1
|
Ostendorf CS, Ghaffari MH, Cohrs I, Koch C, Sauerwein H. Long-term effects of transition milk feeding on feed intake, growth performance, feeding behavior, and oxidative status of Holstein calves. J Dairy Sci 2025; 108:464-484. [PMID: 39389301 DOI: 10.3168/jds.2024-25435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
This study investigated the long-term effects of feeding 5-d transition milk (TRANS) compared with milk replacer (MR) on parameters including intake, growth, feeding behavior, and oxidative stress. Fifty Holstein calves (30 females and 20 males) were fed 12 L/d of either TRANS or MR for the first 5 d after an initial colostrum feeding of 3.5 L. Thereafter, all calves were fed with 12 L of MR/d (140 g/L) and were gradually weaned starting in wk 8 until wk 14. Throughout the 14 wk, the calves had unrestricted access to concentrate (up to 9.8 kg/calf per day), hay, and water. After weaning all heifers were fed a TMR for young cows. Oxidative status was assessed in blood samples from birth to first insemination. Parameters assessed included the ferric-reducing ability of plasma (FRAP) for antioxidant capacity and the concentration of reactive oxygen metabolites via detection of reactive oxygen metabolites (dROM) assay. In addition, the activity of glutathione peroxidase (GSHPx) and oxidative damage in the form of lipid peroxidation as thiobarbituric acid-reactive substances (TBARS) and as advanced oxidation protein products (AOPP) were measured. An oxidative stress index was calculated: dROM/FRAP × 100. Total protein concentration was also quantified via Bradford assay. The only significant difference in feeding behavior between the 2 treatment groups was a higher concentrate intake by the TRANS calves during the weaning phase. Body weight and ADG did not differ significantly between the TRANS and MR groups. The TRANS calves showed a trend for fewer cases of health disorders. Markers of oxidative status, including TBARS, AOPP, GSHPx, FRAP, and reactive oxygen metabolites, showed no treatment effects but varied significantly over time. Of note, the oxidative stress index, as ratio between pro- and antioxidants in both groups, peaked during weaning and then returned to baseline, suggesting an effective response to this transition phase. Overall, the results indicate that feeding TRANS during the first 5 d of life had no long-term effect on the parameters studied as compared with MR feeding under the present rearing conditions. These results provide insight into the changes of oxidative status with age and confirm that the relatively high milk feeding level, with slow and late weaning, enables calves to adapt well to solely solid feed.
Collapse
Affiliation(s)
- C S Ostendorf
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany; Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - I Cohrs
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany; Clinic for Ruminants, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - C Koch
- Educational and Research Centre for Animal Husbandry, Hofgut Neumühle, 67728 Münchweiler an der Alsenz, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
2
|
Corset A, Remot A, Graulet B, Poton P, Philau S, Ricouleau JF, Dhumez O, Germon P, Boudon A, Boutinaud M. Effects of parity and week after calving on the metabolic, redox and immune status of dairy cows. J Dairy Sci 2024:S0022-0302(24)00858-0. [PMID: 38825096 DOI: 10.3168/jds.2024-24706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/13/2024] [Indexed: 06/04/2024]
Abstract
At the onset of lactation in dairy cows, inflammation and oxidative stress may occur and result in a risk of pathologies and lower milk yield. To propose an innovative management strategy for cows during this period, it is essential to better understand these physiological variations. Our objective was to evaluate the metabolic, redox and immune status of 7 primiparous and 8 multiparous Holstein cows during late gestation and the first months of lactation. Blood samples were collected between 3 weeks before calving until 12 weeks postpartum. Milk samples were also collected, but only at the time points after calving. The metabolic (nonesterified fatty acids (NEFA), BHB, glucose, urea, calcium) and redox (reactive oxygen metabolites (ROM), oxidative stress index (OSI), glutathione peroxidase activity, vitamin E) statuses were analyzed in plasma or erythrocytes. The expression of genes related to antioxidant functions was determined in leukocytes collected from milk. For immune status, plasma cytokine levels and the production of reactive oxygen species (ROS) in classical and regulatory neutrophils were measured in 2 whole blood ex vivo challenges. The data were analyzed using a mixed model that included the fixed effects of parity and week and their interaction. Milk yield, plasma NEFA and BHB in wk 2 and 4 after calving were higher in multiparous cows than in primiparous cows, whereas glucose and calcium tended to be lower. Plasma ROM and OSI levels in wk 8 were higher in multiparous than in primiparous cows. Multiparous cows also displayed higher glutathione peroxidase activity in erythrocytes, and antioxidant transcription factor and superoxide dismutase-1 expression levels in milk leukocytes. Moreover, multiparous cows had higher plasma concentrations of vitamin E but lower plasma levels of cytokines CXCL10, CCL2, IL1Rα and IFNγ. Following ex vivo whole blood stimulation with Escherichia coli, lower IL1α and TNFα levels were measured in multiparous than in primiparous cows. Intracellular ROS production by neutrophils was lower in multiparous than in primiparous cows. These results thus indicated marked physiological changes in wk 8 compared with wk 2 and 4 of lactation. These differences in the physiological status of primiparous and multiparous cows offer interesting perspectives for potential dietary strategies to prevent pathologies which take account of parity and week relative to calving.
