production, biochemical characterization and biotechnological applications. Biotechnol Appl Biochem 2020; 67:602-618. [PMID: 32621790 DOI: 10.1002/bab.1982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this paper is to make the point on the fortieth years study on the β-glycosidase from Sulfolobus solfataricus. This enzyme represents one of the thermophilic biocatalysts, which is more extensively studied as witnessed by the numerous literature reports available since 1980. Comprehensive biochemical studies highlighted its broad substrate specificity for β-d-galacto-, gluco-, and fuco-sides and also showed its remarkable exo-glucosidase and transglycosidase activities. The enzyme demonstrated to be active and stable over a wide range of temperature and pHs, withstanding to several drastic conditions comprising solvents and detergents. Over the years, a great deal of studies were focused on its homotetrameric tridimensional structure, elucidating several structural features involved in the enzyme stability, such as ion pairs and post-translational modifications. Several β-glycosidase mutants were produced in the years in order to understand its peculiar behavior in extreme conditions and/or to improve its functional properties. The β-glycosidase overproduction was also afforded reporting numerous studies dealing with its production in the mesophilic host Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, and Lactococcus lactis. Relevant applications in food, beverages, bioenergy, pharmaceuticals, and nutraceutical fields of this enzyme, both in free and immobilized forms, highlighted its biotechnological relevance.
Collapse
Affiliation(s)
- Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, Italy
| | - Elena Ionata
- Research Institute on Terrestrial Ecosystems, National Research Council (CNR), Naples, 80131, Italy
| | - Loredana Marcolongo
- Research Institute on Terrestrial Ecosystems, National Research Council (CNR), Naples, 80131, Italy
| |
Collapse
|
13
|
Ureta MM, Martins GN, Figueira O, Pires PF, Castilho PC, Gomez-Zavaglia A. Recent advances in β-galactosidase and fructosyltransferase immobilization technology. Crit Rev Food Sci Nutr 2020; 61:2659-2690. [PMID: 32590905 DOI: 10.1080/10408398.2020.1783639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly demanding conditions of industrial processes may lower the stability and affect the activity of enzymes used as biocatalysts. Enzyme immobilization emerged as an approach to promote stabilization and easy removal of enzymes for their reusability. The aim of this review is to go through the principal immobilization strategies addressed to achieve optimal industrial processes with special care on those reported for two types of enzymes: β-galactosidases and fructosyltransferases. The main methods used to immobilize these two enzymes are adsorption, entrapment, covalent coupling and cross-linking or aggregation (no support is used), all of them having pros and cons. Regarding the support, it should be cost-effective, assure the reusability and an easy recovery of the enzyme, increasing its stability and durability. The discussion provided showed that the type of enzyme, its origin, its purity, together with the type of immobilization method and the support will affect the performance during the enzymatic synthesis. Enzymes' immobilization involves interdisciplinary knowledge including enzymology, nanotechnology, molecular dynamics, cellular physiology and process design. The increasing availability of facilities has opened a variety of possibilities to define strategies to optimize the activity and re-usability of β-galactosidases and fructosyltransferases, but there is still great place for innovative developments.
Collapse
Affiliation(s)
- Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | | | - Onofre Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Filipe Pires
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | | | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
14
|
Thøgersen MS, Christensen SJ, Jepsen M, Pedersen LH, Stougaard P. Transglycosylating β-d-galactosidase and α-l-fucosidase from Paenibacillus sp. 3179 from a hot spring in East Greenland. Microbiologyopen 2020; 9:e980. [PMID: 31868312 PMCID: PMC7066462 DOI: 10.1002/mbo3.980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/02/2023] Open
Abstract
Thermal springs are excellent locations for discovery of thermostable microorganisms and enzymes. In this study, we identify a novel thermotolerant bacterial strain related to Paenibacillus dendritiformis, denoted Paenibacillus sp. 3179, which was isolated from a thermal spring in East Greenland. A functional expression library of the strain was constructed, and the library screened for β-d-galactosidase and α-l-fucosidase activities on chromogenic substrates. This identified two genes encoding a β-d-galactosidase and an α-l-fucosidase, respectively. The enzymes were recombinantly expressed, purified, and characterized using oNPG (2-nitrophenyl-β-d-galactopyranoside) and pNP-fucose (4-nitrophenyl-α-l-fucopyranoside), respectively. The enzymes were shown to have optimal activity at 50°C and pH 7-8, and they were able to hydrolyze as well as transglycosylate natural carbohydrates. The transglycosylation activities were investigated using TLC and HPLC, and the β-d-galactosidase was shown to produce the galactooligosaccharides (GOS) 6'-O-galactosyllactose and 3'-O-galactosyllactose using lactose as substrate, whereas the α-l-fucosidase was able to transfer the fucose moiety from pNP-fuc to lactose, thereby forming 2'-O-fucosyllactose. Since enzymes that are able to transglycosylate carbohydrates at elevated temperature are desirable in many industrial processes, including food and dairy production, we foresee the potential use of enzymes from Paenibacillus sp. 3179 in the production of, for example, instant formula.
