1
|
Yu Y, Fu R, Jin C, Han L, Gao H, Fu B, Qi M, Li Q, Leng J. Multi-Omics Insights into Rumen Microbiota and Metabolite Interactions Regulating Milk Fat Synthesis in Buffaloes. Animals (Basel) 2025; 15:248. [PMID: 39858248 PMCID: PMC11758634 DOI: 10.3390/ani15020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The present study was conducted to analyze the correlation between the milk fat content of Binglangjiang buffaloes and their microbial and host metabolites. The 10 buffaloes with the highest milk fat content (HF, 5.60 ± 0.61%) and the 10 with the lowest milk fat content (LF, 1.49 ± 0.13%) were selected. Their rumen fluid and plasma were collected for rumen microbiota and metabolome analysis. The results showed that the rumen bacteria abundance of Synergistota, Quinella, Selenomonas, and Fretibacterium was significantly higher in the HF buffaloes. The abundance of 14 rumen fungi, including Candida, Talaromyces, Cyrenella, and Stilbella, was significantly higher in the HF buffaloes. The analysis of the metabolites in the rumen and plasma showed that several metabolites differed between the HF and LF buffaloes. A total of 68 and 42 differential metabolites were identified in the rumen and plasma, respectively. By clustering these differential metabolites, most of those clustered in the HF group were lipid and lipid-like molecules such as secoeremopetasitolide B, lucidenic acid J LysoPE (0:0/18:2 (9Z, 12Z)), and 5-tetradecenoic acid. Spearman's rank correlations showed that Quinella, Fretibacterium, Selenomonas, Cyrenella, and Stilbella were significantly positively correlated with the metabolites of the lipids and lipid-like molecules in the rumen and plasma. The results suggest that rumen microbiota such as Quinella, Fretibacterium, Selenomonas, and Cyrenella may regulate milk fat synthesis by influencing the lipid metabolites in the rumen and plasma. In addition, the combined analysis of the rumen microbiota and host metabolites may provide a fundamental understanding of the role of the microbiota and host in regulating milk fat synthesis.
Collapse
Affiliation(s)
- Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Huan Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Min Qi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Yunnan Animal Husbandry Station, Kunming 650224, China
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (L.H.); (H.G.); (B.F.); (M.Q.); (Q.L.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Toral PG, Hervás G, Frutos P. Invited review: Research on ruminal biohydrogenation-Achievements, gaps in knowledge, and future approaches from the perspective of dairy science. J Dairy Sci 2024; 107:10115-10140. [PMID: 39154717 DOI: 10.3168/jds.2023-24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Scientific knowledge about ruminal biohydrogenation (BH) has improved greatly since this metabolic process was empirically confirmed in 1951. For years, BH had mostly been perceived as a process to be avoided to increase the postruminal flow of UFA from the diet. Two milestones changed this perception and stimulated great interest in BH intermediates themselves: In 1987, the in vitro anticarcinogenic properties of CLA were described, and in 2000, the inhibition of milk fat synthesis by trans-10,cis-12 CLA was confirmed. Since then, numerous BH metabolites have been described in small and large ruminants, and the major deviation from the common BH pathway (i.e., the trans-10 shift) has been reasonably well established. However, there are some less well-characterized alterations, and the comprehensive description of new BH intermediates (e.g., using isotopic tracers) has not been coupled with research on their biological effects. In this regard, the low quality of some published fatty acid profiles may also be limiting the advance of knowledge in BH. Furthermore, although BH seems to no longer be considered a metabolic niche inhabited by a few bacterial species with a highly specific metabolic capability, researchers have failed to elucidate which specific microbial groups are involved in the process and the basis for alterations in BH pathways (i.e., changes in microbial populations or their activity). Unraveling both issues may be beneficial for the description of new microbial enzymes involved in ruminal lipid metabolism that have industrial interest. From the perspective of dairy science, other knowledge gaps that require additional research in the coming years are evaluation of the relationship between BH and feed efficiency and enteric methane emissions, as well as improving our understanding of how alterations in BH are involved in milk fat depression. Addressing these issues will have relevant practical implications in dairy science.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
