1
|
Franzoi M, Niero G, Meoni G, Tenori L, Luchinat C, Penasa M, Cassandro M, De Marchi M. Effectiveness of mid-infrared spectroscopy for the prediction of cow milk metabolites. J Dairy Sci 2023:S0022-0302(23)00332-6. [PMID: 37296050 DOI: 10.3168/jds.2023-23226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
Proton nuclear magnetic resonance (1H NMR) spectroscopy is acknowledged as one of the most powerful analytical methods with cross-cutting applications in dairy foods. To date, the use of 1H NMR spectroscopy for the collection of milk metabolic profile is hindered by costly and time-consuming sample preparation and analysis. The present study aimed at evaluating the accuracy of mid-infrared spectroscopy (MIRS) as a rapid method for the prediction of cow milk metabolites determined through 1H NMR spectroscopy. Bulk milk (n = 72) and individual milk samples (n = 482) were analyzed through one-dimensional 1H NMR spectroscopy and MIRS. Nuclear magnetic resonance spectroscopy identified 35 milk metabolites, which were quantified in terms of relative abundance, and MIRS prediction models were developed on the same 35 milk metabolites, using partial least squares regression analysis. The best MIRS prediction models were developed for galactose-1-phosphate, glycerophosphocholine, orotate, choline, galactose, lecithin, glutamate, and lactose, with coefficient of determination in external validation from 0.58 to 0.85, and ratio of performance to deviation in external validation from 1.50 to 2.64. The remaining 27 metabolites were poorly predicted. This study represents a first attempt to predict milk metabolome. Further research is needed to specifically address whether developed prediction models may find practical application in the dairy sector, with particular regard to the screening of dairy cows' metabolic status, the quality control of dairy foods, and the identification of processed milk or incorrectly stored milk.
Collapse
Affiliation(s)
- M Franzoi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - G Niero
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - G Meoni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - L Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - C Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - M Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M Cassandro
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy; Italian Holstein, Brown Swiss and Jersey Association (ANAFIBJ), Via Bergamo 292, 26100 Cremona, Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
2
|
Application of UV-VIS-NIR spectroscopy in membrane separation processes for fast quantitative compositional analysis: A case study of egg products. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Selecting Milk Spectra to Develop Equations to Predict Milk Technological Traits. Foods 2021; 10:foods10123084. [PMID: 34945635 PMCID: PMC8700986 DOI: 10.3390/foods10123084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Including all available data when developing equations to relate midinfrared spectra to a phenotype may be suboptimal for poorly represented spectra. Here, an alternative local changepoint approach was developed to predict six milk technological traits from midinfrared spectra. Neighbours were objectively identified for each predictand as those most similar to the predictand using the Mahalanobis distances between the spectral principal components, and subsequently used in partial least square regression (PLSR) analyses. The performance of the local changepoint approach was compared to that of PLSR using all spectra (global PLSR) and another LOCAL approach, whereby a fixed number of neighbours was used in the prediction according to the correlation between the predictand and the available spectra. Global PLSR had the lowest RMSEV for five traits. The local changepoint approach had the lowest RMSEV for one trait; however, it outperformed the LOCAL approach for four traits. When the 5% of the spectra with the greatest Mahalanobis distance from the centre of the global principal component space were analysed, the local changepoint approach outperformed the global PLSR and the LOCAL approach in two and five traits, respectively. The objective selection of neighbours improved the prediction performance compared to utilising a fixed number of neighbours; however, it generally did not outperform the global PLSR.
Collapse
|