Collapse
Affiliation(s)
- Mariane S. Thøgersen
- University of CopenhagenFrederiksberg CDenmark
- Present address:
Aarhus UniversityRoskildeDenmark
| | - Stefan J. Christensen
- University of CopenhagenFrederiksberg CDenmark
- Present address:
Roskilde UniversityRoskildeDenmark
| | - Morten Jepsen
- University of CopenhagenFrederiksberg CDenmark
- Present address:
Novo Nordisk A/SBagsværdDenmark
| | | | - Peter Stougaard
- University of CopenhagenFrederiksberg CDenmark
- Present address:
Aarhus UniversityRoskildeDenmark
| |
Collapse
|
15
|
|
16
|
Yang SY, Choi TR, Jung HR, Park YL, Han YH, Song HS, Bhatia SK, Park K, Ahn JO, Jeon WY, Kim JS, Yang YH. Production of glutaric acid from 5-aminovaleric acid by robust whole-cell immobilized with polyvinyl alcohol and polyethylene glycol. Enzyme Microb Technol 2019; 128:72-78. [PMID: 31186113 DOI: 10.1016/j.enzmictec.2019.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/15/2019] [Accepted: 05/09/2019] [Indexed: 12/28/2022]
Abstract
Glutaric acid is an attractive C5 dicarboxylic acid with wide applications in the biochemical industry. Glutaric acid can be produced by fermentation and bioconversion, and several of its biosynthesis pathways have been well characterized, especially the simple pathway involving glutaric acid from l-lysine using 5-aminovaleric acid. We previously reported the production of glutaric acid using 5-aminovaleric acid and α-ketoglutaric acid by a whole-cell reaction, resulting in a high conversion yield. In this study, we sought to enhance the stability and reusability of this whole-cell system for realizing the efficient production of glutaric acid under harsh reaction conditions. To this end, various matrices were screened to immobilize Escherichia coli whole-cell overexpressing 4-aminobutyrate aminotransferase (GabT), succinate semi-aldehyde dehydrogenase (GabD), and NAD(P)H oxidase (NOX). We ultimately selected a PVA-PEG gel (LentiKats®) for cell entrapment, and several factors of the reaction were optimized. The optimal temperature and pH were 35 °C and 8.5, respectively. Treatment with Tween 80 as a surfactant, as well as additional NOX, was found to be effective. Under the optimized conditions, an immobilized cell retained 55% of its initial activity even after the eighth cycle, achieving 995.2 mM accumulated glutaric acid, whereas free cell lost most of their activity after only two cycles. This optimized whole-cell system can be used in the large-scale production of glutaric acid.
Collapse
Affiliation(s)
- Soo-Yeon Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Tae-Rim Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye-Rim Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ye-Lim Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeong-Hoon Han
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Suk Song
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong City, Republic of Korea
| | - Jung-Oh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Gwahangno, Yuseong-Gu, Daejeon 305-806, Republic of Korea
| | - Woo-Young Jeon
- Biotechnology Process Engineering Center, Korea Research Institute Bioscience Biotechnology (KRIBB), Gwahangno, Yuseong-Gu, Daejeon 305-806, Republic of Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|