1
|
Feng S, Li T, Wei X, Zheng Y, Zhang Y, Li G, Zhao Y. The Antioxidant and Anti-Fatigue Effects of Rare Ginsenosides and γ-Aminobutyric Acid in Fermented Ginseng and Germinated Brown Rice Puree. Int J Mol Sci 2024; 25:10359. [PMID: 39408689 PMCID: PMC11476846 DOI: 10.3390/ijms251910359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
γ-aminobutyric acid (GABA) and rare ginsenosides are good antioxidant and anti-fatigue active components that can be enriched via probiotic fermentation. In this study, ginseng and germinated brown rice were used as raw materials to produce six fermented purees using fermentation and non-fermentation technology. We tested the chemical composition of the purees and found that the content of GABA and rare ginsenoside (Rh4, Rg3, and CK) in the puree made of ginseng and germinated brown rice (FGB) increased significantly after fermentation. The antioxidant activity of the six purees was determined using cell-free experiments, and it was found that FGB had better ferric-ion-reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging rates, exhibiting better antioxidant effects. We then evaluated the antioxidant effect of FGB in HepG2 cells induced by H2O2 and found that FGB can reduce the generation of reactive oxygen species (ROS) in HepG2 cells and increase the membrane potential level, thereby improving oxidative damage in these cells. In vivo experiments also showed that FGB has good antioxidant and anti-fatigue activities, which can prolong the exhaustive swimming time of mice and reduce the accumulation of metabolites, and is accompanied by a corresponding increase in liver glycogen and muscle glycogen levels as well as superoxide dismutase and lactate dehydrogenase activities. Finally, we believe that the substances with good antioxidant and anti-fatigue activity found in FGB are derived from co-fermented enriched GABA and rare ginsenosides.
Collapse
Affiliation(s)
- Shiwen Feng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Xinrui Wei
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.W.); (Y.Z.)
| | - Yifei Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Yumeng Zhang
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.W.); (Y.Z.)
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China; (S.F.); (T.L.); (Y.Z.)
- College of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.W.); (Y.Z.)
| |
Collapse
|
2
|
Skaperda Z, Tekos F, Vardakas P, Nechalioti PM, Kourti M, Patouna A, Makri S, Gkasdrogka M, Kouretas D. Development of a Holistic In Vitro Cell-Free Approach to Determine the Redox Bioactivity of Agricultural Products. Int J Mol Sci 2023; 24:16447. [PMID: 38003634 PMCID: PMC10671064 DOI: 10.3390/ijms242216447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, there has been a strong consumer demand for food products that provide nutritional benefits to human health. Therefore, the assessment of the biological activity is considered as an important parameter for the promotion of high-quality food products. Herein, we introduce a novel methodology comprising a complete set of in vitro cell-free screening techniques for the evaluation of the bioactivity of various food products on the basis of their antioxidant capacity. These assays examine the free radical scavenging activities, the reducing properties, and the protective ability against oxidative damage to biomolecules. The adoption of the proposed battery of antioxidant assays is anticipated to contribute to the holistic characterization of the bioactivity of the food product under examination. Consumer motivations and expectations with respect to nutritious food products with bio-functional properties drive the global food market toward food certification. Therefore, the development and application of scientific methodologies that examine the quality characteristics of food products could increase consumers' trust and promote their beneficial properties for human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (Z.S.); (F.T.); (P.V.); (M.K.); (A.P.); (S.M.); (M.G.)
| |
Collapse
|
3
|
Petcu CD, Tăpăloagă D, Mihai OD, Gheorghe-Irimia RA, Negoiță C, Georgescu IM, Tăpăloagă PR, Borda C, Ghimpețeanu OM. Harnessing Natural Antioxidants for Enhancing Food Shelf Life: Exploring Sources and Applications in the Food Industry. Foods 2023; 12:3176. [PMID: 37685108 PMCID: PMC10486681 DOI: 10.3390/foods12173176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Consumers are increasingly showing in maintaining a healthy dietary regimen, while food manufacturers are striving to develop products that possess an extended shelf-life to meet the demands of the market. Numerous studies have been conducted to identify natural sources that contribute to the preservation of perishable food derived from animals and plants, thereby prolonging its shelf life. Hence, the present study focuses on the identification of both natural sources of antioxidants and their applications in the development of novel food products, as well as their potential for enhancing product shelf-life. The origins of antioxidants in nature encompass a diverse range of products, including propolis, beebread, and extracts derived through various physical-chemical processes. Currently, there is a growing body of research being conducted to evaluate the effectiveness of natural antioxidants in the processing and preservation of various food products, including meat and meat products, milk and dairy products, bakery products, and bee products. The prioritization of discovering novel sources of natural antioxidants is a crucial concern for the meat, milk, and other food industries. Additionally, the development of effective methods for applying these natural antioxidants is a significant objective in the food industry.
