1
|
Ge X, Qu X, Xie C, Zang J, Wu W, Lv L. The influence on the structure and allergenicity of milk β-lactoglobulin by methylglyoxal during thermal processing. Food Res Int 2024; 196:115043. [PMID: 39614482 DOI: 10.1016/j.foodres.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/04/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
This study aims to investigate the effects of the typical glycation intermediate methylglyoxal (MGO) on the structure and allergenicity of milk β-lactoglobulin (βLG) during thermal processing. Structural changes were assessed using SDS-PAGE, intrinsic fluorescence, circular dichroism, and HPLC-MS/MS. Allergenicity was evaluated through in vitro and in vivo experiments. The conformational changes of βLG significantly were induced by MGO during heat treatment, with a 41.3% decrease in α-helix content and a 25.4% increase in random structure. Furthermore, the lysine, arginine, aspartic acid, and histidine residues in βLG were modified by MGO, which may disrupt or mask allergenic epitopes. Additionally, MGO treatment resulted in a reduction of 41.1% and 26.8% in the pro-inflammatory mediators histamine and β-hexosaminidase in KU812 cells, respectively. Additionally, cytokine levels of IL-4 and IL-13 were reduced by 26.3% and 21.75%, respectively. In mouse experiments, compared to the βLG group, the MGO-βLG group showed a 2-4 fold decrease in IgE, IgG, and IgG1 levels. After reacting with βLG, MGO can reduce serum histamine release by up to 73.9% and mast cell protease-1 (MCP-1) release by 40.8%. These results indicate that the typical glycation intermediate MGO can modify the allergenic epitopes of milk βLG during thermal processing, thereby affecting its allergenicity. This study provides a reference for elucidating the natural rules of allergenicity changes during milk thermal processing.
Collapse
Affiliation(s)
- Xinyu Ge
- College of Food Science and Engineering, Qingdao Agricultural University,Qingdao 266109, China
| | - Xin Qu
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Shibei District, Qingdao, Shandong Province 266033, China
| | - Chunxia Xie
- Clinical Laboratory, Qingdao Central Hospital, China
| | - Jinhong Zang
- College of Food Science and Engineering, Qingdao Agricultural University,Qingdao 266109, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University,Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, China; Qingdao Institute of Special Food, Qingdao 266109, China.
| | - Liangtao Lv
- College of Food Science and Engineering, Qingdao Agricultural University,Qingdao 266109, China; Qingdao Institute of Special Food, Qingdao 266109, China.
| |
Collapse
|
2
|
Mao JH, Chen WM, Wang Y, Shao YH, Liu J, Wang XM, Tu ZC. Dynamic high-pressure microfluidization assisted with galactooligosaccharide-modified whey protein isolate: Investigating its effect on relieving intestinal barrier damage. Int J Biol Macromol 2024; 279:135322. [PMID: 39236946 DOI: 10.1016/j.ijbiomac.2024.135322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The study aimed to investigating the mechanisms of relieved intestinal barrier damage by dynamic high-pressure microfluidization assisted with galactooligosaccharide- glycated whey protein isolate. The modifications changed the multi-structure, and the modified whey protein isolate could promote the proliferation of IEC-6 cells and contributed to the restoration of LPS-induced occludin damage in IEC-6 cells. Also, it could repair cyclophosphamide-induced ileal villus rupture and crypt destruction in BALB/c mice, significantly altered the abundance of dominant bacteria, which were associated with propionic acid, butyric acid, isovaleric acid, and valeric acid. Ileum transcriptomics revealed that the modified whey protein isolate significantly regulate of the levels of Cstad, Cyp11a1, and Hs6st2 genes, relating to the increase of propionic acid, isovaleric acid, and valeric acid. In conclusion, galactooligosaccharide- modified whey protein isolate could regulate the level of Cstad, Cyp11a1 and Hs6st2 genes by altering the gut microbial structure and the level of SCFAs, thereby repairing the intestinal barrier.
