1
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Gropp J, Anguita M, Galobart J, Pettenati E, Pizzo F, Vettori MV, Tarrés‐Call J. Safety and efficacy of a feed additive consisting of 25-hydroxycholecalciferol monohydrate produced with Saccharomyces cerevisiaeCBS 146008 for all ruminants (DSM Nutritional Products Sp. z.o.o.). EFSA J 2023; 21:e08169. [PMID: 37539081 PMCID: PMC10394675 DOI: 10.2903/j.efsa.2023.8169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of 25-hydroxycholecalciferol monohydrate produced with Saccharomyces cerevisiae CBS 146008 as a nutritional feed additive for all ruminants. The additive is already authorised for use with chickens for fattening, turkeys for fattening, other poultry and pigs. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the additive does not give raise to any safety concern regarding the production strain. The additive is safe for cattle for fattening and dairy cows at the maximum recommended use level of 0.1 mg 25-OH-D3/kg complete feed. This conclusion can be extended to other cattle categories and extrapolated to all ruminant species. The use of 25-OH-D3 in all ruminants under the proposed conditions of use is considered safe for the consumer. The additive is not irritant to the skin or eyes. No conclusion on its potential to be a skin sensitiser or on its effects on the respiratory system can be reached due to absence of data. The use of the additive under assessment at the recommended conditions of use is considered safe for the environment. 25-OH-D3 is an efficient source of vitamin D3 for all ruminants when used according to the proposed conditions of use.
Collapse
|
2
|
Blakely LP, Wells TL, Kweh MF, Buoniconti S, Reese M, Celi P, Cortinhas C, Nelson CD. Effect of vitamin D source and amount on vitamin D status and response to endotoxin challenge. J Dairy Sci 2023; 106:912-926. [PMID: 36543639 DOI: 10.3168/jds.2022-22354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022]
Abstract
The objectives were to test the effects of dietary vitamin D3 [cholecalciferol (CHOL)] compared with 25-hydroxyvitamin D3 [calcidiol (CAL)] on vitamin D status and response to an endotoxin challenge. Forty-five Holstein bull calves (5 ± 2 d of age) were blocked into weekly cohorts, fed a basal diet that provided 0.25 µg/kg body weight (BW) CHOL, and assigned randomly to 1 of 5 treatments: control [(CON) no additional vitamin D], 1.5 µg/kg BW CHOL (CHOL1.5), 3 µg/kg BW CHOL (CHOL3), 1.5 µg/kg BW CAL (CAL1.5), or 3 µg/kg BW CAL (CAL3). Calves were fed milk replacer until weaning at 56 d of age and had ad libitum access to water and starter grain throughout the experiment. Treatments were added daily to the diet of milk replacer until weaning and starter grain after weaning. Measures of growth, dry matter intake, and serum concentrations of vitamin D, Ca, Mg, and P were collected from 0 to 91 d of the experiment. At 91 d of the experiment, calves received an intravenous injection of 0.1 µg/kg BW lipopolysaccharide (LPS). Clinical and physiological responses were measured from 0 to 72 h relative to LPS injection. Data were analyzed with mixed models that included fixed effects of treatment and time, and random effect of block. Orthogonal contrasts evaluated the effects of (1) source (CAL vs. CHOL), (2) dose (1.5 vs. 3.0 µg/kg BW), (3) interaction between source and dose, and (4) supplementation (CON vs. all other treatments) of vitamin D. From 21 to 91 d of the experiment, mean BW of supplemented calves was less compared with CON calves, but the effect was predominantly a result of the CHOL calves, which tended to weigh less than the CAL calves. Supplementing vitamin D increased concentrations of 25-hydroxyvitamin D in serum compared with CON, but the increment from increasing the dose from 1.5 to 3.0 µg/kg BW was greater for CAL compared with CHOL (CON = 18.9, CHOL = 24.7 and 29.6, CAL = 35.6 and 65.7 ± 3.2 ng/mL, respectively). Feeding CAL also increased serum Ca and P compared with CHOL. An interaction between source and dose of treatment was observed for rectal temperature and derivatives of reactive metabolites after LPS challenge because calves receiving CHOL3 and CAL1.5 had lower rectal temperatures and plasma derivatives of reactive metabolites compared with calves receiving CHOL1.5 and CAL3. Supplementing vitamin D increased plasma P concentrations post-LPS challenge compared with CON, but plasma concentrations of Ca, Mg, fatty acids, glucose, β-hydroxybutyrate, haptoglobin, tumor necrosis factor-α, and antioxidant potential did not differ among treatments post-LPS challenge. Last, supplementing vitamin D increased granulocytes as a percentage of blood leukocytes post-LPS challenge compared with CON. Supplementing CAL as a source of vitamin D to dairy calves was more effective at increasing serum 25-hydroxyvitamin D, Ca, and P concentrations compared with feeding CHOL. Supplemental source and dose of vitamin D also influenced responses to the LPS challenge.