Collapse
Affiliation(s)
- Carmen Daniela Petcu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Dana Tăpăloagă
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Oana Diana Mihai
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Raluca-Aniela Gheorghe-Irimia
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Carmen Negoiță
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| | - Ioana Mădălina Georgescu
- Sanitary Veterinary and Food Safety Directorate Bucharest, Ilioara Street No. 16Y, District 3, 032125 Bucharest, Romania;
| | - Paul Rodian Tăpăloagă
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
| | - Cristin Borda
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3-5 Mânăștur St., 400372 Cluj-Napoca, Romania
| | - Oana Mărgărita Ghimpețeanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd, Splaiul Independentei, 050097 Bucharest, Romania; (C.D.P.); (O.D.M.); (R.-A.G.-I.); (C.N.); (O.M.G.)
| |
Collapse
|
4
|
Abd El-Aziz M, Salama HH, Sayed RS. Plant extracts and essential oils in the dairy industry: A review. FOODS AND RAW MATERIALS 2023:321-337. [DOI: 10.21603/2308-4057-2023-2-579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Plants have been used as food additives worldwide to enhance the sensory qualities of foods and extend their shelf life by reducing or eliminating foodborne pathogens. They also serve as therapeutic agents due to their beneficial effects on human health through their anti-cancerous, anti-inflammatory, antioxidant, and immune-modulatory properties.
Plants can be added to food as a dry powder, grated material, paste, juice, or as an extract that can be produced by a variety of methods. Plant extracts and essential oils are concentrated sources of bioactive phytochemicals that can be added to food in small amounts in a variety of forms. These forms include liquid, semi-solid, or dry powder for easy and uniform diffusion. Encapsulation can protect bioactive compounds from temperature, moisture, oxidation, and light, as well as allow for controlling the release of the encapsulated ingredients. Nanoemulsions can enhance the bioactivity of active components.
This review explains how plant extracts and essential oils are used in the dairy industry as antimicrobial materials, analyzing their impact on starter bacteria; as natural antioxidants to prevent the development of off-flavors and increase shelf life; and as technological auxiliaries, like milk-clotting enzymes, stabilizers, and flavoring agents. Therefore, plant extracts and essential oils are a better choice for the dairy industry than plants or their parts due to a wide range of applications, homogeneous dispersion, and ability to control the concentration of the bioactive ingredients and enhance their efficiency.
Collapse
|
5
|
Microbiome-Metabolomics Insights into the Milk of Lactating Dairy Cows to Reveal the Health-Promoting Effects of Dietary Citrus Peel Extracts on the Mammary Metabolism. Foods 2022; 11:foods11244119. [PMID: 36553861 PMCID: PMC9778193 DOI: 10.3390/foods11244119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The effects of dietary supplementation with citrus peel extract (CPE) on milk biochemical parameters, milk bacterial community, and milk metabolites were evaluated. Eight lactating cows were allocated to a replicated 4 × 4 Latin square. Experimental treatments included the control diet (CON), and CON supplemented with CPE at 50 g/d (CPE50), 100 g/d (CPE100), and 150 g/d (CPE150). Supplementing with CPE linearly decreased milk interleukin-6 and malondialdehyde concentrations and linearly increased lysozyme activity and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Compared with CON, the milk of CPE150 cows had fewer abundances of several opportunistic pathogens and psychrotrophic bacteria, such as Escherichia-Shigella, Sphingobacterium, Alcaligenes, Stenotrophomonas, and Ochrobactrum. Supplementing with CPE significantly altered the metabolic profiling in the milk. The metabolites of flavonoids were enriched in the milk of cows fed CPE150, while some proinflammation compounds were decreased compared with CON. Correlation analysis showed that the change in the bacterial community might partly contribute to the alteration in the expression of milk cytokines. In conclusion, CPE exerts health-promoting effects (e.g., antioxidant, anti-microbial, and anti-inflammatory) in the mammary metabolism of cows due to its flavonoid compounds, which also provide additional value in terms of milk quality improvement.
