1
|
Tiezzi F, Fleming A, Malchiodi F. Use of Milk Infrared Spectral Data as Environmental Covariates in Genomic Prediction Models for Production Traits in Canadian Holstein. Animals (Basel) 2022; 12:1189. [PMID: 35565615 PMCID: PMC9099576 DOI: 10.3390/ani12091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
The purpose of this study was to provide a procedure for the inclusion of milk spectral information into genomic prediction models. Spectral data were considered a set of covariates, in addition to genomic covariates. Milk yield and somatic cell score were used as traits to investigate. A cross-validation was employed, making a distinction for predicting new individuals' performance under known environments, known individuals' performance under new environments, and new individuals' performance under new environments. We found an advantage of including spectral data as environmental covariates when the genomic predictions had to be extrapolated to new environments. This was valid for both observed and, even more, unobserved families (genotypes). Overall, prediction accuracy was larger for milk yield than somatic cell score. Fourier-transformed infrared spectral data can be used as a source of information for the calculation of the 'environmental coordinates' of a given farm in a given time, extrapolating predictions to new environments. This procedure could serve as an example of integration of genomic and phenomic data. This could help using spectral data for traits that present poor predictability at the phenotypic level, such as disease incidence and behavior traits. The strength of the model is the ability to couple genomic with high-throughput phenomic information.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
2
|
Baba T, Pegolo S, Mota LFM, Peñagaricano F, Bittante G, Cecchinato A, Morota G. Integrating genomic and infrared spectral data improves the prediction of milk protein composition in dairy cattle. Genet Sel Evol 2021; 53:29. [PMID: 33726672 PMCID: PMC7968271 DOI: 10.1186/s12711-021-00620-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background Over the past decade, Fourier transform infrared (FTIR) spectroscopy has been used to predict novel milk protein phenotypes. Genomic data might help predict these phenotypes when integrated with milk FTIR spectra. The objective of this study was to investigate prediction accuracy for milk protein phenotypes when heterogeneous on-farm, genomic, and pedigree data were integrated with the spectra. To this end, we used the records of 966 Italian Brown Swiss cows with milk FTIR spectra, on-farm information, medium-density genetic markers, and pedigree data. True and total whey protein, and five casein, and two whey protein traits were analyzed. Multiple kernel learning constructed from spectral and genomic (pedigree) relationship matrices and multilayer BayesB assigning separate priors for FTIR and markers were benchmarked against a baseline partial least squares (PLS) regression. Seven combinations of covariates were considered, and their predictive abilities were evaluated by repeated random sub-sampling and herd cross-validations (CV). Results Addition of the on-farm effects such as herd, days in milk, and parity to spectral data improved predictions as compared to those obtained using the spectra alone. Integrating genomics and/or the top three markers with a large effect further enhanced the predictions. Pedigree data also improved prediction, but to a lesser extent than genomic data. Multiple kernel learning and multilayer BayesB increased predictive performance, whereas PLS did not. Overall, multilayer BayesB provided better predictions than multiple kernel learning, and lower prediction performance was observed in herd CV compared to repeated random sub-sampling CV. Conclusions Integration of genomic information with milk FTIR spectral can enhance milk protein trait predictions by 25% and 7% on average for repeated random sub-sampling and herd CV, respectively. Multiple kernel learning and multilayer BayesB outperformed PLS when used to integrate heterogeneous data for phenotypic predictions.
Collapse
Affiliation(s)
- Toshimi Baba
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy.
| | - Lucio F M Mota
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. .,Center for Advanced Innovation in Agriculture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
3
|
Lu H, Bovenhuis H. Phenotypic and genetic effects of pregnancy on milk production traits in Holstein-Friesian cattle. J Dairy Sci 2020; 103:11597-11604. [PMID: 32981723 DOI: 10.3168/jds.2020-18561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/20/2020] [Indexed: 11/19/2022]
Abstract
Pregnancy is a prerequisite for the initiation of lactation and for maintaining the milk production cycle. Pregnancy affects milk production and therefore should be accounted for in the genetic evaluation. Furthermore, there might be genetic differences in pregnancy effects on milk composition. The objective of this study was to estimate phenotypic and genetic effects of pregnancy on milk production traits. For this purpose, test-day records and conception dates of 1,359 first-parity Holstein-Friesian cows were analyzed. Significant effects of pregnancy on all milk production traits were detected except somatic cell score (e.g., the cumulative effects of pregnancy on milk yield were -247 kg). The pregnancy effects on milk yield, lactose yield, protein yield, fat yield, and fat content were small during early gestation (<150 d) and substantially increased in late gestation. The effects of pregnancy on milk protein yield were relatively stronger than those on fat yield. The effects of pregnancy on milk production traits differed for DGAT1 genotypes. Milk yield, lactose yield, protein yield, and fat yield of DGAT1 AA cows were more affected by pregnancy than that of DGAT1 KK cows (e.g., the cumulative effects of pregnancy on milk yield were negligible for DGAT1 KK cows and were -443 kg for DGAT1 AA cows). These results suggest that DGAT1 KK cows may be more suitable for shortening or omitting the dry period than DGAT1 AA cows.
Collapse
Affiliation(s)
- Haibo Lu
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Henk Bovenhuis
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands.
| |
Collapse
|