Collapse
Affiliation(s)
- Ji-Hua Mao
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Materials, College of Life Science, School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wen-Mei Chen
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Materials, College of Life Science, School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yang Wang
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Materials, College of Life Science, School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yan-Hong Shao
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Materials, College of Life Science, School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jun Liu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Materials, College of Life Science, School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xu-Mei Wang
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Materials, College of Life Science, School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Materials, College of Life Science, School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
3
|
Parrón‐Ballesteros J, Martín‐Pedraza L, Gordo RG, Mayorga C, Pastor‐Vargas C, Titaux‐Delgado GA, Villalba M, Batanero E, Pantoja‐Uceda D, Turnay J. Long-chain fatty acids block allergic reaction against lipid transfer protein Sola l 7 from tomato seeds. Protein Sci 2024; 33:e5154. [PMID: 39180496 PMCID: PMC11344279 DOI: 10.1002/pro.5154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Due to the benefits of tomato as an antioxidant and vitamin source, allergy to this vegetable food is a clinically concerning problem. Sola l 7, a class I lipid transfer protein found in tomato seeds, has been identified as an allergen linked to severe anaphylaxis. However, the role of lipid binding in Sola l 7-induced allergy remains unclear. Here, the three-dimensional structure of recombinant Sola l 7 (rSola l 7) has been elucidated using nuclear magnetic resonance spectroscopy (NMR). Its interaction with free fatty acids has been deeply studied; fluorescence emission spectroscopy revealed that different long-chain fatty acids interact with the protein, affecting the only tyrosine residue present in Sola l 7. On the contrary, no changes in the overall secondary structure were observed after the analysis of the circular dichroism spectra in the presence of fatty acids. Unsaturated oleic and linoleic fatty acids presented higher affinity and promoted more significant changes than saturated or short-chain fatty acids. 1H-15N HSQC NMR spectra allowed to determine the regions of the protein that were modified when rSola l 7 interacts with the fatty acids, suggesting epitope modification after the interaction. For corroboration, IgG and IgE binding to rSola l 7 were assessed in the presence of free fatty acids, revealing that both IgE and IgG binding were significantly lower than in their absence, suggesting a potential protective role of unsaturated fatty acids in tomato allergy.
Collapse
Affiliation(s)
- Jorge Parrón‐Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| | - Laura Martín‐Pedraza
- Infectious Diseases DepartmentHospital Universitario Ramón y Cajal, Universidad de Alcalá, IRYCISMadridSpain
- CIBERINFEC, Instituto de Salud Carlos IIIMadridSpain
| | - Rubén G. Gordo
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| | - Cristobalina Mayorga
- Allergy Research GroupInstituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONANDMálagaSpain
- Allergy UnitHospital Regional Universitario de Málaga‐HRUMMálagaSpain
| | - Carlos Pastor‐Vargas
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| | - Gustavo A. Titaux‐Delgado
- Department Biological Physical Chemistry, “Blas Cabrera” Institute for Physical ChemistrySpanish National Research CouncilMadridSpain
| | - Mayte Villalba
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| | - Eva Batanero
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| | - David Pantoja‐Uceda
- Department Biological Physical Chemistry, “Blas Cabrera” Institute for Physical ChemistrySpanish National Research CouncilMadridSpain
| | - Javier Turnay
- Department of Biochemistry and Molecular Biology, Faculty of ChemistryComplutense University of MadridMadridSpain
| |
Collapse
|
4
|
Venkatram R, García-Cano I, Jiménez-Flores R. Reduction in the antigenicity of beta-lactoglobulin in whole milk powder via supercritical CO 2 treatment. J Dairy Sci 2024; 107:4216-4234. [PMID: 38460870 DOI: 10.3168/jds.2023-24565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024]
Abstract
Cow milk allergy is a common phenomenon experienced in early childhood (<5 yr of age) with an average occurrence rate of roughly 2.5%. The most prevalent allergen in cow milk is believed to be β-LG. The objective of this study was to evaluate the use of hydrophobic supercritical CO2 (ScCO2) to modify the chemical structure β-LG, thus impairing its recognition by antibodies. Whole milk powder (WMP) was selected because of its closest compositional resemblance to bovine fluid milk and its applications in reconstitution and in the beverage (infant, toddler, and adult), confectionary, bakery, and meat industries. For this study, WMP was treated with food-grade CO2 at temperatures of 50, 63, and 75°C under operating pressures of 100, 150, 200, 250, and 300 bar. Proteins in WMP were examined using SDS-PAGE, western blot, and ELISA. Orbitrap Fusion liquid chromatography-tandem MS (LC-MS/MS) and periodic staining was performed to confirm post-translational modifications in β-LG. Functional properties of WMP before and after treatment were assessed by its solubility index, oil holding capacity, emulsion capacity and stability, zeta potential, particle size, and color analysis. SDS-PAGE of treated samples yielded fuzzy bands (variable mobility of molecules due to different molecular weights results in ill-defined bands) indicative of an increase in molecular weight, presumably due to chemical change in the protein, and demonstrated a maximum of 71.13 ± 0.29% decrease in the band intensity of β-LG under treatment conditions of 75°C/300 bar for 30 min. These changes were small with samples treated with heat only. Lighter, diffused bands were observed using western blot analysis. The ELISA tests proved that ScCO2 treatment specifically and significantly affected the antigenicity of β-LG with a reduction of 42.9 ± 2.83% and 54.75 ± 2.43% at 63°C/200 bar and 75°C/300 bar, respectively. Orbitrap fusion detected the presence of fatty acids and sugar moieties bound to β-LG and the latter was confirmed by periodic staining. Functional properties of ScCO2-treated milk powder yielded a decrease in solubility index and an increase in emulsion capacity of WMP was observed under ScCO2 treatment at 75°C/300 bar, with small and insignificant changes at other treatments producing a decrease in antigenicity. Color changes were small for most samples, except at 63°C/200 bar, where a significant increase in yellowness was observed. Zeta potential and particle size measurements indicated that most changes were temperature driven. This study demonstrates 2 approaches to mitigate β-LG antigenicity via fatty acid binding and lactosylation using hydrophobic ScCO2.