Collapse
|
6
|
Milinčić DD, Stanisavljević NS, Kostić AŽ, Gašić UM, Stanojević SP, Tešić ŽL, Pešić MB. Bioaccessibility of Phenolic Compounds and Antioxidant Properties of Goat-Milk Powder Fortified with Grape-Pomace-Seed Extract after In Vitro Gastrointestinal Digestion. Antioxidants (Basel) 2022; 11:2164. [PMID: 36358535 PMCID: PMC9686738 DOI: 10.3390/antiox11112164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/27/2023] Open
Abstract
This study deals with the evaluation of the bioaccessibility and antioxidant properties of phenolic compounds from heat-treated skim goat-milk powder fortified with grape-pomace-seed extract, after in vitro gastrointestinal digestion. Ultra-high performance liquid chromatography coupled to diode array detection and mass spectrometry (UHPLC-DAD MS/MS) analysis confirmed the abundant presence of phenolic acids and flavan-3-ols in the grape-pomace-seed extract (SE) and heat-treated skim goat-milk/seed-extract powder (TME). After in vitro digestion of TME powder and recovery of total quantified phenolics, flavan-3-ols and phenolic acids were 18.11%, 24.54%, and 1.17%, respectively. Low recovery of grape-pomace-seed phenolics indicated strong milk protein-phenolic interactions. Electrophoretic analysis of a soluble fraction of digested heat-treated skim goat milk (TM) and TME samples showed the absence of bands originating from milk proteins, indicating their hydrolysis during in vitro gastrointestinal digestion. The digested TME sample had better antioxidant properties in comparison to the digested TM sample (except for the ferrous ion-chelating capacity, FCC), due to the presence of bioaccessible phenolics. Taking into account the contribution of the digestive cocktail, digested TME sample had lower values of total phenolic content (TPC), in vitro phosphomolybdenum reducing capacity (TAC) and ferric reducing power (FRP), compared to the undigested TME sample. These results could be attributed to low recovery of phenolic compounds. TME powder could be a good carrier of phenolics to the colon; thus, TME powder could be a promising ingredient in the formulation of functional food.
Collapse
Affiliation(s)
- Danijel D. Milinčić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Nemanja S. Stanisavljević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, P.O. Box 23, 11010 Belgrade, Serbia
| | - Aleksandar Ž. Kostić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Uroš M. Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Slađana P. Stanojević
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Živoslav Lj. Tešić
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Belgrade, Serbia
| | - Mirjana B. Pešić
- Institute of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
7
|
Hussien M, Yousef MI. Impact of ginseng on neurotoxicity induced by cisplatin in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62042-62054. [PMID: 34591247 DOI: 10.1007/s11356-021-16403-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Over the years, many researches have shown the potential protective effects of ginseng for preventing and treating neurological damage and their related diseases. Neuronal disturbance is one of the most common serious effects of cisplatin chemotherapy that triggers memory impairment and cognitive disability. Based on the hypothesis that mechanistic pathways of ginseng against the neurological and biochemical disturbance remain unclear, therefore, this study was designed to investigate the neuroprotective effect of ginseng extract against neurological and behavior abnormality induced by cisplatin in male rats. Animals were divided into 4 groups. Group 1 served as a control, group 2 was orally administrated with ginseng (100 mg/kg BW) daily for 90 days, group 3 was injected intraperitoneally with cisplatin (4 mg/kg BW) once a week for 90 days, and group 4 received ginseng and cisplatin. Cisplatin induced a learning and memory dysfunction in the Morris water maze task and locomotor disability in the rotarod test. In addition, cisplatin disrupted the oxidant/antioxidant systems, neuroinflammatory molecules (TNF-α, IL-6, IL-12, and IL-1β), neurotransmitters, and apoptotic (caspase-3, P53, and Bax) and dementia markers (amyloid-β40 and amyloid-β 42). Co-treatment with ginseng extracts successfully ameliorated the cognitive behaviors and intramuscular strength and presented a good protective agent against neurological damage. Histopathological and histochemical studies proved the neuroprotective effect of ginseng. Our data showed that ginseng capable to counteract the memory dysfunction is induced by cisplatin via reducing oxidative stress and neuroinflammation restoring the neurological efficiency.
