1
|
Huang Y, Wang H, Xu S, Liu J, Zeng Q, Hu J, Bao Z. Identification of structural variation related to spawn capability of Penaeus vannamei. BMC Genomics 2024; 25:934. [PMID: 39370510 PMCID: PMC11457447 DOI: 10.1186/s12864-024-10863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND The genetic basis underlying spawning abilities in the Pacific white shrimp, Penaeus vannamei, remains largely unexplored. To investigate genetic variations potentially related to reproductive performance, a systematic bioinformatic analysis was conducted to identify structural variations (SVs) with different polymorphic spectra in P. vannamei with high fertility (HF) and low fertility (LF). RESULTS A total of 2,323 and 1,859 SV events were identified exclusively in the HF and LF groups, respectively. These SVs were mapped to 277 genes in the HF group and 231 genes in the LF group. Gene Ontology (GO) enrichment analysis based on SNPs (single nucleotide polymorphism) and SVs revealed several neural-related processes, suggesting the importance of neural regulation in reproduction. Notably, we identified a set of promising genes, including Cttn, Spast, Ppp4c, Spire1, Lhcgr, and Ftz-f1, which may enhance fertility in shrimp. CONCLUSION In conclusion, this study is the first to establish a link between SVs and reproductive traits in P. vannamei. The promising genes discovered have the potential to serve as crucial markers for enhancing reproductive traits through targeted genotyping.
Collapse
Affiliation(s)
- Yongyu Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan, 266100/572025, China
| | - Hao Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan, 266100/572025, China.
| | - Shengyu Xu
- Hebei Xinhai Aquatic Biotechnology Co, Ltd, Cangzhou, 061101, China
| | - Jinli Liu
- Hebei Xinhai Aquatic Biotechnology Co, Ltd, Cangzhou, 061101, China
| | - Qifan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan, 266100/572025, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan, 266100/572025, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, 572025, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Shandong/Sanya, Hainan, 266100/572025, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, 572025, China
- Hebei Xinhai Aquatic Biotechnology Co, Ltd, Cangzhou, 061101, China
| |
Collapse
|
2
|
Olagunju TA, Rosen BD, Neibergs HL, Becker GM, Davenport KM, Elsik CG, Hadfield TS, Koren S, Kuhn KL, Rhie A, Shira KA, Skibiel AL, Stegemiller MR, Thorne JW, Villamediana P, Cockett NE, Murdoch BM, Smith TPL. Telomere-to-telomere assemblies of cattle and sheep Y-chromosomes uncover divergent structure and gene content. Nat Commun 2024; 15:8277. [PMID: 39333471 PMCID: PMC11436988 DOI: 10.1038/s41467-024-52384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/05/2024] [Indexed: 09/29/2024] Open
Abstract
Reference genomes of cattle and sheep have lacked contiguous assemblies of the sex-determining Y chromosome. Here, we assemble complete and gapless telomere to telomere (T2T) Y chromosomes for these species. We find that the pseudo-autosomal regions are similar in length, but the total chromosome size is substantially different, with the cattle Y more than twice the length of the sheep Y. The length disparity is accounted for by expanded ampliconic region in cattle. The genic amplification in cattle contrasts with pseudogenization in sheep suggesting opposite evolutionary mechanisms since their divergence 19MYA. The centromeres also differ dramatically despite the close relationship between these species at the overall genome sequence level. These Y chromosomes have been added to the current reference assemblies in GenBank opening new opportunities for the study of evolution and variation while supporting efforts to improve sustainability in these important livestock species that generally use sire-driven genetic improvement strategies.
Collapse
Affiliation(s)
- Temitayo A Olagunju
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory (AGIL), ARS, USDA, Beltsville, MD, USA
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Gabrielle M Becker
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | | | - Christine G Elsik
- Divisions of Animal Sciences and Plant Science & Technology, University of Missouri, Columbia, MO, USA
| | - Tracy S Hadfield
- Animal, Dairy and Veterinary Sciences (ADVS), Utah State University, Logan, UT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kristen L Kuhn
- U.S. Meat Animal Research Center (USMARC), ARS, USDA, Clay Center, NE, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katie A Shira
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | - Morgan R Stegemiller
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA
| | | | - Patricia Villamediana
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD, USA
| | - Noelle E Cockett
- Animal, Dairy and Veterinary Sciences (ADVS), Utah State University, Logan, UT, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences (AVFS), University of Idaho, Moscow, ID, USA.