Collapse
Affiliation(s)
- A Corset
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France; Biodevas Laboratoires, ZA de L'Épine, 72460 Savigné-l'Évêque, France
| | - A Remot
- INRAE-Université de Tours, UMR 1282 ISP, Centre de Recherche Val de Loire, 37380 Nouzilly, France
| | - B Graulet
- INRAE, VetAgro Sup, Université Clermont Auvergne, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - P Poton
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
| | - S Philau
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
| | - J F Ricouleau
- Biodevas Laboratoires, ZA de L'Épine, 72460 Savigné-l'Évêque, France
| | - O Dhumez
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France
| | - P Germon
- INRAE-Université de Tours, UMR 1282 ISP, Centre de Recherche Val de Loire, 37380 Nouzilly, France
| | - A Boudon
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France.
| | - M Boutinaud
- PEGASE, INRAE, Institut Agro, 35590, Saint Gilles, France.
| |
Collapse
|
3
|
Wilms JN, van der Nat V, Ghaffari MH, Steele MA, Sauerwein H, Martín-Tereso J, Leal LN. Fat composition of milk replacer influences growth performance, feeding behavior, and plasma fatty acid profile in ad libitum-fed calves. J Dairy Sci 2024; 107:2797-2817. [PMID: 37944801 DOI: 10.3168/jds.2023-23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/24/2023] [Indexed: 11/12/2023]
Abstract
Fat composition in milk replacers (MR) for calves differs from bovine milk fat in multiple ways. The aim of the study was to investigate the impact of different approaches of formulating fat in MR on growth, ad libitum intakes of MR and solid feeds, as well as blood metabolites in dairy calves. Upon 24 to 96 h after birth, 63 calves were acquired from dairy farms and incorporated into the study. Calves were blocked based on arrival day and randomly assigned within each block to one of 3 treatments differing in MR fat composition (n = 21 per group): VG was based on vegetable fats including 80% rapeseed and 20% coconut fats; AN was formulated with animal fats including 65% lard and 35% dairy cream; and MX with a mixture of 80% lard and 20% coconut fats. All 3 MR contained 30% fat, 24% crude protein, and 36% lactose and were formulated to have a fatty acid profile resembling that of milk fat. From arrival onward (3.1 ± 0.84 d of age; means ± standard deviation), calves were group housed and were offered an ad libitum supply of MR at 135 g/L (13.5% solids). Weaning was gradual and induced between wk 7 and 10, after which calves were fed only solid feeds. Starter feed, chopped straw, and water were offered ad libitum throughout the study. Calves were weighed, and blood was collected weekly until d 84 after arrival. Preweaning average daily gain was greater in calves fed AN (915 g/d) than other treatments (783 g/d), whereas no differences were detected in the weaning and postweaning phases. Preweaning MR intake was greater in calves fed AN than MX from wk 2 to 6 and was also higher in calves fed AN than VG in wk 5 and 6. Consistently, the number of rewarded visits during the ad libitum phase was greater in calves fed AN than MX, whereas VG showed no differences. This led to a higher preweaning total metabolizable energy intake in calves fed AN than in calves fed VG and MX. Serum cholesterol was higher, and serum albumin was lower in calves fed VG than other treatments. The proportion of high-density lipoprotein cholesterol in total plasma cholesterol was lower and that of low-density lipoprotein (LDL) cholesterol was higher in calves fed VG compared with other treatments. Overall, the fatty acid profile of plasma largely mirrored the MR fat composition during the preweaning period. Feeding AN enhanced MR intake and improved preweaning growth compared with other treatments. Feeding VG resulted in a marked increase in plasma cholesterol, particularly in the form of LDL cholesterol, which could be linked to an excessive intake of polyunsaturated fatty acids. These findings underscore the importance of formulating the fat content of MR to be similar to bovine milk fat.