Collapse
Affiliation(s)
- Rahul Venkatram
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210
| | - Israel García-Cano
- Department of Food Science and Technology, National Institute of Medical Sciences and Nutrition, Mexico City, Mexico 14080
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
5
|
Yang H, Gao Y, Sun S, Qu Y, Ji S, Wu R, Wu J. Formation, characterization, and antigenicity of lecithin-β-conglycinin complexes. Food Chem 2023; 407:135178. [PMID: 36525804 DOI: 10.1016/j.foodchem.2022.135178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/10/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lipid binding has been proposed to represent a functional property of many allergenic proteins. This study investigated the formation, characterization, and antigenicity of lecithin-β-conglycinin complexes. The results indicate that lecithin was combined with β-conglycinin via static quenching and primarily driven by hydrogen bonds and van der Waals forces. In addition, heat treatment reduced the antigenicity of complexes, as evidenced by changes in molecular weight and secondary and tertiary structures. It revealed that large aggregates developed and more hydrophobic regions were exposed for complexes after heat treatment, as well as a decrease in the β-sheet contents and an increase in the β-turn and random coil contents. Furthermore, the average particle size of the complexes increased with increased temperature treatment, and the morphology of the complexes exhibited an amorphous polymer. These findings shedlight on the interaction between lecithin and β-conglycinin and help us understand the role of lecithin in allergic reactions.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yaran Gao
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Shuyuan Sun
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yezhi Qu
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, China; Engineering Research Center of Food Fermentation Technology, Liaoning, China; Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| |
Collapse
|
6
|
Su D, Mo H, Huang J, Li Q, Zhong H, Jin B. Soy protein/β-glucan/tannic acid complex coacervates with different micro-structures play key roles in the rheological properties, tribological properties, and the storage stability of Pickering high internal phase emulsions. Food Chem 2023; 401:134168. [DOI: 10.1016/j.foodchem.2022.134168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
|
7
|
Wang T, Chen W, Shao Y, Liu J, Tu Z. Ultrasound Improved the Non-Covalent Interaction of β-Lactoglobulin with Luteolin: Regulating Human Intestinal Microbiota and Conformational Epitopes Reduced Allergy Risks. Foods 2022; 11:foods11070988. [PMID: 35407075 PMCID: PMC8997858 DOI: 10.3390/foods11070988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022] Open
Abstract
The present study aims to investigate the effects of ultrasound on the non-covalent interaction of β-lactoglobulin (β-LG) and luteolin (LUT) and to investigate the relationship between allergenicity and human intestinal microbiota. After treatment, the conformational structures of β-LG were changed, which reflected by the decrease in α-helix content, intrinsic fluorescence intensity and surface hydrophobicity, whereas the β-sheet content increased. Molecular docking studies revealed the non-covalent interaction of β-LG and LUT by hydrogen bond, van der Walls bond and hydrophobic bond. β-LG-LUT complex treated by ultrasound has a lower IgG/IgE binding ability and inhibits the allergic reaction of KU812 cells, depending on the changes in the conformational epitopes of β-LG. Meanwhile, the β-LG-LUT complex affected the composition of human intestinal microbiota, such as the relative abundance of Bifidobacterium and Prevotella. Therefore, ultrasound improved the non-covalent interaction of β-LG with LUT, and the reduction in allergenicity of β-LG depends on conformational epitopes and human intestinal microbiota changes.
