1
|
Félix J, Baca A, Taboada L, Álvarez-Calatayud G, De la Fuente M. Consumption of a Probiotic Blend with Vitamin D Improves Immunity, Redox, and Inflammatory State, Decreasing the Rate of Aging-A Pilot Study. Biomolecules 2024; 14:1360. [PMID: 39595538 PMCID: PMC11591724 DOI: 10.3390/biom14111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
There is evidence of the effect of probiotic intake on the immune system. However, the effect probiotics may have on the rate of aging is unknown. The aim of this study is to determine the effect of a probiotic blend on immunity, redox state, inflammation, and the rate of aging or biological age. A group of 10 men and 14 women took, daily for 2 months, a sachet with three probiotics (Bifidobacterium animalis subsp. lactis BSO1, Lactobacillus reuteri LRE02, Lactobacillus plantarum LP14) and vitamin D. Before starting the treatment and after 2 months, peripheral blood was collected. Immune functions were assessed in isolated immune cells, and cytokine concentrations were also measured both in mononuclear cell cultures and plasma. Redox state parameters were also analyzed in whole blood cells. Finally, the Immunity Clock was applied to determine the biological age. Results show that the intake of this probiotic blend in general, in both men and women, improves immunity and decreases the oxidative and inflammatory state. In addition, it rejuvenates the biological age by 10 years on average. It can be concluded that this probiotic blend could be proposed as a good strategy to slow down the aging process, and to achieve healthy aging.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Adriana Baca
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (A.B.); (M.D.l.F.)
| | - Luz Taboada
- General Medicine Area, Hospital HM Sanchinarro, 28040 Madrid, Spain;
| | - Guillermo Álvarez-Calatayud
- Gastroenterology and Child Nutrition Area, General University Hospital Gregorio Marañón, 28007 Madrid, Spain;
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28040 Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
2
|
Mazhar MU, Naz S, Khan JZ, Khalid S, Ghazanfar S, Selim S, Tipu MK, Ashique S, Yasmin S, Almuhayawi MS, Alshahrani A, Ansari MY. Safety Evaluation and antioxidant potential of new probiotic strain Bacillus subtilis (NMCC-path-14) in Balb/c mice by sub-acute repeated dose toxicity. Heliyon 2024; 10:e38581. [PMID: 39403501 PMCID: PMC11471459 DOI: 10.1016/j.heliyon.2024.e38581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 03/06/2025] Open
Abstract
Probiotics have recently gained significant interest for their possible therapeutic effects in treating numerous health conditions. Probiotics containing Bacillus subtilis have been shown to have several health benefits, most notably in preventing diarrhea and gastrointestinal problems. A novel probiotic strain, Bacillus subtilis (NMCC-path-14), isolated from the rumen of a Nilli Ravi Buffalo, was evaluated for 28-day repeated dose toxicity in Balb/c mice. The NMCC-path-14 in low dose (1 × 108 CFU/ml) and high dose (1 × 1010 CFU/ml) was administered to the mice through gavage regularly. After 28 days of treatment, it was discovered that the no-observed-adverse-effect level (NOAEL) for NMCC-path-14 wasgreater than 1 × 1010 CFU/animal/day. This study also revealed no treatment-related changes in clinical parameters, body weight, gross pathology, or histology. Food consumption, hemoglobin, hematocrit, red blood cell counts, and colon length increased, while total/differential leukocyte count and platelets remained unchanged. The administration of NMCC-path-14 also resulted in decreased bilirubin and creatinine levels. Furthermore, NMCC-path-14 also displayed a promising antioxidant potential by increasing the antioxidant enzymes (GST, GSH, and CAT) and decreasing oxidant enzyme (MDA and NO) levels in vital organs like the liver, kidneys, spleen, and colon. TheNMCC-path-14also decreased the pathogenic bacterial population while increasing the beneficial population. Given the lack of adverse effects observed after NMCC-path-14 treatment, this strain is safe and must be considered as a potential probiotic in humans.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sharjeel Khalid
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Aziza Alshahrani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
3
|
Youn HY, Kim HJ, Kim H, Seo KH. A comparative evaluation of the kefir yeast Kluyveromyces marxianus A4 and sulfasalazine in ulcerative colitis: anti-inflammatory impact and gut microbiota modulation. Food Funct 2024; 15:6717-6730. [PMID: 38833212 DOI: 10.1039/d4fo00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Although only Saccharomyces boulardii has been studied for ulcerative colitis (UC), probiotic yeasts have immense therapeutic potential. Herein, we evaluated the kefir yeast Kluyveromyces marxianus A4 (Km A4) and its anti-inflammatory effect with sulfasalazine in BALB/c mice with dextran sulfate sodium (DSS)-induced colitis. Oral administration continued for 7 days after the mice were randomly divided into seven groups: control (CON, normal mice administered with saline), DSS-induced colitis mice administered saline (DSS), and DSS-induced colitis mice administered sulfasalazine only (S), Km A4 only (A4), Km A4 plus sulfasalazine (A4 + S), S. boulardii ATCC MYA-796 (Sb MYA-796) only (Sb), and Sb MYA-796 plus sulfasalazine (Sb + S). The β-glucan content of Km A4 was significantly higher than that of Sb MYA-796 (P < 0.05). Body weight gain (BWG) significantly correlated with colon length, cyclooxygenase-2 (Cox-2) levels, and Bacteroides abundance (P < 0.05). In colitis-induced mice, the A4 + S group had the lowest histological score (6.00) compared to the DSS group (12.67), indicating the anti-inflammatory effects of this combination. The A4 + S group showed significantly downregulated expression of interleukin (Il)-6, tumor necrosis factor-α (Tnf-α), and Cox-2 and upregulated expression of Il-10 and occludin (Ocln) compared to the DSS group. Mice treated with A4 + S had enhanced Bacteroides abundance in their gut microbiota compared with the DSS group (P < 0.05). Bacteroides were significantly correlated with all colitis biomarkers (BWG, colon length, Il-6, Tnf-α, Il-10, Cox-2, and Ocln; P < 0.05). The anti-inflammatory effects of Km A4 could be attributed to high β-glucan content and gut microbiota modulation. Thus, treatment with Km A4 and sulfasalazine could alleviate UC.