Collapse
Affiliation(s)
- Mohamed Hussien
- Pharmacology and Therapeutics Department, Faculty of Pharmacy, Pharos University, Canal El Mahmoudia Street, Smouha, Sidi Gaber, P.O. Box 37, Alexandria, Egypt.
| | - Mokhtar Ibrahim Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163 Horreya Avenue, Chatby 21526, P.O. Box 832, Alexandria, Egypt
| |
Collapse
|
8
|
Turmeric-Fortified Cow and Soya Milk: Golden Milk as a Street Food to Support Consumer Health. Foods 2022; 11:foods11040558. [PMID: 35206034 PMCID: PMC8871262 DOI: 10.3390/foods11040558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
We studied plant-based milk from soya beans as a means to release and convey the bound antioxidants in turmeric to benefit consumer health. This was compared to cow milk as a carrier because soya milk consumption as an alternative to cow milk is increasing globally. Hence, turmeric paste was added to milk to investigate the release of turmeric antioxidants when changing the matrix (cow vs. soy), the amount of turmeric paste (0%, 2%, and 6%), and the effect of heating (with and without). Proximate, physicochemical, and mineral analysis were carried out for all samples. The total phenol content (TPC) and total antioxidant activity were measured using Folin–Ciocalteu and Quencher methods. Protein ranged from 2.0% to 4.0%, and minerals ranged from 17.8 to 85.1, 0.37 to 0.53, and 0.29 to 0.30 mg/100 mL for calcium, iron, and zinc, respectively. TPC ranged from 0.01 to 0.147 GAE (g/kg) and antioxidant activity from 7.5 to 17.7 TEAC (mmol Trolox/kg sample). Overall, turmeric added nutritional and chemical value to all the samples with and without heat treatment. However, turmeric-fortified soya milk samples showed the highest protein, iron, zinc, TPC, and antioxidant activity. This study identified a cheap, additional nutrient source for developing-countries’ malnourished populations by utilizing soya bean milk to produce golden milk.
Collapse
|
9
|
Stobiecka M, Król J, Brodziak A. Antioxidant Activity of Milk and Dairy Products. Animals (Basel) 2022; 12:245. [PMID: 35158569 PMCID: PMC8833589 DOI: 10.3390/ani12030245] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to present a review of literature data on the antioxidant potential of raw milk and dairy products (milk, fermented products, and cheese) and the possibility to modify its level at the milk production and processing stage. Based on the available reports, it can be concluded that the consumption of products that are a rich source of bioactive components improves the antioxidant status of the organism and reduces the risk of development of many civilization diseases. Milk and dairy products are undoubtedly rich sources of antioxidant compounds. Various methods, in particular, ABTS, FRAP, and DPPH assays, are used for the measurement of the overall antioxidant activity of milk and dairy products. Research indicates differences in the total antioxidant capacity of milk between animal species, which result from the differences in the chemical compositions of their milk. The content of antioxidant components in milk and the antioxidant potential can be modified through animal nutrition (e.g., supplementation of animal diets with various natural additives (herbal mixtures, waste from fruit and vegetable processing)). The antioxidant potential of dairy products is associated with the quality of the raw material as well as the bacterial cultures and natural plant additives used. Antioxidant peptides released during milk fermentation increase the antioxidant capacity of dairy products, and the use of probiotic strains contributes its enhancement. Investigations have shown that the antioxidant activity of dairy products can be enhanced by the addition of plant raw materials or their extracts in the production process. Natural plant additives should therefore be widely used in animal nutrition or as functional additives to dairy products.