Collapse
Affiliation(s)
- L P Blakely
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - T L Wells
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - M F Kweh
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - S Buoniconti
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - M Reese
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - P Celi
- DSM Nutritional Products, Columbia, MD 21045
| | - C Cortinhas
- DSM Nutritional Products, Columbia, MD 21045
| | - C D Nelson
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
3
|
Kessi-Pérez EI, González A, Palacios JL, Martínez C. Yeast as a biological platform for vitamin D production: A promising alternative to help reduce vitamin D deficiency in humans. Yeast 2022; 39:482-492. [PMID: 35581681 DOI: 10.1002/yea.3708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Vitamin D is an important human hormone, known primarily to be involved in the intestinal absorption of calcium and phosphate, but it is also involved in various non-skeletal processes (molecular, cellular, immune, and neuronal). One of the main health problems nowadays is the vitamin D deficiency of the human population due to lack of sun exposure, with estimates of one billion people worldwide with vitamin D deficiency, and the consequent need for clinical intervention (i.e., prescription of pharmacological vitamin D supplements). An alternative to reduce vitamin D deficiency is to produce good dietary sources of it, a scenario in which the yeast Saccharomyces cerevisiae seems to be a promising alternative. This review focuses on the potential use of yeast as a biological platform to produce vitamin D, summarizing both the biology aspects of vitamin D (synthesis, ecology and evolution, metabolism, and bioequivalence) and the work done to produce it in yeast (both for vitamin D2 and for vitamin D3 ), highlighting existing challenges and potential solutions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Adens González
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - José Luis Palacios
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Claudio Martínez
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
4
|
Effects of feeding different doses of 25-hydroxyvitamin D3 on the growth performance, blood minerals, antioxidant status and immunoglobulin of preweaning calves. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Effects of 25-Hydroxyvitamin D 3 and Oral Calcium Bolus on Lactation Performance, Ca Homeostasis, and Health of Multiparous Dairy Cows. Animals (Basel) 2021; 11:ani11061576. [PMID: 34071156 PMCID: PMC8228806 DOI: 10.3390/ani11061576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Subclinical hypocalcemia severely affects the lactation and health of dairy cows. Subclinical hypocalcemia is still a concern with cows after postpartum oral Ca; thus, the single treatment approach gradually has shifted to a multitreatment approach in terms of subclinical hypocalcemia. Supplementing 25-hydroxyvitamin D3 could solve the problem of insufficient vitamin D3 synthesis and blocked conversion in transition cows. The present study showed that feeding 25-hydroxyvitamin D3 combined with oral calcium not only improved serum 25-hydroxyvitamin D3 status and calcium homeostasis, but also had potential benefits on lactation performance and the health status during the transition period. Abstract Little information is available regarding the effect of supplementing 25-hydroxyvitamin D3 during the transition period combined with a postpartum oral calcium bolus on Ca homeostasis. The objectives of the current study were to evaluate the effects of 25-hydroxyvitamin D3 combined with postpartum oral calcium bolus on lactation performance, serum minerals and vitamin D3 metabolites, blood biochemistry, and antioxidant and immune function in multiparous dairy cows. To evaluate the effects of 25-hydroxyvitamin D3 combined with oral calcium, 48 multiparous Holstein cows were randomly assigned to one of four treatments: (1) supplementing 240 mg/day vitamin D3 without a postpartum oral Ca bolus (control), (2) supplementing 240 mg/day vitamin D3 with an oral Ca bolus containing 90 g of Ca immediately post-calving (Ca + VitD), (3) supplementing 6 g/day 25-hydroxyvitamin D3 without an oral Ca bolus (25D), and (4) supplementing 6 g/day 25-hydroxyvitamin D3 with an oral Ca bolus containing 90 g of Ca immediately post-calving (Ca + 25D). Lactation performance during the first 21 days was measured. Blood was collected at the initiation of calving and then 1, 2, 7, 14, and 21 days relative to the calving date. The yield of milk (0.05 < p < 0.10), energy-corrected milk (p < 0.05), 3.5% fat-corrected milk (p < 0.05), and milk protein (p < 0.05) were significantly higher in 25-hydroxyvitamin D3-treated groups within 3 weeks of lactation than in vitamin D3-treated cows. The iCa (p < 0.05) and tCa (p < 0.05) were higher in both Ca and 25D + Ca cows than in the control and 25D groups within 48 h. The concentrations of serum tCa (p < 0.05), tP (p < 0.05), and 25-hydroxyvitamin D3 (p < 0.05) in 25D and 25D + Ca cows were higher than those in control and Ca cows within 21 days postpartum. Feeding 25-hydroxyvitamin D3 also showed a lower concentration of malondialdehyde (p < 0.05), interleukin 6 (p < 0.05), and tumor necrosis factor-alpha (TNF-α) (p < 0.05), as well as a higher concentration of alkaline phosphatase (p < 0.05), total antioxidant capacity (p < 0.05), and immunoglobulin G (p < 0.05) than vitamin D3. Supplementing Ca bolus also showed lower concentrations of alanine transaminase (p < 0.05) and TNF-α (p < 0.05). In conclusion, supplementing 25-hydroxyvitamin D3 during the transition period combined with a postpartum oral calcium bolus improved lactation performance, Ca homeostasis, and antioxidant and immune function of medium-production dairy cows within 21 days postpartum.