Collapse
Affiliation(s)
- Hye-Young Youn
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyeon-Jin Kim
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Kun-Ho Seo
- Center for One Health, Department of Veterinary Public Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| |
Collapse
|
4
|
Reis SK, Socca EAR, de Souza BR, Genaro SC, Durán N, Fávaro WJ. Effects of probiotic supplementation on chronic inflammatory process modulation in colorectal carcinogenesis. Tissue Cell 2024; 87:102293. [PMID: 38244400 DOI: 10.1016/j.tice.2023.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/22/2024]
Abstract
The current study investigated the potential effects of probiotic supplementation on colorectal carcinogenesis chemically induced with 1,2-dimethylhydrazine (DMH) and treated with 5-fluorouracil (5FU)-based chemotherapy in mice. Animals were randomly allocated in five different groups: Control: which not receive any treatment throughout the experimental course; Colitis model group (DMH): treated with DMH; DMH+ 5FU: animals received I.P. (intraperitoneal) dose of chemotherapy on a weekly basis; DMH+PROB: animals received daily administrations (via gavage) of probiotics (Lactobacillus: acidophilus and paracasei, Bifidobacterium lactis and bifidum); and DMH+ PROB+ 5FU: animals received the same treatment as the previous groups. After ten-week treatment, mice's large intestine was collected and subjected to colon length, histopathological, periodic acid-schiff (PAS) staining and immunohistochemistry (TLR2, MyD88, NF-κB, IL-6, TLR4, TRIF, IRF-3, IFN-γ, Ki-67, KRAS, p53, IL-10, and TGF-β) analyzes. Variance (ANOVA) and Kruskal-Wallis tests were used for statistical analysis, at significance level p 0.05. Probiotics' supplementation has increased the production of Ki-67 cell-proliferation marker, reduced body weight, and colon shortening, as well as modulated the chronic inflammatory process in colorectal carcinogenesis by inhibiting NF-κB expression and mitigating mucin depletion. Thus, these findings lay a basis for guide future studies focused on probiotics' action mechanisms in tumor microenvironment which might have implications in clinical practice.
Collapse
Affiliation(s)
- Sabrina Karen Reis
- Faculty Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Eduardo Augusto Rabelo Socca
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Bianca Ribeiro de Souza
- British Columbia's Gynecological Cancer Research (OVCARE) Program and Department of Obstetrics and Gynecology, University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada.
| | | | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Wagner José Fávaro
- Faculty Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
5
|
Kim HB, Go EJ, Baek JS. Effect of hot-melt extruded Morus alba leaves on intestinal microflora and epithelial cells. Heliyon 2024; 10:e23954. [PMID: 38332870 PMCID: PMC10851307 DOI: 10.1016/j.heliyon.2023.e23954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Although rutin and isoquercitrin have many effects, they are insoluble substances, making it difficult to obtain pure substances. This study was to investigate whether Morus alba leaves containing rutin and isoquercitrin could improve intestinal health by making a sustained-release formulation through a hot-melt extrusion (HME) process with improved stability and solubility and determine whether it could upregulate the balance of intestinal microorganisms and intestinal epithelial cells. A sustained-release formulation was prepared by the HME process using Morus alba leaves and a hydrophilic polymer matrix. Antibacterial activities of pathogenic microorganisms (Escherichia coli, Streptococcus aureus, Enterococcus faecalis) and proliferative effect of probiotics (Lactobacillus rhamnosus, Pediococcus pentosaceus) were tested against intestinal microorganisms. Regarding intestinal epithelial cells, a co-culture model of Caco-2 cells and RAW 264.7 cells was used. It was confirmed that the extrudate exhibited high antibacterial activities against pathogenic microorganisms and affected the proliferation of probiotics. Furthermore, after inducing inflammation through LPS, it recovered transepithelial electrical resistance-increased levels of tight junction proteins and decreased expression levels of pro-inflammatory cytokines. HME of Morus alba leaves containing rutin and isoquercitrin can upregulate intestinal microbial balance and intestinal epithelial cells.
