1
|
Boy FR, Casquete R, Gudiño I, Merchán AV, Peromingo B, Benito MJ. Antifungal Effect of Autochthonous Aromatic Plant Extracts on Two Mycotoxigenic Strains of Aspergillus flavus. Foods 2023; 12:foods12091821. [PMID: 37174358 PMCID: PMC10178858 DOI: 10.3390/foods12091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
This study identified the compounds obtained from four native Dehesa plants, which were holm oak, elm, blackberry and white rockrose, and evaluated their ability to inhibit the growth and production of aflatoxins B1 and B2 of two strains of mycotoxigenic Aspergillus flavus. For this purpose, phenolic compounds present in the leaves and flowers of the plants were extracted and identified, and subsequently, the effect on the growth of A. flavus, aflatoxin production and the expression of a gene related to its synthesis were studied. Cistus albidus was the plant with the highest concentration of phenolic compounds, followed by Quercus ilex. Phenolic acids and flavonoids were mainly identified, and there was great variability among plant extracts in terms of the type and quantity of compounds. Concentrated and diluted extracts were used for each individual plant. The influence on mold growth was not very significant for any of the extracts. However, those obtained from plants of the genus Quercus ilex, followed by Ulmus sp., were very useful for inhibiting the production of aflatoxin B1 and B2 produced by the two strains of A. flavus. Expression studies of the gene involved in the aflatoxin synthesis pathway did not prove to be effective. The results indicated that using these new natural antifungal compounds from the Dehesa for aflatoxin production inhibition would be desirable, promoting respect for the environment by avoiding the use of chemical fungicides. However, further studies are needed to determine whether the specific phenolic compounds responsible for the antifungal activity of Quercus ilex and Ulmus sp. produce the antifungal activity in pure form, as well as to verify the action mechanism of these compounds.
Collapse
Affiliation(s)
- Francisco Ramiro Boy
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Rocío Casquete
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Iris Gudiño
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Almudena V Merchán
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - Belén Peromingo
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| | - María José Benito
- Nutrición y Bromatología, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avd. Adolfo Suárez s/n, 06007 Badajoz, Spain
- Instituto Universitario de Investigación en Recursos Agrarios (INURA), Universidad de Extremadura, Avd. de la Investigación, 06006 Badajoz, Spain
| |
Collapse
|
2
|
Natarajan S, Balachandar D, Senthil N, Paranidharan V. Interaction of water activity and temperature on growth, gene expression, and aflatoxin B 1 production in Aspergillus flavus on Indian senna (Cassia angustifolia Vahl.). Int J Food Microbiol 2022; 361:109457. [PMID: 34742145 DOI: 10.1016/j.ijfoodmicro.2021.109457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
Senna (Cassia angustifolia Vahl.) is a medicinal crop with laxative properties, and it has significant demand in the global pharmaceutical market. Senna pods are highly susceptible to aflatoxin contamination, and the successful export of pods is hindered due to the regulatory limits of importing countries. The senna pod water activity (aw) from harvest to storage is the key factor determining AFB1 accumulation. The temperature conditions from field to warehouse also interact with pod aw, which influences fungal growth and AFB1 production. The determination of an ideal combination of aw and temperature led to the assessment of the critical control point for AFB1 synthesis in senna. Hence, this study aimed to evaluate the influence of aw (0.99, 0.96, 0.93, 0.90, and 0.87 aw) and temperature (20, 28, and 37 °C) on fungal growth, gene expression (aflR and aflS), and AFB1 production by A. flavus in senna agar medium. The fungus showed the longest lag time (7.7 days) at 20 °C with 0.87 aw. We observed that 0.96 aw (P < 0.01) was optimum for the diametric growth rate at 28 and 37 °C. However, the peak expression of regulatory genes (aflR and aflS) and the maximum AFB1 production were observed only at 28 °C (0.96 aw). The highest growth rate occurred at 37 °C, which did not favor the expression of genes and AFB1 production. However, at 28 °C, it positively correlated with gene expression and AFB1 production. The suppressed expression of regulatory genes and a trace amount of aflatoxin B1 were found at 20 °C with all the tested aw. In our experiments, the low aw (0.87 and 0.90 aw) suppressed the fungal growth, gene expression, and AFB1 production of A. flavus at all of the tested temperatures (20, 28, and 37 °C). The rapid drying of senna pods with a low water activity (≤0.87 aw) and storage at low temperature (20 °C) are ideal conditions to avoid AFB1 and ensure the quality of produce for export.