| | - Timothy P L Smith
- U.S. Meat Animal Research Center (USMARC), ARS, USDA, Clay Center, NE, USA.
| |
Collapse
|
3
|
Liu X, Chen W, Huang B, Wang X, Peng Y, Zhang X, Chai W, Khan MZ, Wang C. Advancements in copy number variation screening in herbivorous livestock genomes and their association with phenotypic traits. Front Vet Sci 2024; 10:1334434. [PMID: 38274664 PMCID: PMC10808162 DOI: 10.3389/fvets.2023.1334434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Copy number variations (CNVs) have garnered increasing attention within the realm of genetics due to their prevalence in human, animal, and plant genomes. These structural genetic variations have demonstrated associations with a broad spectrum of phenotypic diversity, economic traits, environmental adaptations, epidemics, and other essential aspects of both plants and animals. Furthermore, CNVs exhibit extensive sequence variability and encompass a wide array of genomes. The advancement and maturity of microarray and sequencing technologies have catalyzed a surge in research endeavors pertaining to CNVs. This is particularly prominent in the context of livestock breeding, where molecular markers have gained prominence as a valuable tool in comparison to traditional breeding methods. In light of these developments, a contemporary and comprehensive review of existing studies on CNVs becomes imperative. This review serves the purpose of providing a brief elucidation of the fundamental concepts underlying CNVs, their mutational mechanisms, and the diverse array of detection methods employed to identify these structural variations within genomes. Furthermore, it seeks to systematically analyze the recent advancements and findings within the field of CNV research, specifically within the genomes of herbivorous livestock species, including cattle, sheep, horses, and donkeys. The review also highlighted the role of CNVs in shaping various phenotypic traits including growth traits, reproductive traits, pigmentation and disease resistance etc., in herbivorous livestock. The main goal of this review is to furnish readers with an up-to-date compilation of knowledge regarding CNVs in herbivorous livestock genomes. By integrating the latest research findings and insights, it is anticipated that this review will not only offer pertinent information but also stimulate future investigations into the realm of CNVs in livestock. In doing so, it endeavors to contribute to the enhancement of breeding strategies, genomic selection, and the overall improvement of herbivorous livestock production and resistance to diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Yang Y, Tang J, Yang H, Yang S, Cai M, Qi A, Lan X, Huang B, Su C, Chen H. Copy number variation of bovine S100A7 as a positional candidate affected body measurements. Anim Biotechnol 2023; 34:2141-2149. [PMID: 35815693 DOI: 10.1080/10495398.2022.2077740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Beef production is closely related to the national economy and the attention has been paid to the improvement of beef cattle by molecular markers associated. Copy number variations (CNVs) recently have been gained many researches and recognized as an important source of genetic variation. Extensive studies have indicated that CNVs have effects on a large range of economic traits by a wide range of gene copy number alteration. S100A7 is a member of S100 family which is a famous family of Ca2+-binding proteins. S100A7 plays a crucial role in many important phenotypes (progress) including inflammatory diseases, psoriasis, obesity, etc. The aim of our study was to explore the phenotypic effects of CNV located in the S100A7 gene of bovine chromosome 3. We detected S100A7 CNV by qPCR in different cattle breeds, including Qinchuan cattle, Yunling cattle, Xianan cattle and a crossbred group Pinan. The copy number was identified as gain, normal and loss type, our results showed that the gain type was the main type in three types of S100A7 CNV of the whole tested breeds. After CNV detection, association analysis between S100A7 CNV and growth traits was carried out in four cattle breeds. We found significant effects of the CNV on cattle growth traits with differently preferred CNV types such as gain type with better chest depth (p = 0.043) in QC, loss type with better body length (p = 0.008) and rump width (p = 0.014) in YL, normal with better chest girth (p = 0.001), gain with better waist width (p = 0.001) and rump width (p = 0.044) in PN. These results suggested that the S100A7 CNV could affect the phenotypic traits and be used as a promising genetic marker for cattle molecular breeding.