Collapse
Affiliation(s)
- Hyun Bok Kim
- National Institute of Agricultural Sciences, RDA, Wanju 55365, South Korea
| | - Eun Ji Go
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, South Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, South Korea
- Department of Bio-Functional Materials, Kangwon National University, Samcheok 25949. South Korea
- BeNatureBioLab, Chuncheon 24206, South Korea
| |
Collapse
|
6
|
Lu X, Zhang M, Ma Y, Li G, Zhao X, Qian W. Protective effect of Limosilactobacillus reuteri-fermented yogurt on mouse intestinal barrier injury induced by enterotoxigenic Escherichia coli. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7494-7505. [PMID: 37411001 DOI: 10.1002/jsfa.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is a pathogen that causes traveler's diarrhea, for which an effective vaccine is lacking. Previous studies showed that Limosilactobacillus reuteri could inhibit E. coli, effectively increase the expression of its tight junction protein, and reduce the adhesion of ETEC to the intestinal epithelial Caco-2 cell line. In this study, three kinds of yogurt with different starter cultures were first prepared: Lm. reuteri yogurt (fermented by Lm. reuteri alone), traditional yogurt (fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus at a ratio of 1:1) and mixed yogurt (fermented by Lm. reuteri, S. thermophilus and L. delbrueckii subsp. bulgaricus at a ratio of 1:1:1). The physiological properties, oxidative stress, intestinal barrier function, tight junction protein, pathological conditions and intestinal microbiota composition were investigated. RESULTS The data showed that Lm. reuteri-fermented yogurt pregavage could effectively alleviate the intestinal barrier impairment caused by ETEC in mice. It alleviated intestinal villus shortening and inflammatory cell infiltration, decreased plasma diamine oxidase concentration and increased claudin-1 and occludin expression in the jejunum of ETEC-infected mice. In addition, Lm. reuteri-fermented yogurt significantly reduced the ETEC load in fecal samples, reversed the increase in Pseudomonadota abundance and decreased Bacteroidota abundance caused by ETEC infection. Furthermore, the composition of the intestinal microbiota could maintain a stable state similar to that in healthy mice. CONCLUSION These findings indicate that Lm. reuteri-fermented yogurt could alleviate intestinal barrier damage, inhibit ETEC growth and maintain the stability of the intestinal microbiota during ETEC infection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xi Lu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Mingxin Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yuzhe Ma
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guohua Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xin Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Weisheng Qian
- Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Ahn SI, Kim MS, Park DG, Han BK, Kim YJ. Effects of probiotics administration on lactose intolerance in adulthood: A meta-analysis. J Dairy Sci 2023:S0022-0302(23)00271-0. [PMID: 37225575 DOI: 10.3168/jds.2022-22762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/11/2022] [Indexed: 05/26/2023]
Abstract
This meta-analysis aimed to investigate the effect of probiotic administration on adults with lactose intolerance. Twelve studies were identified from databases such as PubMed, Cochrane Library, and Web of Knowledge based on the inclusion and exclusion criteria. The effect size was estimated using the standardized mean difference (SMD), and Cochrane's Q test was used to evaluate the statistical heterogeneity of the effect size. Moderator analysis, including meta-ANOVA and meta-regression, were performed to determine the cause of heterogeneity in the effect size using a mixed-effect model. Egger's linear regression test was conducted to evaluate publication bias. The results showed that probiotic administration alleviated the symptoms of lactose intolerance, including abdominal pain, diarrhea, and flatulence. Among them, the area under the curve (AUC) showed the greatest decrease following probiotic administration (SMD, -4.96; 95% confidence interval, -6.92 to -3.00). In the meta-ANOVA test, abdominal pain and total symptoms decreased with monostrain probiotic administration. This combination was also effective for flatulence. The dosage of probiotics or lactose was significantly associated with a reduction in the total symptom score, and the linear regression models between the dosage and SMD were found to be Y = 2.3342 × dosage - 25.0400 (R2 = 79.68%) and Y = 0.2345 × dosage - 7.6618 (R2 = 34.03%), respectively. Publication bias was detected for most items. However, even after effect size correction, the probiotic administration effect for all items remained valid. The administration of probiotics was effective at improving adult lactose intolerance, and it is expected that the results of this study could help improve the nutritional status of adults by increasing their consumption of milk and dairy products in the future.
Collapse
Affiliation(s)
- Sung-Il Ahn
- Department of Food and Biotechnology, Korea University, Sejong, Korea 30019
| | - Moon Seong Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea 30019
| | - Dong Gun Park
- Department of Food and Biotechnology, Korea University, Sejong, Korea 30019.
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong, Korea 30019.
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea 30019
| |
Collapse
|
8
|
Poaty Ditengou JIC, Ahn SI, Chae B, Choi NJ. Are heat-killed probiotics more effective than live ones on colon length shortness, disease activity index, and the histological score of an inflammatory bowel disease-induced murine model? A meta-analysis. J Appl Microbiol 2023; 134:6988181. [PMID: 36646433 DOI: 10.1093/jambio/lxad008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
This study was conducted to compare the efficiency of heat-killed and live probiotics against colon length shortness, disease activity index (DAI), and the histological score of an inflammatory bowel disease (IBD) via a meta-analysis. In February 2022, the eligible papers were collected from four databases (Google Scholar, PubMed, ScienceDirect, and Scopus). Using common- and random-effects models, the effect sizes were estimated throughout the standardized mean difference. Forty-three papers were recorded for our meta-analysis, and the heterogeneity of the effect sizes was determined with Cochran's Q test, followed by meta-ANOVA and meta-regression analyses. The probiotics (live and heat-killed) had globally an improving or preventive effect on colon length shortness, DAI, and histological score. The sub-group analysis revealed that the heat-killed probiotics had statistically (P > .05) the same improving effect on colon length shortness, DAI, and histological score as live probiotics. In conclusion, this study suggested that live and heat-killed probiotics had a similar impact on IBD symptoms investigated in this study. The present outcomes would be a good base for researchers willing to further compare the effects of live and heat-killed probiotics on IBD.