Collapse
Affiliation(s)
| | - Jolanta Król
- Department of Quality Assessment and Processing of Animal Products, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland; (M.S.); (A.B.)
| | | |
Collapse
|
10
|
Nicolau‐Lapeña I, Abadias M, Bobo G, Lafarga T, Viñas I, Aguiló‐Aguayo I. Antioxidant and antimicrobial activities of ginseng extract, ferulic acid, and noni juice: Evaluation of their potential to be incorporated in food. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Maribel Abadias
- IRTA Parc Científic i Tecnològic Agroalimentari de Lleida Lleida Spain
| | - Gloria Bobo
- IRTA Parc Científic i Tecnològic Agroalimentari de Lleida Lleida Spain
| | - Tomás Lafarga
- IRTA Parc Científic i Tecnològic Agroalimentari de Lleida Lleida Spain
- Department of Chemical Engineering University of Almeria Almería 04120 Spain
| | - Inmaculada Viñas
- Food Technology Department Agrotecnio‐ Cerca Center Universitat de Lleida Lleida Spain
| | | |
Collapse
|
11
|
Hammad K, Morsy N, Abd El-Salam E. Improving the oxidative stability of breadsticks with ginkgo (Ginkgo biloba) and ginseng (Panax ginseng) dried extracts. GRASAS Y ACEITES 2021. [DOI: 10.3989/gya.0334201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recently, there has been a growing interest in the use of natural antioxidants instead of synthetic ones. The aim of this work was to determine the effect of ginkgo and ginseng dried extracts as natural antioxidants on the stability of lipids in breadsticks over 55 days of storage at room temperature compared to butylated hydroxytoluene. Ginkgo and ginseng dried extracts were incorporated individually into breadstick formulae at levels of 0.5 and 1% to enhance its oxidative stability in storage. The increases in peroxide, p-anisidine and Totox values in the oil phase of the samples during storage were monitored. The changes in hydroperoxide, trans fatty acid and aldehyde contents were investigated by Fourier transform infrared spectroscopy. The sensory analysis was performed to evaluate the perceptible changes occurring during storage. The results indicated that the oxidation of oil in breadstick samples can be retarded by enriching the breadstick formula with dried ginseng extract at a 1% level.
Collapse
|
12
|
Idowu S, Adekoya AE, Igiehon OO, Idowu AT. Clove (Syzygium aromaticum) spices: a review on their bioactivities, current use, and potential application in dairy products. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00915-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Lee HS, Song MW, Kim KT, Hong WS, Paik HD. Antioxidant Effect and Sensory Evaluation of Yogurt Supplemented with Hydroponic Ginseng Root Extract. Foods 2021; 10:639. [PMID: 33802997 PMCID: PMC8002633 DOI: 10.3390/foods10030639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Hydroponic ginseng (HG) is cultivated using only nutrients and water under constant environmental conditions and is more beneficial than soil-cultured ginseng (SG). This study aimed to determine the physicochemical properties, antioxidant activity, and sensory properties of HG-supplemented yogurt to develop high-value yogurt. HG (0.1%, 0.5%, and 1.0%) was added to yogurt formulations and fermented with a 0.1% starter. Antioxidant activities were determined using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, reducing power, and ferric reducing antioxidant power assays. Semi-trained panelists performed a quantitative descriptive analysis for sensory evaluation. The number of starter cells increased more rapidly in ginseng extract-fortified yogurt than in the control group, shortening fermentation time. Regarding antioxidant assays, all HG extract-fortified yogurts showed higher antioxidant activity than the control group. In particular, the HG (0.5%) group showed better results than the SG group in the DPPH and reducing power assays, although the difference was not significant. The sensory scores of color, flavor, texture, taste, and overall acceptance of 0.5% HG-supplemented yogurt did not differ significantly from those of non-supplemented yogurt (control). This suggests that HG can be used in high-value dairy products as a supplement with bioactive properties for health in the food industry.