Collapse
Affiliation(s)
- Yu Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Jia Tang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Haiyan Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Shuling Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Ming Cai
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ao Qi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chao Su
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
5
|
Wang Q, Wei Z, Zhu H, Pan C, Akhatayeva Z, Song X, Lan X. Goat Pleomorphic Adenoma Gene 1 ( PLAG1): mRNA Expression, CNV Detection and Associations with Growth Traits. Animals (Basel) 2023; 13:2023. [PMID: 37370533 DOI: 10.3390/ani13122023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/19/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The pleomorphic adenoma gene 1 (PLAG1) gene, as the major gene responsible for growth, plays a vital role in myogenesis. Meanwhile, the relationship between copy number variation (CNV) of this gene and growth traits in goats remains unclear. Therefore, this study investigated four aspects: bioinformatics analysis, mRNA expression (n = 6), CNV detection (n = 224), and association analysis. The findings indicated that the gene had a large number of conserved motifs, and the gene expression level was higher in fetal goats than in adult goats. Three CNV loci were selected from the database, among which CNV1 was located in the bidirectional promoter region and was associated with goat growth traits. CNV analysis showed that CNV2 and CNV3 of the PLAG1 gene were associated with growth traits such as body weight, heart girth, height at hip cross, and hip width (p < 0.05), with CNV1 loss genotype being the superior genotype, and CNV2 and CNV3 median and gain genotypes of being superior genotypes. This finding further confirms that the PLAG1 gene is the dominant gene for growth traits, which will serve as theoretical guidance for goat breeding.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhenyu Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhanerke Akhatayeva
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Wijayanti D, Luo Y, Bai Y, Pan C, Qu L, Guo Z, Lan X. New insight into copy number variations of goat SMAD2 gene and their associations with litter size and semen quality. Theriogenology 2023; 206:114-122. [PMID: 37229957 DOI: 10.1016/j.theriogenology.2023.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Copy number variations (CNV) contribute significantly to genetic variations. Numerous studies have shown that CNV affects phenotypic traits in livestock. The SMAD family member 2 (SMAD2) is a leading candidate gene in reproduction and has a crucial effect on litter size. Additionally, SMAD2 is also required for male reproduction and influences male germ cell development. However, there are no reports on investigating the effect of CNVs in the SMAD2 gene on reproductive traits in goat. Therefore, the goal of this study was to explore associations between CNV of the SMAD2 gene and litter size and semen quality in Shaanbei white cashmere (SBWC) goats. In this study, two CNVs within the SMAD2 were identified in 352 SBWC goats (50 males and 302 females). The association analysis revealed that only CNV2 was significantly associated with female goat first-born litter size (P = 3.59 × 10-4), male semen concentration (P < 0.01), ejaculation volume, live sperm count, and sperm deformity rate (P < 0.05). In terms of phenotypic performance, the individuals with loss genotypes outperformed those with other genotypes. CNV1 and CNV2 genotype combinations containing their dominant genotypes were also associated with goat litter size (P = 1.7 × 10-5), but no differences in semen quality were found. In summary, CNV2 of the SMAD2 gene is useful for molecular marker-assisted selection breeding, as it is associated with essential goat reproductive traits.
Collapse
Affiliation(s)
- Dwi Wijayanti
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, West Java, 46115, Indonesia.
| | - Yunyun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yangyang Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, 719000, PR China.
| | - Zhengang Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Institute of Animal Husbandry and Veterinary Science of Bijie City, Guizhou, 551700, China.