Collapse
Affiliation(s)
| | - Sung-Il Ahn
- Department of Food and Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Byungho Chae
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Nag-Jin Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
9
|
Xue Z, Li R, Liu J, Zhou J, Zhang X, Zhang T, Zhang M, Yang Y, Chen H. Preventive and synbiotic effects of the soluble dietary fiber obtained from Lentinula edodes byproducts and Lactobacillus plantarum LP90 against dextran sulfate sodium-induced colitis in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:616-626. [PMID: 36054505 DOI: 10.1002/jsfa.12173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soluble dietary fiber (SDF) obtained from Lentinula edodes byproducts has beneficial effects on human intestinal health. This study aimed to examine the combined preventive and ameliorative effects of a kind of synbiotic (SDF with a molecular weight of 1.58 × 102 kDa and Lactobacillus plantarum LP90 (LP) at 1 × 109 CFU kg-1 ) on dextran sulfate sodium-induced colitis mice. RESULTS The results demonstrated that synbiotic treatment could alleviate weight loss, decrease the disease activity index level and cause histological amelioration. Synbiotic treatment also promoted the production of goblet cells, increased the expression of tight junction proteins, and adjusted the production of myeloperoxidase, malondialdehyde and superoxide dismutase to repair intestinal epithelial injury. Clinical symptoms were alleviated by maintaining Th17/Treg balance, increasing interleukin 10 and immunoglobulin A levels, reducing interleukin 17a and tumor necrosis factor α production, and promoting mRNA to highly express of Foxp3 and vitamin D receptors. Moreover, synbiotic treatment could upregulate butyric acid production (4.71 ± 0.46 mol g-1 feces, P < 0.05) and diversity of intestinal microbial to maintain intestinal homeostasis. CONCLUSION This study suggested that the combination of LP and SDF as a synbiotic has the potential for use as a nutritional supplement to alleviate colitis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihan Xue
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Tingting Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| | - Min Zhang
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin, PR China
- State Key Laboratory of Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yang Yang
- Department of Orthopedics, Tianjin Hospital, Tianjin, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
10
|
Santos FH, Panda SK, Ferreira DCM, Dey G, Molina G, Pelissari FM. Targeting infections and inflammation through micro and nano-nutraceuticals. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Alipour R, Marzabadi LR, Arjmand B, Ayati MH, Namazi N. The effects of medicinal herbs on gut microbiota and metabolic factors in obesity models: A systematic review. Diabetes Metab Syndr 2022; 16:102586. [PMID: 35961277 DOI: 10.1016/j.dsx.2022.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS This systematic review of animal studies aimed to identify anti-obesity medicinal herbs with prebiotic properties, and investigate their effects on gut microbiota and metabolic disorders. METHODS To obtain the relevant publications, four electronic databases were systematically searched up to June 2019. RESULTS Out of 1949 publications, 20 articles met the inclusion criteria in this study. Apart from body weight, some cases (n = 11) had reported the effects of medicinal herbs on metabolic parameters, including lipid profile (n = 7) and glycemic status (n = 4). CONCLUSION Although some medicinal herbs could be effective in modulating metabolic status and body weight, through making changes in the gut flora, further studies are needed to confirm the efficacy of such herbs in clinical trials.
Collapse
Affiliation(s)
- Reihane Alipour
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Rasi Marzabadi
- Department of Persian Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Cellular and Molecular Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Iran
| | - Mohammad Hossein Ayati
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nazli Namazi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Budu O, Banciu C, Pinzaru I, Sarău C, Lighezan D, Șoica C, Dehelean C, Drăghici G, Dolghi A, Prodea A, Mioc M. A Combination of Two Probiotics, Lactobacillus sporogenes and Clostridium butyricum, Inhibits Colon Cancer Development: An In Vitro Study. Microorganisms 2022; 10:microorganisms10091692. [PMID: 36144294 PMCID: PMC9506018 DOI: 10.3390/microorganisms10091692] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Cancer remains a leading cause of death worldwide and, even though several advances have been made in terms of specific treatment, the late-stage detection and the associated side effects of the conventional drugs sustain the search for better treatment alternatives. Probiotics are live microorganisms that have been proven to possess numerous health benefits for human hosts, including anticancer effects. In the present study, the in vitro effect of the association of two probiotic strains (PBT), Lactobacillus sporogenes and Clostridium butyricum, were tested against colon (HT-29 and HCT 116), lung (A549), and liver (HepG2) cancer cell lines, alone or in combination with 5-fluorouracil (5FU). Moreover, the underlying mechanism of PBT and PBT-5FU against the HT-29 cell line was evaluated using the Hoechst 33342 staining, revealing characteristic apoptotic modifications, such as chromatin condensation, nuclear fragmentation, and membrane blebbing. Furthermore, the increase in the expression of pro-apoptotic Bax, Bid, Bad, and Bak proteins and the inhibition of the anti-apoptotic Bcl-2 and Bcl-XL proteins were recorded. Collectively, these findings suggest that the two strains of probiotic bacteria, alone or in association with 5FU, induce apoptosis in colon cancer cells and may serve as a potential anticancer treatment.