Collapse
Affiliation(s)
- Titi Wang
- College of Life Science, National R & D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (T.W.); (W.C.); (Y.S.); (J.L.)
| | - Wenmei Chen
- College of Life Science, National R & D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (T.W.); (W.C.); (Y.S.); (J.L.)
| | - Yanhong Shao
- College of Life Science, National R & D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (T.W.); (W.C.); (Y.S.); (J.L.)
| | - Jun Liu
- College of Life Science, National R & D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (T.W.); (W.C.); (Y.S.); (J.L.)
| | - Zongcai Tu
- College of Life Science, National R & D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; (T.W.); (W.C.); (Y.S.); (J.L.)
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Correspondence: ; Tel.: +86-791-8812-1868; Fax: +86-791-8830-5938
| |
Collapse
|
8
|
Yang H, Qu Y, Gao Y, Sun S, Ding R, Cang W, Wu R, Wu J. Role of the dietary components in food allergy: A comprehensive review. Food Chem 2022; 386:132762. [PMID: 35334324 DOI: 10.1016/j.foodchem.2022.132762] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/18/2022]
Abstract
Currently, the increasing incidence of food allergy is considered a major public health and food safety concern. Importantly, food-induced anaphylaxis is an acute, life-threatening, systemic reaction with varied clinical presentations and severity that results from the release of mediators from mast cells and basophils. Many factors are blamed for the increasing incidence of food allergy, including hygiene, microbiota (composition and diversity), inopportune complementary foods (a high-fat diet), and increasing processed food consumption. Studies have shown that different food components, including lipids, sugars, polyphenols, and vitamins, can modify the immunostimulating properties of allergenic proteins and change their bioavailability. Understanding the role of the food components in allergy might improve diagnosis, treatment, and prevention of food allergy. This review considers the role of the dietary components, including lipids, sugars, polyphenols, and vitamins, in the development of food allergy as well as results of mechanistic investigations in in vivo and in vitro models.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yezhi Qu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Yaran Gao
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Shuyuan Sun
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Ruixue Ding
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Engineering Research Center of Food Fermentation Technology, Liaoning, Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, Shenyang 110866, China.
| |
Collapse
|
9
|
Vidotto DC, Mantovani RA, Tavares GM. High-pressure microfluidization of whey proteins: Impact on protein structure and ability to bind and protect lutein. Food Chem 2022; 382:132298. [PMID: 35144190 DOI: 10.1016/j.foodchem.2022.132298] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Dynamic high-pressure homogenization microfluidization (DHPM) is a versatile emerging technology that may be applied to food processing to achieve several goals. DHPM may, depending on nature of the molecules and the working parameters, induce changes in protein structure, which may improve or impair their techno-functional properties and ability to bind other molecules. In this context, DHPM (12 passes, 120 MPa), coupled or not to a cooling device, was applied to β-lactoglobulin (β-lg) and whey protein isolate (WPI) dispersions. Minor changes in the structure of whey proteins were induced by DHPM with sample cooling; although, when sample cooling was not applied, aggregation and increases of around 30% of protein surface hydrophobicity were noticeable for the WPI dispersion. The association constant between the proteins and lutein was in the magnitude of 104 M-1, and lutein photodegradation constant diminished about 3 times in the presence of proteins, compared to in their absence.
Collapse
Affiliation(s)
- Danilo C Vidotto
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Raphaela A Mantovani
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme M Tavares
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
10
|
Bhat ZF, Morton JD, El-Din A. Bekhit A, Kumar S, Bhat HF. Processing technologies for improved digestibility of milk proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Yu XX, Liang WY, Yin JY, Zhou Q, Chen DM, Zhang YH. Combining experimental techniques with molecular dynamics to investigate the impact of different enzymatic hydrolysis of β-lactoglobulin on the antigenicity reduction. Food Chem 2021; 350:129139. [PMID: 33588281 DOI: 10.1016/j.foodchem.2021.129139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/07/2020] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
β-Lactoglobulin (β-LG) is one of the major food allergens. Enzymatic hydrolysis is a promising strategy to reduce the antigenicity of β-LG in industrial production. The relationship between the cleavage sites of β-LG by protease and its antigenic active sites were explored in this study. Molecular docking and molecular dynamics (MD) were used to analyze the active sites and interaction force of β-LG and IgG antibody. Whey protein was hydrolyzed by four specific enzymes and the antigenicity of the hydrolysates were determined by ELISA. The results of MD showed that the amino acid residue Gln155 (-4.48 kcal mol-1) played the most important roles in the process of binding. Hydrolysates produced by AY-10, which was the only one with specificity towards cleavage sites next to a Gln, had the lowest antigenicity at the same hydrolysis degree. Antigenicity decrease was related to the energy contribution of the cleavage site in the active sites.