Collapse
Affiliation(s)
- J N Wilms
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2.
| | - V van der Nat
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Adaptation Physiology Group, Wageningen University, 6700 AH, Wageningen, the Netherlands
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| | - L N Leal
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
4
|
Wilms JN, Kleinveld N, Ghaffari MH, Sauerwein H, Steele MA, Martín-Tereso J, Leal LN. Fat composition of milk replacer influences postprandial and oxidative metabolisms in dairy calves fed twice daily. J Dairy Sci 2024; 107:2818-2831. [PMID: 37923211 DOI: 10.3168/jds.2023-23972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Milk replacers (MR) for calves contain alternative fat sources as substitute for milk fat. This substitution leads to differences in fat properties, such as the fatty acid profile and the triglyceride structure. This study evaluated how fat composition in MR affects gastrointestinal health, blood redox parameters, and postprandial metabolism in calves fed twice daily. Forty-five individually housed male Holstein-Friesian calves (2.3 ± 0.85 d of age) were assigned to 1 of 15 blocks based on the age and the day of arrival. Within each block, calves were randomly assigned to 1 of 3 experimental diets and received their respective diet from arrival until 35 d after arrival. The 3 experimental diets (n = 15 per treatment group) consisted of an MR with a blend of vegetable fats containing rapeseed and coconut (VG), an MR with only animal fats from lard and dairy cream (AN), and an MR containing a mixture of animal and vegetable fats including lard and coconut (MX). The fatty acid profile of each MR was formulated to resemble that of bovine milk fat while using only 2 fat sources. All MR were isoenergetic, with 30% fat (% DM), 24% crude protein, and 36% lactose. Chopped straw and water were available ad libitum from arrival onward but no starter feed was provided. Daily milk allowances were 6.0 L from d 1 to 5, 7.0 L from d 6 to 9, and 8.0 L from d 10 to 35, divided into 2 equal meals and prepared at 135 g/L (13.5% solids). Fecal appearance was scored daily; calves were weighed and blood was drawn on arrival and weekly thereafter. Urine and feces were collected over a 24-h period at wk 3 and 5 to determine apparent total-tract digestibility and assess gastrointestinal permeability using indigestible markers. Postprandial metabolism was evaluated at wk 4 by sequential blood sampling over 7.5 h, and the abomasal emptying rate was determined by acetaminophen appearance in blood. Fat composition in MR did not affect growth, MR intake, gastrointestinal permeability, nor nutrient digestibility. The percentage of calves with abnormal fecal scores was lower at wk 2 after arrival in calves fed VG than MX, whereas AN did not differ from the other treatments. Calves fed AN and MX had higher thiobarbituric acid reactive substances measured in serum than VG, whereas plasma ferric-reducing ability was greater in calves fed MX than VG. Postprandial acetaminophen concentrations did not differ across treatment groups, but the area under the curve was smaller in calves fed VG than in the other 2 treatments, which is indicative of a slower abomasal emptying. Postprandial serum triglyceride concentration was greater in calves fed AN than VG, whereas MX did not differ from the other treatments. Based on these outcomes, all 3 fat blends can be considered suitable for inclusion in MR for calves.