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Castaneda C, Radović L, Felkel S, Juras R, Davis BW, Cothran EG, Wallner B, Raudsepp T. Copy number variation of horse Y chromosome genes in normal equine populations and in horses with abnormal sex development and subfertility: relationship of copy number variations with Y haplogroups. G3 (BETHESDA, MD.) 2022; 12:jkac278. [PMID: 36227030 PMCID: PMC9713435 DOI: 10.1093/g3journal/jkac278] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2023]
Abstract
Structural rearrangements like copy number variations in the male-specific Y chromosome have been associated with male fertility phenotypes in human and mouse but have been sparsely studied in other mammalian species. Here, we designed digital droplet PCR assays for 7 horse male-specific Y chromosome multicopy genes and SRY and evaluated their absolute copy numbers in 209 normal male horses of 22 breeds, 73 XY horses with disorders of sex development and/or infertility, 5 Przewalski's horses and 2 kulans. This established baseline copy number for these genes in horses. The TSPY gene showed the highest copy number and was the most copy number variable between individuals and breeds. SRY was a single-copy gene in most horses but had 2-3 copies in some indigenous breeds. Since SRY is flanked by 2 copies of RBMY, their copy number variations were interrelated and may lead to SRY-negative XY disorders of sex development. The Przewalski's horse and kulan had 1 copy of SRY and RBMY. TSPY and ETSTY2 showed significant copy number variations between cryptorchid and normal males (P < 0.05). No significant copy number variations were observed in subfertile/infertile males. Notably, copy number of TSPY and ETSTY5 differed between successive male generations and between cloned horses, indicating germline and somatic mechanisms for copy number variations. We observed no correlation between male-specific Y chromosome gene copy number variations and male-specific Y chromosome haplotypes. We conclude that the ampliconic male-specific Y chromosome reference assembly has deficiencies and further studies with an improved male-specific Y chromosome assembly are needed to determine selective constraints over horse male-specific Y chromosome gene copy number and their relation to stallion reproduction and male biology.
Collapse
Affiliation(s)
- Caitlin Castaneda
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Lara Radović
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Sabine Felkel
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
- Department of Biotechnology, Institute of Computational Biology, BOKU University of Life Sciences and Natural Resources, Vienna 1190, Austria
| | - Rytis Juras
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Ernest Gus Cothran
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| | - Barbara Wallner
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 7784-4458, USA
| |
Collapse
|
8
|
PRAMEY: A Bovid-Specific Y-Chromosome Multicopy Gene Is Highly Related to Postnatal Testicular Growth in Hu Sheep. Animals (Basel) 2022; 12:ani12182380. [PMID: 36139240 PMCID: PMC9495132 DOI: 10.3390/ani12182380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
PRAMEY (preferentially expressed antigen in melanoma, Y-linked) belongs to the cancer-testis antigens (CTAs) gene family and is predominantly expressed in testis, playing important roles in spermatogenesis and testicular development. This study cloned the full-length cDNA sequence of ovine PRAMEY using the rapid amplification of cDNA ends (RACE) method and analyzed the expression profile and copy number variation (CNV) of PRAMEY using quantitative real-time PCR (qPCR). The results revealed that the PRAMEY cDNA was 2099 bp in length with an open reading frame (ORF) of 1536 bp encoding 511 amino acids. PRAMEY was predominantly expressed in the testis and significantly upregulated during postnatal testicular development. The median copy number (MCN) of PRAMEY was 4, varying from 2 to 25 in 710 rams across eight sheep breeds. There was no significant correlation between the CNV of PRAMEY and testicular size, while a significant positive correlation was observed between the mRNA expression and testicular size in Hu sheep. The current study suggests that the expression levels of PRAMEY were closely associated with testicular size, indicating that PRAMEY may play an important role in testicular growth.
Collapse
|
9
|
Pei S, Xu H, Wang L, Li F, Li W, Yue X. Copy number variation of ZNF280BY across eight sheep breeds and its association with testicular size of Hu sheep. J Anim Sci 2022; 100:6624001. [PMID: 35775620 DOI: 10.1093/jas/skac232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
ZNF280BY, a bovid-specific Y chromosome gene, was firstly found to be highly expressed in bovine testis, indicating it may play important roles in testicular development and male fertility. In this study, we firstly cloned the full-length cDNA of ovine ZNF280BY containing 1993 bp, and with a 1632 bp open reading frame. ZNF280BY was predominantly expressed in the testis, and its expression level was significantly higher in large testis than in small testis in Hu sheep at 6 months of age. In addition, the expression level of ZNF280BY significantly increased during testicular development, showing the highest expression level at 12 months of age. ZNF280BY showed copy number variation (CNV) in 723 rams from eight sheep breeds, ranging from 17 to 514 copies, with a median copy number of 188. Pearson correlation analysis showed that the CNV of ZNF280BY was negatively correlated with testis size in Hu sheep. Furthermore, its mRNA expression level in testis had no significant correlation with the CNV but was significantly correlated with testis size. This study concluded that the expression of ZNF280BY was closely related to testicular development, and the CNV of ZNF280BY could be used as an important genetic marker to evaluate the ram reproductive capacity at an early stage in Hu sheep.