Collapse
|
6
|
Wang K, Chen Y, Zhang D, Wang R, Zhao Z, Feng M, Wei H, Li L, Zhang S. Effects of 25-hydroxycholecalciferol supplementation in maternal diets on reproductive performance and the expression of genes that regulate lactation in sows. Anim Sci J 2020; 91:e13391. [PMID: 32558027 DOI: 10.1111/asj.13391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 01/28/2023]
Abstract
One hundred Yorkshire × Landrace sows were randomly assigned to one of two dietary treatments (diet ND: 6,000 IU vitamin D3 /d feed; diet 25-D: 200 μg/day 25OHD3 feed). The experiment began on d 90 of gestation and continued until weaning on day 21 of lactation. In sows that received 25OHD3 , the growth rate of the piglets before weaning was significantly accelerated (0.266 kg/day, p < .05). Sow serum was collected after weaning, and those in the 25OHD3 group were found to have significantly higher serum calcium (CA) and phosphorus (PI) levels (p < .05). Interestingly, the oestrus cycle of sows fed 25OHD3 was significantly shortened (p < .05), the oestrus time was concentrated on the fifth day after weaning, and the piglets were born with a higher degree of uniformity (p < .05). Colostrum was collected on the day of delivery, and the colostrum of sows fed 25OHD3 contained higher milk fat content than the control group (p < .05). 25OHD3 supplementation increased the mRNA and protein expression of INSIG1 and SREBP1, which regulate milk fat synthesis, in the mammary gland of lactating sows (p < .05). In conclusion, 25OHD3 supplementation in maternal diets improved reproductive performance, milk fat content and the mRNA and protein levels of genes regulating milk fat synthesis in lactating sows.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, P.R. China
| | - Yun Chen
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, P.R. China
| | - DeLong Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, P.R. China
| | - RongGen Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, P.R. China
| | - ZhiHong Zhao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, P.R. China
| | - MeiYing Feng
- College of Life Sciences, Zhaoqing University, Zhaoqing, P.R. China
| | - HengXi Wei
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, P.R. China
| | - Li Li
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, P.R. China
| | - Shouquan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
7
|
Hurst EA, Homer NZ, Mellanby RJ. Vitamin D Metabolism and Profiling in Veterinary Species. Metabolites 2020; 10:E371. [PMID: 32942601 PMCID: PMC7569877 DOI: 10.3390/metabo10090371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022] Open
Abstract
The demand for vitamin D analysis in veterinary species is increasing with the growing knowledge of the extra-skeletal role vitamin D plays in health and disease. The circulating 25-hydroxyvitamin-D (25(OH)D) metabolite is used to assess vitamin D status, and the benefits of analysing other metabolites in the complex vitamin D pathway are being discovered in humans. Profiling of the vitamin D pathway by liquid chromatography tandem mass spectrometry (LC-MS/MS) facilitates simultaneous analysis of multiple metabolites in a single sample and over wide dynamic ranges, and this method is now considered the gold-standard for quantifying vitamin D metabolites. However, very few studies report using LC-MS/MS for the analysis of vitamin D metabolites in veterinary species. Given the complexity of the vitamin D pathway and the similarities in the roles of vitamin D in health and disease between humans and companion animals, there is a clear need to establish a comprehensive, reliable method for veterinary analysis that is comparable to that used in human clinical practice. In this review, we highlight the differences in vitamin D metabolism between veterinary species and the benefits of measuring vitamin D metabolites beyond 25(OH)D. Finally, we discuss the analytical challenges in profiling vitamin D in veterinary species with a focus on LC-MS/MS methods.
Collapse
Affiliation(s)
- Emma A. Hurst
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG, UK;
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, The University of Edinburgh, Little France Crescent, Edinburgh, Scotland EH16 4TJ, UK;
| | - Natalie Z. Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, The University of Edinburgh, Little France Crescent, Edinburgh, Scotland EH16 4TJ, UK;
| | - Richard J. Mellanby
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG, UK;
| |
Collapse
|
8
|
Guo J, Lovegrove JA, Givens DI. Food fortification and biofortification as potential strategies for prevention of vitamin D deficiency. NUTR BULL 2019. [DOI: 10.1111/nbu.12363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Guo
- Institute for Food, Nutrition and Health University of Reading Reading UK
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research University of Reading Reading UK
| | - J. A. Lovegrove
- Institute for Food, Nutrition and Health University of Reading Reading UK
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research University of Reading Reading UK
| | - D. I. Givens
- Institute for Food, Nutrition and Health University of Reading Reading UK
| |
Collapse
|