Collapse
Affiliation(s)
- J N Wilms
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2.
| | - N Kleinveld
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands; Animal Nutrition Group, Wageningen University, 6700 AH, Wageningen, the Netherlands
| | - M H Ghaffari
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - H Sauerwein
- Institute of Animal Science, University of Bonn, 53111 Bonn, Germany
| | - M A Steele
- Department of Animal Bioscience, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1W2
| | - J Martín-Tereso
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| | - L N Leal
- Trouw Nutrition Research and Development, 3800 AG, Amersfoort, the Netherlands
| |
Collapse
|
5
|
Ghaffari MH, Daniel JB, Sadri H, Schuchardt S, Martín-Tereso J, Sauerwein H. Longitudinal characterization of the metabolome of dairy cows transitioning from one lactation to the next: Investigations in blood serum. J Dairy Sci 2024; 107:1263-1285. [PMID: 37777004 DOI: 10.3168/jds.2023-23841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
The objective of this study was to characterize changes in the serum metabolome and various indicators of oxidative balance in dairy cows starting 2 wk before dry-off and continuing until wk 16 of lactation. Twelve Holstein dairy cows (body weight 745 ± 71 kg, body condition score 3.43 ± 0.66; mean ± SD) were housed in a tiestall barn from 10 wk before to 16 wk after parturition. Cows were dried off 6 wk before the expected calving date (mean dry period length = 42 d). From 8 wk before calving to 16 wk after calving, blood samples were taken weekly to study redox metabolism by determining antioxidant capacity, measured as the ferric-reducing ability of plasma, reactive oxidative metabolites, oxidative stress index, oxidative damage of lipids, measured as thiobarbituric acid reactive substances, and glutathione peroxidase activity. According to these results, dairy cows had the lowest serum antioxidant capacity and greater levels of oxidative stress during the dry-off period and the early postpartum period. For metabolomics, a subset of serum samples including wk -7 (before dry-off), -5 (after dry-off), -1, 1, 5, 10, and 15 relative to calving were used. A targeted metabolomics approach was performed using liquid chromatography and flow injection with electrospray ionization triple quadrupole mass spectrometry using the MxP Quant 500 kit (Biocrates Life Sciences AG). A total of 240 metabolites in serum were used in the final data analysis. Principal component analysis revealed a clear separation by days of sampling, indicating a remarkable shift in metabolic phenotype between the dry period and late and early lactation. Changes in many non-lipid metabolites associated with one-carbon metabolism, the tricarboxylic acid cycle, the urea cycle, and AA catabolism were observed in the study, with changes in AA serum concentrations likely related to factors such as energy and nitrogen balance, digestive efficiency, and changing diets. The study confirmed an extensive remodeling of the serum lipidome in peripartum dairy cows, highlighting the importance of changes in acylcarnitine (acylCN), phosphatidylcholines (PC), and triacylglycerols (TG), as they play a crucial role in lipid metabolism. Results showed that short-chain acylCN increased after dry-off and decreased thereafter, whereas lipid-derived acylCN increased around parturition, suggesting that more fatty acids could enter mitochondria. Phospholipids and sphingolipids in serum showed changes during lactation. In particular, concentrations of sphingomyelins, PC, and lysoPC decreased around calving but increased in mid- and late lactation. In contrast, concentrations of TG remained consistently low after parturition. The serum concentrations of bile acids fluctuated during the dry period and lactation, with glycocholic acid, cholic acid, glycodeoxycholic acid, and taurocholic acid showing the greatest concentrations. These changes are likely due to the interplay of diet, liver function, and the ability of the gut microbiota to convert primary to secondary bile acids. Overall, these descriptive results may aid in hypothesis generation and in the design and interpretation of future metabolite-based studies in dairy cows. Furthermore, they contribute to our understanding of the physiological ranges in serum metabolites relative to the lactation cycle of the dairy cow.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - J B Daniel
- Trouw Nutrition R&D, 3800 AG, Amersfoort, the Netherlands.