Collapse
Affiliation(s)
- Shengwei Pei
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Haiyue Xu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Li Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Wanhong Li
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| | - Xiangpeng Yue
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, P. R. China
| |
Collapse
|
10
|
Chen X, Bai X, Liu H, Zhao B, Yan Z, Hou Y, Chu Q. Population Genomic Sequencing Delineates Global Landscape of Copy Number Variations that Drive Domestication and Breed Formation of in Chicken. Front Genet 2022; 13:830393. [PMID: 35391799 PMCID: PMC8980806 DOI: 10.3389/fgene.2022.830393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Copy number variation (CNV) is an important genetic mechanism that drives evolution and generates new phenotypic variations. To explore the impact of CNV on chicken domestication and breed shaping, the whole-genome CNVs were detected via multiple methods. Using the whole-genome sequencing data from 51 individuals, corresponding to six domestic breeds and wild red jungle fowl (RJF), we determined 19,329 duplications and 98,736 deletions, which covered 11,123 copy number variation regions (CNVRs) and 2,636 protein-coding genes. The principal component analysis (PCA) showed that these individuals could be divided into four populations according to their domestication and selection purpose. Seventy-two highly duplicated CNVRs were detected across all individuals, revealing pivotal roles of nervous system (NRG3, NCAM2), sensory (OR), and follicle development (VTG2) in chicken genome. When contrasting the CNVs of domestic breeds to those of RJFs, 235 CNVRs harboring 255 protein-coding genes, which were predominantly involved in pathways of nervous, immunity, and reproductive system development, were discovered. In breed-specific CNVRs, some valuable genes were identified, including HOXB7 for beard trait in Beijing You chicken; EDN3, SLMO2, TUBB1, and GFPT1 for melanin deposition in Silkie chicken; and SORCS2 for aggressiveness in Luxi Game fowl. Moreover, CSMD1 and NTRK3 with high duplications found exclusively in White Leghorn chicken, and POLR3H, MCM9, DOCK3, and AKR1B1L found in Recessive White Rock chicken may contribute to high egg production and fast-growing traits, respectively. The candidate genes of breed characteristics are valuable resources for further studies on phenotypic variation and the artificial breeding of chickens.
Collapse
Affiliation(s)
- Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xue Bai
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Binbin Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Zhixun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yali Hou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
11
|
Candidate Genes in Bull Semen Production Traits: An Information Approach Review. Vet Sci 2022; 9:vetsci9040155. [PMID: 35448653 PMCID: PMC9028852 DOI: 10.3390/vetsci9040155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Semen quality plays a crucial role in the successful implementation of breeding programs, especially where artificial insemination (AI) is practiced. Bulls with good semen traits have good fertility and can produce a volume of high semen per ejaculation. The aim of this review is to use an information approach to highlight candidate genes and their relation to bull semen production traits. The use of genome-wide association studies (GWAS) has been demonstrated to be successful in identifying genomic regions and individual variations associated with production traits. Studies have reported over 40 genes associated with semen traits using Illumina BeadChip single-nucleotide polymorphism (SNPs).
Collapse
|
12
|
Yao R, Lu T, Liu J, Li W, Weng X, Yue X, Li F. Variants of ADPGK gene and its effect on the male reproductive organ parameters and sperm count in Hu sheep. Anim Biotechnol 2021:1-8. [PMID: 34730075 DOI: 10.1080/10495398.2021.1995400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ADP-dependent glucokinase (ADPGK) plays an important role instead of hexokinase in regulating energy metabolism via the Embden-Meyerhof-Parnas Pathway. And energy provided via glycolysis promotes testis development and spermatogenesis. In this study, 466 Hu sheep were screened for mutations in the ADPGK gene to examine the association of the ADPGK gene polymorphisms with the testis traits and spermatogenesis. The NC_056060.1: g.31295 C > T SNP was found in the 3'-UTR region, resulting in two genotypes CC and TC type with genotypic frequencies of 0.66 and 0.34, respectively. This mutation was significantly associated with testis weight, testis long circumference, testis short girth, epididymis weight, and sperm concentration (p < 0.05). Moreover, TC genotype individuals had an increased tendency in the expression of the ADPGK gene and had significant reproductive performance advantages compared with CC genotype individuals in the study. And compared with the small testes (<50 g), the ADPGK gene expression of big testes (>160 g) increased significantly. This indicates an association between the ADPGK gene and reproductive organ parameters and sperm count in selected Hu sheep breed, and this SNP may serve as an effective DNA molecular marker for marker-assisted selection in Hu sheep breeding programs.