Collapse
Affiliation(s)
- Oana Budu
- Department of Internal Medicine IV, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Iulia Pinzaru
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Correspondence: (I.P.); (C.S.); Tel.: +40-256-494-604
| | - Cristian Sarău
- Department of Medical Semiology I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Correspondence: (I.P.); (C.S.); Tel.: +40-256-494-604
| | - Daniel Lighezan
- Department of Medical Semiology I, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Codruța Șoica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Cristina Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - George Drăghici
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Alina Dolghi
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Alexandra Prodea
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| | - Marius Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania
| |
Collapse
|
13
|
Zhu Y, Zhao Q, Huang Q, Li Y, Yu J, Zhang R, Liu J, Yan P, Xia J, Guo L, Liu G, Yang X, Zeng J. Nuciferine Regulates Immune Function and Gut Microbiota in DSS-Induced Ulcerative Colitis. Front Vet Sci 2022; 9:939377. [PMID: 35909691 PMCID: PMC9328756 DOI: 10.3389/fvets.2022.939377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Nuciferine, a major aporphine alkaloid obtained from the leaves of Nelumbo nucifera, exhibits anti-cancer and anti-inflammatory properties; however, its protective effects against inflammatory bowel diseases (IBD) has never been explored. In this study, an ulcerative colitis (UC) model was established in BALb/c mice by the continuous administration of 5% dextran sulfate sodium (DSS) in drinking water for 1 week. From day 8 to day 14, the DSS-treated mice were divided into a high-dose and a low-dose nuciferine treatment group and were intraperitoneally injected with the corresponding dose of the drug. Body weight loss, disease activity index (DAI), and colon length were measured. Histological changes were observed using hematoxylin and eosin staining. T lymphocyte proliferation was assessed by MTT assay. The ratio of CD3+, CD4+, CD8+, Th1, Th2, Th17, and Treg cells were estimated by flow cytometry. Finally, 16S rRNA sequencing was performed to compare the composition and relative abundance of the gut microbiota among the different treatment groups. The results showed that nuciferine treatment led to a significant improvement in symptoms, such as histological injury and colon shortening in mice with DSS-induced UC. Nuciferine treatment improved the Th1/Th2 and Treg/Th17 balance in the DSS-induced IBD model, as well as the composition of the intestinal microflora. At the phylum level, compared with the control group, the abundance of Firmicutes and Actinobacteriota was decreased in the model group, whereas that of Bacteroidetes increased. Meanwhile, at the genus level, compared with the control group, the numbers of the genera Lachnospiraceae_Clostridium, Bilophila and Halomonas reduced in the model group, while those of Bacteroides, Parabacteroides, and Paraprevotella increased. Notably, nuciferine administration reversed this DSS-induced gut dysbiosis. These results indicated that nuciferine modulates gut microbiota homeostasis and immune function in mice with DSS-induced UC.
Collapse
Affiliation(s)
- Yiling Zhu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Qing Zhao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Qi Huang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yana Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Jie Yu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Rui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Jiali Liu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Pupu Yan
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Jinjin Xia
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Liwei Guo
- College of Animal Science, Yangtze University, Jingzhou, China
- *Correspondence: Liwei Guo
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, China
- Guoping Liu
| | - Xiaolin Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
14
|
The Effect of Probiotics on Intestinal Tight Junction Protein Expression in Animal Models: A Meta-Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study investigates the effect of probiotics supplementation on tight junction protein (TJP) expression in animal models by meta-analysis. We estimated the effect of probiotics administration in an animal inflammatory bowel disease model based on 47 collected articles from the databases, including Sciencedirect, Pubmed, Scopus, and Google Scholar. The effect size was analyzed with the standardized mean difference, and the heterogeneity of the effect sizes was assessed using Cochran’s Q test. To explain the heterogeneity, moderate analyses, such as meta-ANOVA and meta-regression, were performed using the mixed effects model. Finally, publication bias was assessed using Egger’s linear regression test. Among the evaluated items, zonula occluden (ZO)-1 showed the highest Q statistics value, and the effect sizes of all items were positive with high significance (p < 0.0001). The I2 value of all items reflected high heterogeneity (in excess of 80%). From the results of the meta-ANOVA, the factors of the heterogeneity found in the probiotics strains were investigated. Lactobacillus reuteri was identified as having the greatest effect on claudin and ZO-1 expression. The publication bias was detected by the Egger’s linear regression test, though it revealed that the occludin and ZO-1 had larger sample sizes than the claudin. In sum, this meta-analysis reveals that probiotics are effective at improving TJP expression in a gut environment of inflammatory bowel disease (IBD)-induced animal model. Our findings will interest IBD patients, as they suggest an area warranting future study.
Collapse
|
15
|
Zhang Y, Gao Y, Wang M, Shi L, Liu Y, Yan C, Wang J, Meluleki HJ, Geng W, Wang Y. The fermented soy whey produced by a combined lactic acid bacteria starter shows improved flavor and the function in alleviating dextran sulphate sodium induced colitis in mice. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2051539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yang Zhang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yueyu Gao
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Meng Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Lei Shi
- Tianjin Food Group Co. Ltd, Tianjin, China
| | - Yuan Liu
- Tianjin Food Group Co. Ltd, Tianjin, China
| | - Chunxiao Yan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jinju Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Hungwe Justice Meluleki
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Weitao Geng
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Yanping Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
16
|
Wu S, Wu Q, Wang J, Li Y, Chen B, Zhu Z, Huang R, Chen M, Huang A, Xie Y, Jiao C, Ding Y. Novel Selenium Peptides Obtained from Selenium-Enriched Cordyceps militaris Alleviate Neuroinflammation and Gut Microbiota Dysbacteriosis in LPS-Injured Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3194-3206. [PMID: 35238567 DOI: 10.1021/acs.jafc.1c08393] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing attention focuses on the relationship between neuroinflammation and Alzheimer's disease (AD). The reports on the microbiota-gut-brain axis reveal that the regulation by gut microbiota is an effective way to intervene in neuroinflammation-related AD. In this study, two novel selenium peptides (Se-Ps), VPRKL(Se)M (Se-P1) and RYNA(Se)MNDYT (Se-P2), with neuroprotection effects were obtained from Se-enriched Cordyceps militaris. Se-P1 and Se-P2 pre-protection led to a 30 and 33% increase in the PC-12 cell viability compared to the damage group, respectively. Moreover, Se-Ps exhibited a significant pre-protection against LPS-induced inflammatory and oxidative stress in the colon and brain by inhibiting the production of pro-inflammatory mediators (p < 0.05) and malondialdehyde, as well as promoting anti-inflammatory cytokine level and antioxidant enzyme activity (p < 0.05), which may alleviate the cognitive impairment in LPS-injured mice (p < 0.05). Se-Ps not only repaired the intestinal mucosa damage of LPS-injured mice but also had a positive effect on gut microbiota dysbacteriosis by increasing the abundance of Lactobacillus and Alistipes and decreasing the abundance of Akkermansia and Bacteroides. Collectively, the antioxidant, anti-inflammatory, and regulating properties on gut microflora of Se-Ps contribute to their neuroprotection, supporting that Se-Ps could be a promising dietary supplement in the prevention and/or treatment of AD.