3
|
Yu Y, Fu R, Jin C, Gao H, Han L, Fu B, Qi M, Li Q, Suo Z, Leng J. Regulation of Milk Fat Synthesis: Key Genes and Microbial Functions. Microorganisms 2024; 12:2302. [PMID: 39597692 PMCID: PMC11596427 DOI: 10.3390/microorganisms12112302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Milk is rich in a variety of essential nutrients, including fats, proteins, and trace elements that are important for human health. In particular, milk fat has an alleviating effect on diseases such as heart disease and diabetes. Fatty acids, the basic units of milk fat, play an important role in many biological reactions in the body, including the involvement of glycerophospholipids and sphingolipids in the formation of cell membranes. However, milk fat synthesis is a complex biological process involving multiple organs and tissues, and how to improve milk fat of dairy cows has been a hot research issue in the industry. There exists a close relationship between milk fat synthesis, genes, and microbial functions, as a result of the organic integration between the different tissues of the cow's organism and the external environment. This review paper aims (1) to highlight the synthesis and regulation of milk fat by the first and second genomes (gastrointestinal microbial genome) and (2) to discuss the effects of ruminal microorganisms and host metabolites on milk fat synthesis. Through exploring the interactions between the first and second genomes, and discovering the relationship between microbial and host metabolite in the milk fat synthesis pathway, it may become a new direction for future research on the mechanism of milk fat synthesis in dairy cows.
Collapse
Affiliation(s)
- Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Huan Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Min Qi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Zhuo Suo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Shi C, Li Y, Wang H, Zhang S, Deng J, Aziz-Ur-Rahman M, Cui Y, Lu L, Zhao W, Qiu X, He Y, Cao B, Abbas W, Ramzan F, Ren X, Su H. From Food Waste to Sustainable Agriculture: Nutritive Value of Potato By-Product in Total Mixed Ration for Angus Bulls. Foods 2024; 13:2771. [PMID: 39272536 PMCID: PMC11394973 DOI: 10.3390/foods13172771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Raw potato fries are a type of potato by-product (PBP), and they have great potential as a partial replacement of grain in animal feeds to improve the environmental sustainability of food production. This study aimed to investigate the effects of replacing corn with different levels of PBP (0%, 12.84%, 25.65%, and 38.44%) in the total mixed ration (TMR) of Angus bull. Sixty 16-month-old Angus bulls (548.5 ± 15.0 kg, mean ± SD) were randomly assigned to four treatments. The results indicated that with the increase in the substitution amount of PBP, the body weight decreased significantly. The dry matter apparent digestibility and starch apparent digestibility linearly decreased as PBP replacement increased. The feed ingredient composition in the TMR varied, leading to a corresponding change in the rumen microbiota, especially in cellulolytic bacteria and amylolytic bacteria. The abundance of Succiniclasticum in the 12.84% PBP and 38.44% PBP diets was significantly higher than that in the 0% PBP and 25.65% PBP diets. The abundance of Ruminococcus linearly increased. In conclusion, using PBP to replace corn for beef cattle had no negative impact on rumen fermentation, and the decrease in apparent digestibility explained the change in growth performance. Its application in practical production is highly cost-effective and a strategy to reduce food waste.