Collapse
Affiliation(s)
- Xin-Xin Yu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei-Yue Liang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Yi Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Qian Zhou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Dong-Mei Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
12
|
Liu J, Chen WM, Shao YH, Liu YP, Tu ZC. Improved antitumor activity and IgE/IgG-binding ability of α-Lactalbumin/β-lactoglobulin induced by ultrasonication prior to binding with oleic acid. J Food Biochem 2020; 44:e13502. [PMID: 33025647 DOI: 10.1111/jfbc.13502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022]
Abstract
Bovine α-lactalbumin (α-La)/β-lactoglobulin (β-Lg) was pretreated through ultrasonic treatment and subsequently binding with oleic acid (OA) by heat treatment. And, the antitumor activity, IgE/IgG-binding ability, and structural modifications were investigated. After α-La/β-Lg were treated by ultrasonic prior to binding with OA, the treated α-La/β-Lg showed high antitumor activity and IgE/IgG-binding ability, and significantly affected the structural modifications, which reflected by the reduction in α-helix content, the increase of molecular weight, intrinsic fluorescence intensity, and surface hydrophobicity. Molecular docking studies indicated that OA bound to α-La/β-Lg by hydrogen bonds and hydrophobic interaction. Therefore, ultrasonic prior to binding with OA could improve antitumor activity and IgE/IgG-binding ability of α-La/β-Lg as a result of structural modifications. And, ultrasonic prior to binding with fatty acid processing of milk products alone may increase the antitumor activity, this change may enhance the risk of an allergenic reaction in milk allergy patients to some extent. PRACTICAL APPLICATIONS: Fatty acids, natural ligands associated with the bovine milk proteins, and milk protein-fatty acid complex has a variety of functional applications in the food industry. This study revealed that antitumor activity, IgE/IgG-binding ability, and structural modifications of α-La/β-Lg induced by ultrasonic prior to binding with oleic acid. It will be beneficial to understand the mechanism of the functional changes of protein. Ultrasonic prior to binding with oleic acid will be more likely to develop a practical technology to improve the functional characteristics of milk protein and design the optimal nutritional performance of milk food.
Collapse
Affiliation(s)
- Jun Liu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China
| | - Wen-Mei Chen
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China
| | - Yan-Hong Shao
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China
| | - Ying-Ping Liu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Zong-Cai Tu
- National Research and Development center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.,Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Nanchang, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study. Food Chem 2020; 339:128106. [PMID: 33152886 DOI: 10.1016/j.foodchem.2020.128106] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 11/23/2022]
Abstract
It is practical to inhibit the allergenicity of β-lactoglobulin (β-LG) using natural products acting via noncovalent interactions; however, the mechanism of the effect has not been investigated in detail. Herein, the comprehensive noncovalent mechanism of inhibition of the antigenicity of β-LG by six flavonoids (kaempferol, myricetin, phloretin, epigallocatechin-3-gallate (EGCG), naringenin, and quercetin) was investigated by spectroscopic and molecular docking methods. Our results indicate that six flavonoids reduced the antigenicity of β-LG in the following order: EGCG > phloretin > naringenin > myricetin > kaempferol > quercetin, with antigenic inhibition rates of 72.6%, 68.4%, 59.7%, 52.3%, 51.4% and 40.8%, respectively. Six flavonoids induced distinct conformational changes in β-LG, which were closely associated with a decline in antigenicity of β-LG. The flavonoids bound to specific antigen epitopes in the β-sheet and β-turn of β-LG to induce a decrease in the antigenicity of the protein.
Collapse
|
14
|
Guo X, Chen M, Li Y, Dai T, Shuai X, Chen J, Liu C. Modification of food macromolecules using dynamic high pressure microfluidization: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Pereira RN, Costa J, Rodrigues RM, Villa C, Machado L, Mafra I, Vicente A. Effects of ohmic heating on the immunoreactivity of β-lactoglobulin – a relationship towards structural aspects. Food Funct 2020; 11:4002-4013. [DOI: 10.1039/c9fo02834j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ohmic heating changes the immunoreactivity of monomeric and aggregated β-LG forms.
Collapse
Affiliation(s)
| | - Joana Costa
- REQUIMTE-LAQV
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313, Porto
- Portugal
| | | | - Caterina Villa
- REQUIMTE-LAQV
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313, Porto
- Portugal
| | - Luís Machado
- Centre of Biological Engineering – University of Minho
- Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313, Porto
- Portugal
| | - António Vicente
- Centre of Biological Engineering – University of Minho
- Portugal
| |
Collapse
|