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - S Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | | | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
6
|
Circulating oxidative stress status in Bedouin she-camels (Camelus dromedarius) during the peripartum period. Trop Anim Health Prod 2021; 53:446. [PMID: 34427777 DOI: 10.1007/s11250-021-02846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to assess the oxidative stress status in blood plasma of nomadic she-camels (Camelus dromedarius) during transition from late pregnancy to early lactation. From 12 late pregnant she-camels, blood was sampled weekly as they progressed from the third week prepartum up to the third week postpartum. Levels of albumin, uric acid, and malondialdehyde (a biomarker of lipid peroxidation) concentrations were fairly constant (P > 0.05) throughout the sampling times. Compared to the initial time (third week prepartum), values of the superoxide anion, total peroxides, and protein carbonyl (a biomarker of protein peroxidation) increased (P < 0.05) by more than 67%, 43%, and 23%, respectively, at parturition and this increase extended to the first week postpartum. Ascorbic acid concentration lost more than 20% (P < 0.05) of its value at parturition. Bilirubin value increased as camels progressed from the first week pre- up to the first week postpartum, and reached its maximum value (~ 2.5 fold) at parturition. Superoxide dismutase activity increased (P < 0.05) by 71.7% at the first week pretpartum and by 57% at parturition. Total antioxidant capacity level increased (P < 0.05) by ~ 25% at the first week prepartum and remained at this high level up to the second week postpartum. It seems that periparturient camels experience a substantial oxidative stress particularly at parturition and the week after calving as indicated by the increased peroxidative by-products of proteins in parallel to the enhanced production of pro-oxidants.
Collapse
|
7
|
Bucktrout RE, Ma N, Aboragah A, Alharthi AS, Liang Y, Lopreiato V, Lopes MG, Trevisi E, Alhidary IA, Fernandez C, Loor JJ. One-carbon, carnitine, and glutathione metabolism-related biomarkers in peripartal Holstein cows are altered by prepartal body condition. J Dairy Sci 2021; 104:3403-3417. [PMID: 33455750 DOI: 10.3168/jds.2020-19402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
We investigated how prepartal body condition score (BCS) alters key hepatic enzymes associated with 1-carbon, carnitine, and glutathione metabolism and the related biomarkers in liver tissue and plasma of periparturient dairy cows. Twenty-six multiparous Holstein dairy cows were retrospectively selected according to BCS at 4 wk prepartum and divided into high (HighBCS, BCS ≥ 3.50) and normal (NormBCS, BCS ≤ 3.25) BCS groups (n = 13 each). Blood plasma samples were obtained at -30, -10, 7, 15, and 30 d relative to calving. Liver tissue biopsies were performed at -15, 7, and 30 d relative to calving, and samples were used to assess protein abundance via Western blot assay. Cows in the HighBCS group lost ∼1 unit of BCS between -4 and 4 wk around calving, while NormBCS cows lost ∼0.5 unit in the same period. Prepartal dry matter intake (DMI, kg/d) did not differ between groups. Compared with NormBCS cows, HighBCS cows had higher postpartal DMI and milk yield (+5.34 kg/d). In addition, greater overall plasma concentrations of fatty acids and activity of the neutrophil-enriched enzyme myeloperoxidase were observed in HighBCS compared with NormBCS cows. Despite similar reactive oxygen metabolite concentrations in both groups at 30 d, HighBCS cows had lower overall concentrations of β-carotene and tocopherol, explaining the lower (BCS × Time) antioxidant capacity (ferric reducing ability of plasma). The HighBCS cows also had greater liver malondialdehyde concentrations and superoxide dismutase activity at 30 d. Overall, compared with NormBCS cows, HighBCS cows had lower hepatic protein abundance of the 1-carbon metabolism enzymes cystathionine-β-synthase, betaine-homocysteine methyltransferase, and methionine adenosyltransferase 1 A (MAT1A), as well as the glutathione metabolism-related enzymes glutathione S-transferase α 4 and glutathione peroxidase 3 (GPX3). A lower protein abundance of glutathione S-transferase mu 1 (GSTM1) at -15 and 7 d was also observed. Regardless of BCS, cows had increased abundance of GSTM1 and GPX3 between -15 and 7 d around calving. A marked decrease of gamma-butyrobetaine dioxygenase 1 from -10 to 7 d in HighBCS compared with NormBCS cows suggested a decrease in de novo carnitine synthesis that was partly explained by the lower abundance of MAT1A. Overall, data suggest biologic links between BCS before calving, milk yield, immune response, and hepatic reactions encompassing 1-carbon metabolism, carnitine, and antioxidant synthesis.