Collapse
Affiliation(s)
- Changxiao Shi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yingqi Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huili Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiajie Deng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Muhammad Aziz-Ur-Rahman
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Yafang Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lianqiang Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wenxi Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xinjun Qiu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yang He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Waseem Abbas
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Faisal Ramzan
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Xiufang Ren
- Shangdu County Animal Husbandry Service Center, Shangdu County, Ulanchap 013450, China
| | - Huawei Su
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Hanno SL, Hurst AM, Weaver K, Richards AT, Montes ME, Boerman JP. High oleic soybean oil maintains milk fat and increases apparent total-tract fat digestibility and fat deposition in lactating dairy cows. JDS COMMUNICATIONS 2024; 5:287-292. [PMID: 39220837 PMCID: PMC11365314 DOI: 10.3168/jdsc.2023-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/25/2024] [Indexed: 09/04/2024]
Abstract
Due to the bioactive properties of oleic acid, the objective of this study was to feed high oleic soybean oil (HOSO) to lactating cows and evaluate milk production, body composition, and apparent total-tract digestibility variables. Thirty Holstein cows (n = 16 primiparous, n = 14 multiparous at 87 ± 26 DIM at the start of the trial) were used in a crossover design with periods lasting 21 d. The treatments were a control (CON) diet with no added soybean oil and a HOSO diet with 1.5% diet DM of high oleic soybean oil. Dry matter and milk production data were collected the last 7 d of each period, and milk composition was collected the last 3 d of each period. Fecal samples were collected 6 times during the last 3 d of each period. Body weights were collected on the last 3 d of each period after the morning milking and ultrasound scans of the longissimus dorsi on the last day of each period. Compared with CON, HOSO did not affect DMI, milk production, and milk component yields. However, a parity effect was observed with multiparous cows having increased DMI (5.9 kg/d), milk production (11.2 kg/d), and component yields, with no treatment by parity interactions. Milk fat concentration tended to be greater for HOSO cows. Body weight data tended to have an interaction between treatment and parity, with multiparous HOSO cows having increased BW compared with CON and no effect on primiparous cows. Similar treatment by parity effects were observed for BCS. Compared with CON, HOSO increased fat depth by 0.44 mm and apparent total-tract fat digestibility by 12 percentage units. The results of this study indicated no detrimental effects of HOSO on milk production parameters with an increase in milk fat concentration, fat digestibility, and deposition compared with a control diet.
Collapse
Affiliation(s)
- Samantha L. Hanno
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2063
| | - Aaron M. Hurst
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2063
| | - Kylie Weaver
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2063
| | - Andrew T. Richards
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2063
| | - Maria E. Montes
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2063
| | | |
Collapse
|
6
|
Si B, Liu K, Huang G, Chen M, Yang J, Wu X, Li N, Tang W, Zhao S, Zheng N, Zhang Y, Wang J. Relationship between rumen bacterial community and milk fat in dairy cows. Front Microbiol 2023; 14:1247348. [PMID: 37886063 PMCID: PMC10598608 DOI: 10.3389/fmicb.2023.1247348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Milk fat is the most variable nutrient in milk, and recent studies have shown that rumen bacteria are closely related to milk fat. However, there is limited research on the relationship between rumen bacteria and milk fatty. Fatty acids (FAs) are an important component of milk fat and are associated with various potential benefits and risks to human health. Methods In this experiment, forty-five healthy Holstein dairy cows with alike physiological and productive conditions were selected from medium-sized dairy farms and raised under the same feeding and management conditions. The experimental period was two weeks. During the experiment, raw milk and rumen fluid were collected, and milk components were determined. In this study, 8 high milk fat percentage (HF) dairy cows and 8 low milk fat percentage (LF) dairy cows were selected for analysis. Results Results showed that the milk fat percentage in HF group was significantly greater than that of the dairy cows in the LF group. 16S rRNA gene sequencing showed that the rumen bacterial abundance of HF dairy cows was significantly higher than that in LF dairy cows; at the genus level, the bacterial abundances of Prevotellaceae_UCG-001, Candidatus_Saccharimonas, Prevotellaceae_UCG-003, Ruminococcus_1, Lachnospiraceae_XPB1014_group, Lachnospiraceae_AC2044_group, probable_genus_10 and U29-B03 in HF group were significantly higher than those in the LF group. Spearman rank correlation analysis indicated that milk fat percentage was positively related to Prevotellaceae_UCG-001, Candidatus_Saccharimonas, Prevotellaceae_UCG-003, Ruminococcus_1, Lachnospiraceae_XPB1014_group, Lachnospiraceae_AC2044_group, probable_genus_10 and U29-B03. Furthermore, Prevotellaceae_UCG-001 was positively related to C14:0 iso, C15:0 iso, C18:0, Ruminococcus_1 with C18:1 t9, Lachnospiraceae_AC2044_group with C18:1 t9 and C18:1 t11, U29-B03 with C15:0 iso. Discussion To sum up, rumen bacteria in dairy cows are related to the variation of milk fat, and some rumen bacteria have potential effects on the deposition of certain fatty acids in raw milk.
