2
|
Anastasiou R, Kazou M, Georgalaki M, Aktypis A, Zoumpopoulou G, Tsakalidou E. Omics Approaches to Assess Flavor Development in Cheese. Foods 2022; 11:188. [PMID: 35053920 PMCID: PMC8775153 DOI: 10.3390/foods11020188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cheese is characterized by a rich and complex microbiota that plays a vital role during both production and ripening, contributing significantly to the safety, quality, and sensory characteristics of the final product. In this context, it is vital to explore the microbiota composition and understand its dynamics and evolution during cheese manufacturing and ripening. Application of high-throughput DNA sequencing technologies have facilitated the more accurate identification of the cheese microbiome, detailed study of its potential functionality, and its contribution to the development of specific organoleptic properties. These technologies include amplicon sequencing, whole-metagenome shotgun sequencing, metatranscriptomics, and, most recently, metabolomics. In recent years, however, the application of multiple meta-omics approaches along with data integration analysis, which was enabled by advanced computational and bioinformatics tools, paved the way to better comprehension of the cheese ripening process, revealing significant associations between the cheese microbiota and metabolites, as well as their impact on cheese flavor and quality.
Collapse
Affiliation(s)
- Rania Anastasiou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (M.K.); (M.G.); (A.A.); (G.Z.); (E.T.)
| | | | | | | | | | | |
Collapse
|
4
|
Qi W, Li XX, Guo YH, Bao YZ, Wang N, Luo XG, Yu CD, Zhang TC. Integrated metabonomic-proteomic analysis reveals the effect of glucose stress on metabolic adaptation of Lactococcus lactis ssp. lactis CICC23200. J Dairy Sci 2020; 103:7834-7850. [PMID: 32684472 DOI: 10.3168/jds.2019-17810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
A combined proteomic and metabonomic approach was used to investigate the metabolism of Lactococcus lactis ssp. lactis subjected to glucose stress treatment. A proteomic method was used to determine 1,427 altered proteins, including 278 proteins with increased expression and 255 proteins with decreased expression. A metabonomic approach was adopted to identify 98 altered metabolites, including 62 metabolites with increased expression and 26 metabolites with decreased expression. The integrated analysis indicated that the RNA and DNA mismatch repair process and energy metabolism were enhanced in response to high-glucose stress in L. lactis. Lactococcus lactis responded to glucose stress by up-regulating oxidoreductase activity, which acted on glycosyl bonds, hydrolase activity, and organic acid transmembrane transporter activity. This led to an improvement in the metabolic flux from glucose to pyruvate, lactate, acetate, and maltose. Down-regulation of amino acid transmembrane transporter, aminoacyl-transfer RNA ligase, hydroxymethyl-, formyl-, and related transferase activities resulted in a decrease in the nitrogen metabolism-associated metabolic pathway, which might be related to inhibition of the production of biogenic amines. Overall, we highlight the response of metabolism to glucose stress and provide potential possibilities for the reduced formation of biogenic amines in improved level of sugar in the dairy fermentation industry. Moreover, according to the demand for industrial production, sugar concentration in fermented foods should be higher, or lower, than a set value that is dependent on bacterial strain and biogenic amine yield.
Collapse
Affiliation(s)
- Wei Qi
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China.
| | - Xiao-Xue Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Yao-Hua Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Yan-Zhou Bao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Nan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Xue-Gang Luo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Chun-Di Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Tong-Cun Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Key Laboratory of Industrial Fermentation Microbiology, Tianjin University of Science & Technology, Ministry of Education, Tianjin 300457, P.R. China; National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, P.R. China.
| |
Collapse
|
5
|
Cui L, Lin S, Yi J, Liu X, Hao L, Ji Y, Lu L, Ji Z, Kang Q, Lu J. Hydroxypropyl β-cyclodextrin improving multiple stresses tolerance of Lactococcus lactis subsp. lactis. J Food Sci 2020; 85:2171-2176. [PMID: 32476148 DOI: 10.1111/1750-3841.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
L. lactis is known as industrial starter in the fermentation of dairy and meat products, and it plays an important role in human health as an edible probiotic. During industrial production, L. lactis often experiences different stresses that delay the growth and decrease the survival in some serious conditions. In this study, the protective effects of hydroxypropyl β-cyclodextrin (HP β-CD) on L. lactis under multiple stresses were investigated. The microbial cells were treated with different stresses including heat, NaCl, cold, and H2 O2 stresses, and the results were showed by measuring the OD600 or spot plating method. The growth and tolerance were improved when HP β-CD was added during different stress conditions, better than that of trehalose. Besides, the scanning electron microscopic and fluorescence spectrum studies showed that HP β-CD could combine with L. lactis to protect the cell structure, suggesting that HP β-CD may act as a protective agent of L. lactis. Therefore, HP β-CD could be considered as a potential protective agent to be applied in food industry, and its protective mechanism on L. lactis still needs further investigation.
Collapse
Affiliation(s)
- Lianming Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Songyang Lin
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Limin Hao
- The Quartermaster Equipment Institute, Academy of Military Sciences PLA China, Beijing, 100010, China
| | - Yizhi Ji
- Beijing Key Laboratory of Biomass Waste Resource Utilization, College of Biochemistry and Engineering, Beijing Union University, Beijing, 100023, China
| | - Laizheng Lu
- Zhengzhou Mindtek Biotechnology Co. Ltd, Zhengzhou, Henan, 450001, China
| | - Zhenyu Ji
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|