Collapse
Affiliation(s)
- Shujian Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P.R. China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, P.R. China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, P.R. China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510070, P.R. China
| | - Yangfu Li
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P.R. China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, P.R. China
| | - Bo Chen
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P.R. China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, P.R. China
| | - Zhenjun Zhu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P.R. China
| | - Rui Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P.R. China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, P.R. China
| | - Mengfei Chen
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P.R. China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, P.R. China
| | - Aohuan Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P.R. China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, P.R. China
| | - Yizhen Xie
- Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou 510700, P.R. China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou 510700, P.R. China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, P.R. China
| |
Collapse
|
17
|
Tang G, Huang W, Tao J, Wei Z. Prophylactic effects of probiotics or synbiotics on postoperative ileus after gastrointestinal cancer surgery: A meta-analysis of randomized controlled trials. PLoS One 2022; 17:e0264759. [PMID: 35231076 PMCID: PMC8887765 DOI: 10.1371/journal.pone.0264759] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/17/2022] [Indexed: 01/30/2023] Open
Abstract
Background Postoperative ileus is a major problem following gastrointestinal cancers surgery, several randomized controlled trials have been conducted investigating the use of probiotics or synbiotics to reduce postoperative ileus, but their findings are controversial. Objective We conducted a meta-analysis to determine the effect of probiotics or synbiotics on early postoperative recovery of gastrointestinal function in patients with gastrointestinal cancer. Methods The Embase, Cochrane Library, PubMed, and Web of Science databases were comprehensively searched for randomized controlled trials (RCTs) that evaluated the effects of probiotics or synbiotics on postoperative recovery of gastrointestinal function as of April 27, 2021. Outcomes included the time to first flatus, time to first defecation, days to first solid diet, days to first fluid diet, length of postoperative hospital stay, incidence of abdominal distension and incidence of postoperative ileus. The results were reported as the mean difference (MD) and relative risk (RR) with 95% confidence intervals (CI). Results A total of 21 RCTs, involving 1776 participants, were included. Compared with the control group, probiotic and synbiotic supplementation resulted in a shorter first flatus (MD, -0.53 days), first defecation (MD, -0.78 days), first solid diet (MD, -0.25 days), first fluid diet (MD, -0.29 days) and postoperative hospital stay (MD, -1.43 days). Furthermore, Probiotic and synbiotic supplementation reduced the incidence of abdominal distension (RR, 0.62) and incidence of postoperative ileus (RR, 0.47). Conclusion Perioperative supplementation of probiotics or synbiotics can effectively promote the recovery of gastrointestinal function after gastrointestinal cancer surgery.
Collapse
Affiliation(s)
- Gang Tang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wang Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tao
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Zhengqiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
18
|
Ames CW, Cunha KFD, Vitola HRS, Hackbart HCDS, Sanches Filho PJ, Cruxen CEDS, da Silva WP, Fiorentini ÂM. Evaluation of potentially probiotic
Lactobacillus casei
CSL3 immobilized on oats and applied to yogurt production. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Camila Waschburger Ames
- Department of Agroindustrial Science and Technology Federal University of Pelotas (UFPel) Pelotas Brazil
| | - Kamila Furtado da Cunha
- Department of Agroindustrial Science and Technology Federal University of Pelotas (UFPel) Pelotas Brazil
| | | | | | | | | | - Wladimir Padilha da Silva
- Department of Agroindustrial Science and Technology Federal University of Pelotas (UFPel) Pelotas Brazil
- Biotechnology Unit Technology Development Center Federal University of Pelotas (UFPel) Pelotas Brazil
| | - Ângela Maria Fiorentini
- Department of Agroindustrial Science and Technology Federal University of Pelotas (UFPel) Pelotas Brazil
| |
Collapse
|
19
|
Aggarwal S, Ranjha R, Paul J. Neuroimmunomodulation by gut bacteria: Focus on inflammatory bowel diseases. World J Gastrointest Pathophysiol 2021; 12:25-39. [PMID: 34084590 PMCID: PMC8160600 DOI: 10.4291/wjgp.v12.i3.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/01/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Microbes colonize the gastrointestinal tract are considered as highest complex ecosystem because of having diverse bacterial species and 150 times more genes as compared to the human genome. Imbalance or dysbiosis in gut bacteria can cause dysregulation in gut homeostasis that subsequently activates the immune system, which leads to the development of inflammatory bowel disease (IBD). Neuromediators, including both neurotransmitters and neuropeptides, may contribute to the development of aberrant immune response. They are emerging as a regulator of inflammatory processes and play a key role in various autoimmune and inflammatory diseases. Neuromediators may influence immune cell’s function via the receptors present on these cells. The cytokines secreted by the immune cells, in turn, regulate the neuronal functions by binding with their receptors present on sensory neurons. This bidirectional communication of the enteric nervous system and the enteric immune system is involved in regulating the magnitude of inflammatory pathways. Alterations in gut bacteria influence the level of neuromediators in the colon, which may affect the gastrointestinal inflammation in a disease condition. Changed neuromediators concentration via dysbiosis in gut microbiota is one of the novel approaches to understand the pathogenesis of IBD. In this article, we reviewed the existing knowledge on the role of neuromediators governing the pathogenesis of IBD, focusing on the reciprocal relationship among the gut microbiota, neuromediators, and host immunity. Understanding the neuromediators and host-microbiota interactions would give a better insight in to the disease pathophysiology and help in developing the new therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Surbhi Aggarwal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