Collapse
Affiliation(s)
- Boxue Si
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kaizhen Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Guoxin Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiqing Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiyong Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xufang Wu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenhao Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Wang Q, Cui Y, Indugu N, Loor JJ, Jiang Q, Yu Z, Baker L, Pitta D, Deng Z, Xu C. Integrated meta-omics analyses reveal a role of ruminal microorganisms in ketone body accumulation and ketosis in lactating dairy cows. J Dairy Sci 2023:S0022-0302(23)00327-2. [PMID: 37296048 DOI: 10.3168/jds.2022-22282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
The extent to which a nutrition-related disorder such as ketosis alters the ruminal microbiota or whether microbiota composition is related to ketosis and potential associations with host metabolism is unknown. We aimed to evaluate variations occurring in the ruminal microbiota of ketotic and nonketotic cows in the early postpartum period, and how those changes may affect the risk of developing the disease. Data on milk yield, dry matter intake (DMI), body condition score, and blood β-hydroxybutyrate (BHB) concentrations at 21 d postpartum were used to select 27 cows, which were assigned (n = 9 per group) to a clinical ketotic (CK, 4.10 ± 0.72 mmol BHB/L, DMI 11.61 ± 0.49 kg/d, ruminal pH 7.55 ± 0.07), subclinical ketotic (SK, 1.36 ± 0.12 mmol BHB/L, DMI 15.24 ± 0.34 kg/d, ruminal pH 7.58 ± 0.08), or control (NK, 0.88 ± 0.14 mmol BHB/L, DMI 16.74 ± 0.67/d, ruminal pH 7.61 ± 0.03) group. Cows averaged 3.6 ± 0.5 lactations and a body condition score of 3.11 ± 0.34 at the time of sampling. After blood serum collection for metabolomics analysis (1H nuclear magnetic resonance spectra), 150 mL of ruminal digesta was collected from each cow using an esophageal tube, paired-end (2 × 300 bp) sequencing of isolated DNA from ruminal digesta was performed via Illumina MiSeq, and sequencing data were analyzed using QIIME2 (v 2020.6) to measure the ruminal microbiota composition and relative abundance. Spearman correlation coefficients were used to evaluate relationships between relative abundance of bacterial genera and concentrations of serum metabolites. There were more than 200 genera, with approximately 30 being significant between NK and CK cows. Succinivibrionaceae UCG 1 taxa decreased in CK compared with NK cows. Christensenellaceae (Spearman correlation coefficient = 0.6), Ruminococcaceae (Spearman correlation coefficient = 0.6), Lachnospiraceae (Spearman correlation coefficient = 0.5), and Prevotellaceae (Spearman correlation coefficient = 0.6) genera were more abundant in the CK group and were highly positively correlated with plasma BHB. Metagenomic analysis indicated a high abundance of predicted functions related to metabolism (37.7%), genetic information processing (33.4%), and Brite hierarchies (16.3%) in the CK group. The 2 most important metabolic pathways for butyrate and propionate production were enriched in CK cows, suggesting increased production of acetyl coenzyme A and butyrate and decreased production of propionate. Overall, the combined data suggested that microbial populations may be related to ketosis by affecting short-chain fatty acid metabolism and BHB accumulation even in cows with adequate feed intake in the early postpartum period.
Collapse
Affiliation(s)
- Qiuju Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, New Development District, Daqing, Heilongjiang, China 163319; Key Laboratory of Efficient Utilization of Feed Resources and Nutrition Manipulation in Cold Region of Heilongjiang Province, China 163319
| | - Yizhe Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 2 Xinyang Road, New Development District, Daqing, Heilongjiang, China 163319
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, New Bolton Center, University of Pennsylvania, Kennett Square 19348
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - Linda Baker
- Department of Clinical Studies, School of Veterinary Medicine, New Bolton Center, University of Pennsylvania, Kennett Square 19348
| | - Dipti Pitta
- Department of Clinical Studies, School of Veterinary Medicine, New Bolton Center, University of Pennsylvania, Kennett Square 19348
| | - Zhaoju Deng
- College of Veterinary Medicine, China Agricultural University, Beijing, China 100083
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, China 100083.