Collapse
Affiliation(s)
- Rongyu Yao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tingting Lu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jiamei Liu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Wanhong Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiuiu Weng
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiangpeng Yue
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fadi Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Gansu Runmu Biological Engineering Co., Ltd., Yongchang, China.,Biotechnology Engineering Laboratory of Gansu Meat Sheep Breeding, Minqin, China
| |
Collapse
|
13
|
Wang Z, Guo J, Guo Y, Yang Y, Teng T, Yu Q, Wang T, Zhou M, Zhu Q, Wang W, Zhang Q, Yang H. Genome-Wide Detection of CNVs and Association With Body Weight in Sheep Based on 600K SNP Arrays. Front Genet 2020; 11:558. [PMID: 32582291 PMCID: PMC7297042 DOI: 10.3389/fgene.2020.00558] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/07/2020] [Indexed: 01/30/2023] Open
Abstract
Copy number variations (CNVs) are important genomic structural variations and can give rise to significant phenotypic diversity. Herein, we used high-density 600K SNP arrays to detect CNVs in two synthetic lines of sheep (DS and SHH) and in Hu sheep (a local Chinese breed). A total of 919 CNV regions (CNVRs) were detected with a total length of 48.17 Mb, accounting for 1.96% of the sheep genome. These CNVRs consisted of 730 gains, 102 losses, and 87 complex CNVRs. These CNVRs were significantly enriched in the segmental duplication (SD) region. A CNVR-based cluster analysis of the three breeds revealed that the DS and SHH breeds share a close genetic relationship. Functional analysis revealed that some genes in these CNVRs were also significantly enriched in the olfactory transduction pathway (oas04740), including members of the OR gene family such as OR6C76, OR4Q2, and OR4K14. Using association analyses and previous gene annotations, we determined that a subset of identified genes was likely to be associated with body weight, including FOXF2, MAPK12, MAP3K11, STRBP, and C14orf132. Together, these results offer valuable information that will guide future efforts to explore the genetic basis for body weight in sheep.
Collapse
Affiliation(s)
- Zhipeng Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Jing Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Yuanyuan Guo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Yonglin Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Tao Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Meng Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Qiusi Zhu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Wenwen Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Qin Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| |
Collapse
|
14
|
Yao YF, Lyu S, Wang X, Zhang Z, Qu K, Xu J, Cai C, Li Z, Xie J, Ru B, Xu Z, Wang E, Lei C, Chen H, Huang B, Huang Y. The combination between NCSTN gene copy number variation and growth traits in Chinese cattle. Anim Biotechnol 2020; 32:683-687. [PMID: 32208881 DOI: 10.1080/10495398.2020.1741382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Copy number variation (CNV) has been used as an important source of phenotypic and genetic diversity in recent years. Nicastrin (NCSTN) gene is usually attached to human diseases such as Alzheimer's disease, and Acne inversa. However, there are no essays about the NCSTN gene combining with cattle breeds. In our study, we discovered different distributions of NCSTN gene copy number and associated it with phenotypic traits in four Chinese yellow cattle breeds (XN, PN, QC and YL). The result turned out that the CNV of the NCSTN gene was associated with several growth traits, such as cannon circumference, chest girth and rump length (p < 0.05). In general, we revealed the eminence over CNV of NCSTN gene and economic traits, suggesting that the CNV of the NCSTN gene can be considered to be a promising molecular breeding marker of Chinese beef cattle.
Collapse
Affiliation(s)
- Yu-Fei Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shijie Lyu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Kaixing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, Yunnan, People's Republic of China
| | - Jiawei Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Cuicui Cai
- Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, Ningxia, People's Republic of China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Jianliang Xie
- Ningxia Academy of Agriculture and Forestry Sciences, Guyuan, Ningxia, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, Yunnan, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|