Collapse
Affiliation(s)
- Hyun Sook Lee
- Department of Foodservice Management and Nutrition, Sangmyung University, Seoul 51767, Korea
| | - Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Wan-Soo Hong
- Department of Foodservice Management and Nutrition, Sangmyung University, Seoul 51767, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
14
|
Serra V, Salvatori G, Pastorelli G. Dietary Polyphenol Supplementation in Food Producing Animals: Effects on the Quality of Derived Products. Animals (Basel) 2021; 11:ani11020401. [PMID: 33562524 PMCID: PMC7914517 DOI: 10.3390/ani11020401] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Polyphenols are secondary plant metabolites mainly known for their antioxidant properties. Their use as feed additives in the nutrition of farm animals is becoming increasingly popular as they are particularly exposed to oxidative stress which is reflected in a lipoperoxidation of the final product. For this reason, it is essential to preserve the quality and the safety of meat and milk products by attenuating oxidative deterioration. Moreover, polyphenols present the advantage of being more acceptable to the consumers than synthetic counterparts, as they are considered to be “non-toxic”. The present review presents an overview of several studies focused on the dietary supplementation of polyphenols to monogastric and ruminants, as well as their direct addition to meat and dairy products, with particular emphasis on their antioxidant effects on the final product. Abstract The growing interest in producing healthier animal products with a higher ratio of polyunsaturated to saturated fatty acids, is associated with an increase in lipoperoxidation. For this reason, it is essential to attenuate oxidative deterioration in the derived products. Natural antioxidants such as polyphenols represent a good candidate in this respect. The first part of the review highlights the occurrence, bioavailability, and the role of polyphenols in food-producing animals that, especially in intensive systems, are exposed to stressful situations in which oxidation plays a crucial role. The second part offers an overview of the effects of polyphenols either supplemented to the diet of monogastric and ruminants or added directly to meat and dairy products on the physicochemical and sensorial properties of the product. From this review emerges that polyphenols play an important, though not always clear, role in the quality of meat and meat products, milk and dairy products. It cannot be ruled out that different compounds or amounts of polyphenols may lead to different results. However, the inclusion of agro-industrial by-products rich in polyphenols, in animal feed, represents an innovative and alternative source of antioxidants as well as being useful in reducing environmental and economic impact.
Collapse
Affiliation(s)
- Valentina Serra
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
- Correspondence: (V.S.); (G.P.); Tel.: +39-0250-334-576 (V.S. & G.P.)
| | - Giancarlo Salvatori
- Department of Medicine and Sciences for Health “V. Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy;
| | - Grazia Pastorelli
- Department of Veterinary Medicine, University of Milano, Via dell’Università 6, 26900 Lodi, Italy
- Correspondence: (V.S.); (G.P.); Tel.: +39-0250-334-576 (V.S. & G.P.)
| |
Collapse
|
15
|
Zhang JJ, Wang JQ, Xu XY, Yang JY, Wang Z, Jiang S, Wang YP, Zhang J, Zhang R, Li W. Red ginseng protects against cisplatin-induced intestinal toxicity by inhibiting apoptosis and autophagy via the PI3K/AKT and MAPK signaling pathways. Food Funct 2020; 11:4236-4248. [PMID: 32355945 DOI: 10.1039/d0fo00469c] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although growing evidence has shown that ginseng (Panax ginseng C.A. Meyer.) exerts strong protective and preventive effects on cisplatin-induced side effects, including nephrotoxicity, ototoxicity and cardiotoxicity, the ameliorative effects of ginseng on intestinal damage caused by cisplatin are unknown to date. Red ginseng (RG), a major processed product of the roots of Panax ginseng C.A. Meyer, can be used to control chemotherapy drug-induced multiple toxicity. In the present work, an animal model of cisplatin-induced intestinal injury was established to evaluate the ameliorative effects of RG and their underlying molecular mechanism for the first time. The results showed that a single cisplatin injection (20 mg kg-1) leads to loss of body weight, shrinkage of the small intestine, and sharp increase of the intestinal function index of diamine oxidase (DAO). These symptoms were remarkably relieved after the administration of RG at 300 and 600 mg kg-1 for 10 continuous days, respectively. In addition, RG markedly reduced the increase in malondialdehyde (MDA) levels and the consumption of superoxide dismutase (SOD) and catalase (CAT) caused by cisplatin-induced oxidative stress. Furthermore, RG pretreatment dramatically improved the cisplatin-induced apoptosis of intestinal villous cells, irregular nuclear arrangement, ablation of crypt cells, and damage to the mechanical barrier. In this study, pharmacological methods have been used to prove that RG can inhibit cisplatin intestinal toxicity by activating the PI3K/AKT signaling pathway to inhibit apoptosis and by antagonizing the MAPK-mediated autophagy pathway.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. BEVERAGES 2020. [DOI: 10.3390/beverages6020026] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The growing global interest in functional foods containing nutrients capable of adding possible beneficial health effects is rapidly increasing both interest and consumer demand. In particular, functionalized beverages for their potential positive effect on health e.g., decreasing cholesterol level, lowering sugar, high fiber content, ability to enhance the immune system, and help digestion, have recently received special attention. Among the different beverages available on the market, probiotic dairy and non-dairy products have attracted much attention because of their affordable cost and their numerous therapeutic activities. Fermented milk and yogurt are currently worth €46 billion, with 77% of the market reported in Europe, North America, and Asia. Consumption of dairy beverages has some limitations due for example to lactose intolerance and allergy to milk proteins, thereby leading consumers to use non-dairy beverages such as fruit, grains, and vegetable juices to add probiotics to diet as well as driving the manufacturers to food matrices-based beverages containing probiotic cultures. The purpose of this review article is to evaluate the therapeutic performance and properties of dairy and non-dairy beverages in terms of probiotic, prebiotic, and synbiotic activities.