| |
Collapse
|
8
|
Enjalbert F, Zened A, Cauquil L, Meynadier A. Integrating data from spontaneous and induced trans-10 shift of ruminal biohydrogenation reveals discriminant bacterial community changes at the OTU level. Front Microbiol 2023; 13:1012341. [PMID: 36687628 PMCID: PMC9853040 DOI: 10.3389/fmicb.2022.1012341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Microbial digestion is of key importance for ruminants, and disturbances can affect efficiency and quality of products for human consumers. Ruminal biohydrogenation of dietary unsaturated fatty acids leads to a wide variety of specific fatty acids. Some dietary conditions can affect the pathways of this transformation, leading to trans-10 fatty acids rather than the more usual trans-11 fatty acids, this change resulting in milk fat depression in dairy cows. Materials and methods We combined data from an induced and spontaneous trans-10 shift of ruminal biohydrogenation, providing new insight on bacterial changes at different taxonomic levels. A trans-10 shift was induced using dietary addition of concentrate and/or unsaturated fat, and the spontaneous milk fat depression was observed in a commercial dairy herd. Results and discussion Most changes of microbial community related to bacteria that are not known to be involved in the biohydrogenation process, suggesting that the trans-10 shift may represent the biochemical marker of a wide change of bacterial community. At OTU level, sparse discriminant analysis revealed strong associations between this change of biohydrogenation pathway and some taxa, especially three taxa belonging to [Eubacterium] coprostanoligenes group, Muribaculaceae and Lachnospiraceae NK3A20 group, that could both be microbial markers of this disturbance and candidates for studies relative to their ability to produce trans-10 fatty acids.
Collapse
|
9
|
Popova M, Ferlay A, Bougouin A, Eugène M, Martin C, Morgavi DP. Associating changes in the bacterial community of rumen and faeces and milk fatty acid profiles in dairy cows fed high-starch or starch and oil-supplemented diets. J DAIRY RES 2022; 89:1-10. [PMID: 36039952 DOI: 10.1017/s0022029922000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The experiment reported in this research paper aimed to evaluate the effects of high-starch or starch and oil-supplemented diets on rumen and faecal bacteria, and explore links between the structure of bacterial communities and milk fatty acid (FA) profiles. We used four Holstein dairy cows in a 4 × 4 Latin square design. Cows were fed a diet rich in cereals (high-starch diet with 23% starch content on dry matter (DM) basis), a diet supplemented with saturated FA from Ca salts of palm oil + 18% DM starch, a diet with high content of monounsaturated FA (from extruded rapeseeds) + 18% DM starch or a diet rich in polyunsaturated FA (from extruded sunflower seeds) + 17% DM starch. At the end of each experimental period, cows were sampled for rumen and faecal contents, which were used for DNA extraction and amplicon sequencing. Partial least squares (PLS) regression analysis highlighted diet-related changes in both rumen and faecal bacterial structures. Sparse PLS discriminant analysis was further employed to identify biologically relevant operational taxonomical units (OTUs) driving these differences. Our results show that Butyrivibrio discriminated the high-starch diet and linked positively with higher concentrations of milk odd- and branched-chain FA. YS2-related OTUs were key taxa distinguishing diets supplemented with Ca salts of palm oil or sunflower seeds and correlated positively with linoleic acid in milk. Similarly, diets modulated faecal bacterial composition. However, correlations between changes in faecal and rumen bacteria were poor. With this work, we demonstrated that high-starch or lipid-supplemented diets affect rumen and faecal bacterial community structure, and these changes could have a knock-on effect on milk FA profiles.