Collapse
Affiliation(s)
- Subramani Natarajan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - Dananjeyan Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India
| | - Vaikuntavasan Paranidharan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641 003, India.
| |
Collapse
|
3
|
The Potential of Plant-Based Bioactive Compounds on Inhibition of Aflatoxin B1 Biosynthesis and Down-regulation of aflR, aflM and aflP Genes. Antibiotics (Basel) 2020; 9:antibiotics9110728. [PMID: 33113979 PMCID: PMC7690750 DOI: 10.3390/antibiotics9110728] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/21/2020] [Indexed: 01/11/2023] Open
Abstract
The use of plant extracts in pre- and post-harvest disease management of agricultural crops to cope with aflatoxin B1 contamination has shown great promise due to their capability in managing toxins and safe-keeping the quality. We investigated the anti-aflatoxigenic effect of multiple doses of eight plant extracts (Heracleum persicum, Peganum harmala, Crocus sativus, Trachyspermum ammi, Rosmarinus officinalis, Anethum graveolens, Berberis vulgaris, Berberis thunbergii) on Aspergillus flavus via LC-MS and the down-regulatory effect of them on aflR, aflM and aflP genes involved in the aflatoxin B1 biosynthesis pathway using RT-qPCR analyses. Our results showed that H. persicum (4 mg/mL), P. harmala (6 mg/mL) and T. ammi (2 mg/mL) completely stopped the production of aflatoxin B1, without inducing significant changes in A. flavus growth. Furthermore, our findings showed a highly significant correlation between the gene expression and the aflatoxin B1 biosynthesis, such that certain doses of the extracts reduced or blocked the expression of the aflR, aflM and aflP and consequently reduced the synthesis of aflatoxin B1. Interestingly, compared to the regulatory gene (aflR), the down-regulation of expression in the structural genes (aflM and aflP) was more consistent and correlated with the inhibition of aflatoxin B1 production. Overall, this study reveals the anti-aflatoxigenic mechanisms of the selected plant extracts at the gene expression level and provides evidence for their use in plant and crop protection.
Collapse
|
4
|
Dual Transcriptional Profile of Aspergillus flavus during Co-Culture with Listeria monocytogenes and Aflatoxin B1 Production: A Pathogen-Pathogen Interaction. Pathogens 2019; 8:pathogens8040198. [PMID: 31635192 PMCID: PMC6963788 DOI: 10.3390/pathogens8040198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to investigate the effect of growth temperature and co-culture of Aspergillus flavus with Listeria monocytogenes on the production of Aflatoxin B1 (AFB1) and the transcriptional profile of associated regulatory and biosynthetic genes. The transcription of virulence- and homeostasis-associated genes of L. monocytogenes was also assessed. For this purpose, mono- and co-cultures of L. monocytogenes strain LQC 15257 and A. flavus strain 18.4 were inoculated into Malt Extract broth and allowed to grow for seven days at 25 °C and 30 °C. AFB1 quantification was performed by HPLC analysis and gene expression assessment by RT-qPCR. AFB1 production was lower at 30 °C compared to 25 °C during monoculture and also lower during co-cultures at both temperatures. This was accompanied by downregulation of aflM, aflR, aflP, and aflS during monoculture and aflM and aflS during co-culture at 30 °C. On the other hand, transcription of prfA, plcA, plcB, inlA, inlB, inlJ, murE, accA, acpP, as well as fapR, was not affected. sigB gene was downregulated after co-culture with the fungus at 25 °C and hly was downregulated after monoculture at 30 °C compared to 25 °C. In this work, the molecular interactions between A. flavus and L. monocytogenes were studied for the first time, offering a novel insight into their co-occurrence. Monitoring of their toxigenic and virulence potential at the molecular level revealed a complex dynamic in natural ecosystems.
Collapse
|