Collapse
Affiliation(s)
- R E Bucktrout
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - N Ma
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - A Aboragah
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - I A Alhidary
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
8
|
Effects of Energy Supply from Roughage and Concentrates and the Occurrence of Subclinical Ketosis on Blood Chemistry and Liver Health in Lactating Dairy Cows during Early Lactation. DAIRY 2021. [DOI: 10.3390/dairy2010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The objectives of this study were to examine the effects of varying dietary energy supply as well as the impacts of subclinical ketosis (SCK) on blood chemistry and liver health. A total 63 German-Holstein cows were housed from three weeks antepartum until sixteen weeks postpartum. After calving, cows were assigned to one of four treatment groups receiving either moderate or high energy concentrations in roughage and secondly moderate or high amounts of concentrates. Retrospectively, cows were additionally grouped according to their β-hydroxybutyrate concentration (SK: cows with SCK vs. CON: cows without SCK). The different energy supply of treatment groups had little effects on blood and liver variables; greater differences occurred between SK and CON cows. Liver fat content of SK cows was 34% higher compared to CON cows. Also, the activity of aspartate aminotransferase and γ-glutamyl transferase, bilirubin concentration, and percentage of granulocytes were increased in SK cows. The results indicate that cows were able to adjust their metabolism to different dietary energy supplies without having a clearly increased risks for metabolic disorders. However, individual animals of all groups developed a metabolic derailment during the postpartum period resulting in SCK, which is closely connected with impaired liver function, compromised immune-responsiveness, and elevated oxidative stress.
Collapse
|
9
|
Effects of Dietary L-Carnitine Supplementation on Platelets and Erythrogram of Dairy Cows with Special Emphasis on Parturition. DAIRY 2020. [DOI: 10.3390/dairy2010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
During late gestation and early lactation, many proliferative processes and metabolic adaptions are involved in homeorhesis. An adjusted supply of oxygen is a precondition for an optimized cellular energy metabolism whereby erythrocytes play a central role. Endogenous L-carnitine modulates the mitochondrial fatty acid utilization for generating adenosine triphosphate (ATP). As it might be insufficient around calving due to increased need, L-carnitine supplementation is frequently recommended. Thus, the present study addressed the interplay between the red hemogram, platelets, oxidative stress indices, and L-carnitine supplementation of dairy cows around calving. German Holstein cows were assigned to a control (n = 30) and an L-carnitine group (n = 29, 25 g of rumen-protected L-carnitine per cow and per day), and blood samples were taken from day 42 ante partum (ap) until day 110 postpartum (pp), with a higher sampling frequency during the first three days pp. The time courses of the erythrogram parameters reflected the physiological adaptations to the oxygen need without being influenced by L-carnitine supplementation. Erythrocytic antioxidative enzymatic defence paralleled the relative development of polycythemia ap, while non-enzymatic total plasma antioxidative capacity continuously increased pp. In contrast to erythrocytes, the platelet counts of the L-carnitine supplemented cows varied at significantly higher levels. This can be interpreted as a result of a membrane-stabilizing effect of L-carnitine.