- School of Life Sciences, Jawaharlal Nehru University, Delhi 110067, India
| | - Raju Ranjha
- School of Life Sciences, Jawaharlal Nehru University, Delhi 110067, India
- Field Unit Raipur, ICMR-National Institute of Malaria Research, Raipur 492015, Chhattisgarh, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, Delhi 110067, India
| |
Collapse
|
20
|
Curciarello R, Canziani KE, Salto I, Barbiera Romero E, Rocca A, Doldan I, Peton E, Brayer S, Sambuelli AM, Goncalves S, Tirado P, Correa GJ, Yantorno M, Garbi L, Docena GH, Serradell MDLÁ, Muglia CI. Probiotic Lactobacilli Isolated from Kefir Promote Down-Regulation of Inflammatory Lamina Propria T Cells from Patients with Active IBD. Front Pharmacol 2021; 12:658026. [PMID: 33935778 PMCID: PMC8082687 DOI: 10.3389/fphar.2021.658026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/04/2021] [Indexed: 01/17/2023] Open
Abstract
Ulcerative colitis and Crohn’s disease, the two main forms of inflammatory bowel disease (IBD), are immunologically mediated disorders. Several therapies are focused on activated T cells as key targets. Although Lactobacillus kefiri has shown anti-inflammatory effects in animal models, few studies were done using human mucosal T cells. The aim of this work was to investigate the immunomodulatory effects of this bacterium on intestinal T cells from patients with active IBD. Mucosal biopsies and surgical samples from IBD adult patients (n = 19) or healthy donors (HC; n = 5) were used. Lamina propria mononuclear cells were isolated by enzymatic tissue digestion, and entero-adhesive Escherichia coli-specific lamina propria T cells (LPTC) were expanded. The immunomodulatory properties of L. kefiri CIDCA 8348 strain were evaluated on biopsies and on anti-CD3/CD28-activated LPTC. Secreted cytokines were quantified by ELISA, and cell proliferation and viability were assessed by flow cytometry. We found that L. kefiri reduced spontaneous release of IL-6 and IL-8 from inflamed biopsies ex vivo. Activated LPTC from IBD patients showed low proliferative rates and reduced secretion of TNF-α, IL-6, IFN-γ and IL-13 in the presence of L. kefiri. In addition, L. kefiri induced an increased frequency of CD4+FOXP3+ LPTC along with high levels of IL-10. This is the first report showing an immunomodulatory effect of L. kefiri CIDCA 8348 on human intestinal cells from IBD patients. Understanding the mechanisms of interaction between probiotics and immune mucosal cells may open new avenues for treatment and prevention of IBD.
Collapse
Affiliation(s)
- Renata Curciarello
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| | - Karina E Canziani
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| | - Ileana Salto
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| | - Emanuel Barbiera Romero
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| | - Andrés Rocca
- Unidad Endoscopía, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ivan Doldan
- Unidad Endoscopía, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Emmanuel Peton
- Unidad de Proctología, Departamento de Cirugía, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Brayer
- Unidad de Proctología, Departamento de Cirugía, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alicia M Sambuelli
- Sección de Enfermedades Inflamatorias Del Intestino, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina Goncalves
- Sección de Enfermedades Inflamatorias Del Intestino, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pablo Tirado
- Sección de Enfermedades Inflamatorias Del Intestino, Hospital de Gastroenterología Dr. Carlos Bonorino Udaondo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gustavo J Correa
- Área de Enfermedad Inflamatoria Intestinal, Sala de Endoscopía, Servicio de Gastroenterología, Hospital Interzonal General de Agudos General San Martín, La Plata, Argentina
| | - Martín Yantorno
- Área de Enfermedad Inflamatoria Intestinal, Sala de Endoscopía, Servicio de Gastroenterología, Hospital Interzonal General de Agudos General San Martín, La Plata, Argentina
| | - Laura Garbi
- Área de Enfermedad Inflamatoria Intestinal, Sala de Endoscopía, Servicio de Gastroenterología, Hospital Interzonal General de Agudos General San Martín, La Plata, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cecilia I Muglia
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), CONICET-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Asociado CIC PBA, La Plata, Argentina
| |
Collapse
|
21
|
Wu Y, Chen H, Zou Y, Yi R, Mu J, Zhao X. Lactobacillus plantarum HFY09 alleviates alcohol-induced gastric ulcers in mice via an anti-oxidative mechanism. J Food Biochem 2021; 45:e13726. [PMID: 33846998 DOI: 10.1111/jfbc.13726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
The protective effect of Lactobacillus plantarum HFY09 (LP-HFY09) on alcohol-induced gastric ulcers was investigated. Gastric morphology observation and pathological tissue sections showed that LP-HFY09 effectively relieved gastric tissue injury. The biochemical indicator detection showed that LP-HFY09 increased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione (GSH), prostaglandin E2 (PGE2), and somatostatin (SS) levels, and decreased malondialdehyde (MDA) levels. Moreover, LP-HFY09 inhibited the levels of inflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α), and elevated the level of anti-inflammatory cytokine IL-10. The quantitative polymerase chain reaction (q-PCR) examination revealed that LP-HFY09 enhanced the mRNA expression of nuclear factor E2-related factor 2 (Nrf2) and downstream genes, including copper/zinc superoxide dismutase (SOD1), heme oxygenase-1 (HO-1), gamma-glutamylcysteine synthetase (GSH1), manganese superoxide dismutase (SOD2), catalase (CAT), and GSH-Px. This study indicated that LP-HFY09 alleviated alcohol-induced gastric ulcers by increasing gastric mucosa defense factor, and inhibiting oxidative stress and the inflammatory response. PRACTICAL APPLICATIONS: LP-HFY09 has the potential to be investigated as a treatment for gastric injury induced by alcohol.