Collapse
|
17
|
El-Sayed SM, Youssef AM. Potential application of herbs and spices and their effects in functional dairy products. Heliyon 2019; 5:e01989. [PMID: 31338458 PMCID: PMC6607025 DOI: 10.1016/j.heliyon.2019.e01989] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022] Open
Abstract
Herbs and spices come from different parts of the plant are used to impart an aroma and taste to food. Several herbs have therapeutic properties such as antioxidative, anti-inflammatory, antidiabetic, antihypertensive and antimicrobial activities. Therefore, fortification of dairy foods with herbs and spices could help to provide functional dairy products with nutritional and medicinal values. Also, herbs and spices are used to improve the appearance and attractiveness of fortified foods for consumers and to increase the sale of those herbs. Therefore, only the highest quality herbs or spices can be added to dairy products to combat contaminating microorganisms. In this review the latest progresses in the dairy sector concerning the addition of numerous herbs and spices in different forms (i.e. powder, fresh, extract, essential oils) to dairy food has been conversed. Also, the effects of those herbs and spices on the quality of dairy products such as yoghurts, cheeses, butter, gee and ice creams have been presented.
Collapse
Affiliation(s)
- Samah M El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt, P.O. 12622
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt, P.O. 12622
| |
Collapse
|
18
|
Kim KT, Hwang JE, Eum SJ, Paik HD. Physiochemical Analysis, Antioxidant Effects, and Sensory Characteristics of Quark Cheese Supplemented with Ginseng Extract. Food Sci Anim Resour 2019; 39:324-331. [PMID: 31149673 PMCID: PMC6533402 DOI: 10.5851/kosfa.2019.e26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/14/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to evaluate physicochemical and sensory
properties, the texture profile, and antioxidant activity of ginseng
extract-supplemented quark cheese as a new cheese product intended to improve
public health. After addition of less than 1.0% ginseng extract, the
moisture content of quark significantly decreased, while fat and protein levels
increased, although microbial counts and lactose and ash contents were not
affected significantly (p<0.05). In terms of color, L* values decreased
significantly with increasing concentration of ginseng extract, while a* values
increased significantly (p<0.05). The results of texture profiling showed
that cohesiveness and springiness were unaffected, whereas hardness, gumminess,
and chewiness increased significantly. The
2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS)
radical-scavenging activities of the cheese fortified with 0%,
0.5%, or 1.0% of the ginseng extract were
4.22%±0.12%, 20.14%±1.34%, and
56.32%±1.54%, respectively. The results of sensory analysis
indicated that bitterness, ginseng odor, and aftertaste significantly improved
with increasing concentration of ginseng extract (p<0.05). However, there
was no significant difference in the overall quality attributes of quark cheese
between the no-supplement control and samples with less than 0.5% of the
ginseng extract (p>0.05), suggesting that these products could help to
promote public health as functional foods.
Collapse
Affiliation(s)
- Kee-Tae Kim
- Research Laboratory, WithBio Inc., Seoul 05029, Korea
| | - Ji Eun Hwang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Su Jin Eum
- Division of Strategic Food Research, Korea Food Research Institute, Wanju 55365, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
19
|
O'Callaghan YC, Shevade AV, Guinee TP, O'Connor TP, O'Brien NM. Comparison of the nutritional composition of experimental fermented milk:wheat bulgur blends and commercially available kishk and tarhana products. Food Chem 2019; 278:110-118. [DOI: 10.1016/j.foodchem.2018.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022]
|