Collapse
|
10
|
Sauerwein H, Blees T, Zamarian V, Catozzi C, Müller U, Sadri H, Dänicke S, Frahm J, Ceciliani F. Acute phase proteins and markers of oxidative status in water buffalos during the transition from late pregnancy to early lactation. Vet Immunol Immunopathol 2020; 228:110113. [PMID: 32871407 DOI: 10.1016/j.vetimm.2020.110113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023]
Abstract
The transition period, from pregnancy to lactation, implies comprehensive metabolic and endocrine changes including a systemic inflammatory reaction and oxidative stress around calving in dairy cows. The aim of the present study was a longitudinal characterization of the serum concentration of acute phase proteins (APP), i.e., haptoglobin (Hp), serum amyloid A (SAA) and acidic glycoprotein (AGP), as well as of markers for oxidative stress in another large dairy animal, i.e. water buffalo, during the transition from late pregnancy to early lactation. As indicators of oxidative status, derivatives of reactive oxygen metabolites (dROM), ferric reducing ability (FRAP), thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP) were determined in serum. Indicators for metabolic stress included nonesterified fatty acids (NEFA), ß-hydroxybutyrate (BHB) and adiponectin. Bovine specific ELISA methods for Hp and adiponectin were adapted and validated for their application to water buffalo samples. Blood samples were collected weekly from 11 pluriparous water buffalo cows (lactation number 4.6 ± 1.6; daily milk yield 9.0 ± 1.9 kg; means ± SD) from 6 weeks (wk) ante partum (ap) until 8 wk post partum (pp). The maximum concentrations of Hp were observed in wk 1 pp, followed by a decrease towards values lower than before calving starting from wk 3 pp. The concentrations of SAA also peaked in wk 1 pp and then returned to basal values. The AGP serum concentrations increased suddenly from the first to the second wk pp and remained elevated for all the observation period. Indicators of oxidative status which changed in concentration during the transition period were dROM, AOPP and the oxidative stress index (OSi) (dROM/FRAP ratio). Briefly, dROM and AOPP values were lower pp as compared to ap, and OSi was largely following the pattern of dROM due to the constant FRAP values. The TBARS values did not change during the observation period. From the metabolic indicators, adiponectin was not changing with time, whereas greater NEFA and BHB values were observed ap than pp. The time course of NEFA and of some indicators for oxidative status (dROM, OSi and AOPP) point to greater metabolic load in late pregnancy as compared with the first wk of lactation - contrary to the common situation in dairy cows. Both BHB and NEFA values remained below the thresholds applied for dairy cows to define subclinical or clinical ketosis, thus indicating that the buffaloes included in this study were not under metabolic stress. The increase in concentration of the APP around calving supports the concept that an inflammatory reaction is a physiological epiphenomenon of the onset of lactation in water buffalos that is independent of metabolic stress.
Collapse
Affiliation(s)
- Helga Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany.
| | - Thomas Blees
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Valentina Zamarian
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - Carlotta Catozzi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - Ute Müller
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
11
|
Surai PF, Kochish II, Fisinin VI, Juniper DT. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals (Basel) 2019; 9:E462. [PMID: 31331084 PMCID: PMC6680431 DOI: 10.3390/ani9070462] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
In commercial animals production, productive stress can negatively impact health status and subsequent productive and reproductive performance. A great body of evidence has demonstrated that as a consequence of productive stress, an overproduction of free radicals, disturbance of redox balance/signaling, and oxidative stress were observed. There is a range of antioxidants that can be supplied with animal feed to help build and maintain the antioxidant defense system of the body responsible for prevention of the damaging effects of free radicals and the toxic products of their metabolism. Among feed-derived antioxidants, selenium (Se) was shown to have a special place as an essential part of 25 selenoproteins identified in animals. There is a comprehensive body of research in monogastric species that clearly shows that Se bioavailability within the diet is very much dependent on the form of the element used. Organic Se, in the form of selenomethionine (SeMet), has been reported to be a much more effective Se source when compared with mineral forms such as sodium selenite or selenate. It has been proposed that one of the main advantages of organic Se in pig and poultry nutrition is the non-specific incorporation of SeMet into general body proteins, thus forming an endogenous Se reserve that can be utilized during periods of stress for additional synthesis of selenoproteins. Responses in ruminant species to supplementary Se tend to be much more variable than those reported in monogastric species, and much of this variability may be a consequence of the different fates of Se forms in the rumen following ingestion. It is likely that the reducing conditions found in the rumen are responsible for the markedly lower assimilation of inorganic forms of Se, thus predisposing selenite-fed animals to potential Se inadequacy that may in turn compromise animal health and production. A growing body of evidence demonstrates that organic Se has a number of benefits, particularly in dairy and beef animals; these include improved Se and antioxidant status and better Se transfer via the placenta, colostrum, and milk to the newborn. However, there is a paucity in the data concerning molecular mechanisms of SeMet assimilation, metabolism and selenoprotein synthesis regulation in ruminant animals, and as such, further investigation is required.
Collapse
Affiliation(s)
- Peter F Surai
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia.
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Godollo, Hungary.
| | - Ivan I Kochish
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Vladimir I Fisinin
- All-Russian Institute of Poultry Husbandry, 141311 Sergiev Posad, Russia
| | - Darren T Juniper
- Animal, Dairy, Food Chain Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK
| |
Collapse
|