Collapse
Affiliation(s)
- Ya Wu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China.,College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Hong Chen
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yujie Zou
- Department of Emergency, Chongqing University Central Hospital, Chongqing, P.R. China
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
22
|
Zhu Y, Liu L, Sun Z, Ji Y, Wang D, Mei L, Shen P, Li Z, Tang S, Zhang H, Zhou Q, Deng J. Fucoidan as a marine-origin prebiotic modulates the growth and antibacterial ability of Lactobacillus rhamnosus. Int J Biol Macromol 2021; 180:599-607. [PMID: 33757852 DOI: 10.1016/j.ijbiomac.2021.03.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
Fucoidan has received much attention in healthy food and biomedicine owing to their unique (bio)physicochemical properties, particularly antibacterial and antiviral. Pathogenic microorganisms and probiotics are coexisting in many tissues (e.g., gut, oral, and vagina). However, the effect of fucoidan on probiotics has not been examined. Herein, fucoidan sterilized by different methods (i.e., 0.22 μm filter and high-temperature autoclave) is applied to explore its effect on the responses of Lactobacillus rhamnosus. It is found that high-temperature autoclave treatment causes the depolymerization of fucoidan. Further, the proliferation, morphology, and metabolism of probiotics are greatly dependent on the concentrations of fucoidan. The formation of probiotic biofilm is reduced with an increased concentration of fucoidan. Moreover, the antibacterial ability of probiotics initially increases and then decreases with an increased concentration of fucoidan. Thus, fucoidan could serve as a new marine-origin prebiotic, offering new insight into probiotic modulation and its application in inhibiting bacterial infections.
Collapse
Affiliation(s)
- Yanli Zhu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Lubin Liu
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Zhanyi Sun
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Yanjing Ji
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Li Mei
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Peili Shen
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao 266400, China
| | - Zhixin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Shang Tang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Hui Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China.
| | - Jing Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
23
|
Effectiveness of Chitosan as a Dietary Supplement in Lowering Cholesterol in Murine Models: A Meta-Analysis. Mar Drugs 2021; 19:md19010026. [PMID: 33435383 PMCID: PMC7827691 DOI: 10.3390/md19010026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 11/21/2022] Open
Abstract
This study presents a meta-analysis of studies that investigate the effectiveness of chitosan administration on lifestyle-related disease in murine models. A total of 34 published studies were used to evaluate the effect of chitosan supplementation. The effect sizes for various items after chitosan administration were evaluated using the standardized mean difference. Using Cochran’s Q test, the heterogeneity of effect sizes was assessed, after which a meta-ANOVA and -regression test was conducted to explain the heterogeneity of effect sizes using the mixed-effect model. Publication bias was performed using Egger’s linear regression test. Among the items evaluated, blood triglyceride and HDL-cholesterol showed the highest heterogeneity, respectively. Other than blood HDL-cholesterol, total cholesterol, and triglyceride in feces, most items evaluated showed a negative effect size with high significance in the fixed- and random-effect model (p < 0.0001). In the meta-ANOVA and -regression test, administering chitosan and resistant starch was revealed to be most effective in lowering body weight. In addition, chitosan supplementation proved to be an effective solution for serum TNF-α inhibition. In conclusion, chitosan has been shown to be somewhat useful in improving symptoms of lifestyle-related disease. Although there are some limitations in the results of this meta-analysis due to the limited number of animal experiments conducted, chitosan administration nevertheless shows promise in reducing the risk of cholesterol related metabolic disorder.
Collapse
|
24
|
Dietary Supplementation with Spray-Dried Porcine Plasma Attenuates Colon Inflammation in a Genetic Mouse Model of Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:ijms21186760. [PMID: 32942624 PMCID: PMC7555992 DOI: 10.3390/ijms21186760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary supplementation with spray-dried porcine plasma (SDP) can modulate the immune response of gut-associated lymphoid tissue. SDP supplementation reduces acute mucosal inflammation, as well as chronic inflammation associated with aging. The aim of this study was to analyze if SDP supplementation could ameliorate colitis in a genetic mouse model of inflammatory bowel disease (IBD). Wild-type mice and Mdr1a knockout (KO) mice were administered a control diet or an SDP-supplemented diet from day 21 (weaning) until day 56. The histopathological index, epithelial barrier, and intestinal immune system were analyzed in the colonic mucosa. KO mice had higher epithelial permeability, increased Muc1 and Muc4 expression, and lower abundance of E-cadherin and Muc2 (all p < 0.001). SDP prevented these effects (all p < 0.05) and decreased the colonic inflammation observed in KO mice, reducing neutrophil and monocyte infiltration and activation and the percentage of activated T helper lymphocytes in the colonic mucosa (all p < 0.05). SDP also diminished proinflammatory cytokine expression and increased the anti-inflammatory IL-10 concentration in the colonic mucosa (all p < 0.05). In conclusion, dietary supplementation with SDP enhances colon barrier function and reduces mucosal inflammation in a mouse model of IBD.
Collapse
|