Collapse
Affiliation(s)
- Milka Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - Anne Ferlay
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - Adeline Bougouin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - Maguy Eugène
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - Cécile Martin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| | - Diego P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genes-Champanelle, France
| |
Collapse
|
10
|
Baldin M, Garcia D, Zanton GI, Hao F, Patterson AD, Harvatine KJ. Effect of 2-hydroxy-4-(methylthio)butanoate (HMTBa) on milk fat, rumen environment and biohydrogenation, and rumen protozoa in lactating cows fed diets with increased risk for milk fat depression. J Dairy Sci 2022; 105:7446-7461. [PMID: 35931483 DOI: 10.3168/jds.2022-21910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Biohydrogenation-induced milk fat depression (MFD) is a reduction in milk fat synthesis caused by bioactive fatty acids (FA) produced during altered ruminal microbial metabolism of unsaturated FA. The methionine analog 2-hydroxy-4-(methylthio)butanoate (HMTBa) has been shown to reduce the shift to the alternate biohydrogenation pathway and maintain higher milk fat yield in high-producing cows fed diets lower in fiber and higher in unsaturated FA. The objective of this experiment was to verify the effect of HMTBa on biohydrogenation-induced MFD and investigate associated changes in rumen environment and fermentation. Twenty-two rumen cannulated high-producing Holstein cows [168 ± 66 d in milk; 42 ± 7 kg of milk/d (mean ± standard deviation)] were used in a randomized design performed in 2 blocks (1 = 14 cows, 2 = 8 cows). Treatments were control (corn carrier) and HMTBa (0.1% of diet dry matter). The experiment included a 7-d covariate period followed by 3 phases that fed diets with increasing risk of MFD. The diet during the covariate and low-risk phase (7 d) was 32% neutral detergent fiber with no additional oil. The diet during the moderate-risk phase (17 d) was 29% neutral detergent fiber with 0.75% soybean oil. Soybean oil was increased to 1.5% for the last 4 d. The statistical model included the random effect of block and time course data were analyzed with repeated measures including the random effect of cow and tested the interaction of treatment and time. There was no effect of block or interaction of block and treatment or time. There was no overall effect of treatment or treatment by time interaction for dry matter intake, milk yield, and milk protein concentration and yield. Overall, HMTBa increased milk fat percent (3.2 vs. 3.6%) and yield (1,342 vs. 1,543 g/d) and there was no interaction of treatment and dietary phase. Additionally, HMTBa decreased the concentration of trans-10 18:1 in milk fat and rumen digesta. Average total ruminal concentration of volatile FA across the day and total-tract dry matter and fiber digestibility were not affected by HMTBa, but HMTBa increased average rumen butyrate and decreased propionate concentration and increased total protozoa abundance. Additionally, HMTBa increased the fractional rate of α-linoleic acid clearance from the rumen following a bolus predominantly driven by a difference in the first 30 min. Plasma insulin was decreased by HMTBa. In conclusion, HMTBa prevented the increase in trans FA in milk fat associated with MFD through a mechanism that is independent of total volatile FA concentration, but involves modification of rumen biohydrogenation. Decreased propionate and increased butyrate and ruminal protozoa may also have functional roles in the mechanism.
Collapse
Affiliation(s)
- M Baldin
- Department of Animal Science, Penn State University, University Park 16802
| | - D Garcia
- Department of Animal Science, Penn State University, University Park 16802
| | - G I Zanton
- Novus International Inc., St. Charles, MO 63304
| | - F Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park 16802
| | - A D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park 16802
| | - K J Harvatine
- Department of Animal Science, Penn State University, University Park 16802.
| |
Collapse
|
11
|
Qin X, Zhang D, Qiu X, Zhao K, Zhang S, Liu C, Lu L, Cui Y, Shi C, Chen Z, Hao R, Li Y, Yang S, Wang L, Wang H, Cao B, Su H. 2-Hydroxy-4-(Methylthio) Butanoic Acid Isopropyl Ester Supplementation Altered Ruminal and Cecal Bacterial Composition and Improved Growth Performance of Finishing Beef Cattle. Front Nutr 2022; 9:833881. [PMID: 35600827 PMCID: PMC9116427 DOI: 10.3389/fnut.2022.833881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 01/05/2023] Open
Abstract
The objective of this study was to evaluate the effects of isopropyl ester of 2-hydroxy-4-(methylthio)-butyrate acid (HMBi) on ruminal and cecal fermentation, microbial composition, nutrient digestibility, plasma biochemical parameters, and growth performance in finishing beef cattle. The experiment was conducted for 120 days by a complete randomized block design. Sixty 24-month-old Angus steers (723.9 ± 11.6 kg) were randomly assigned to one of the flowing three treatments: basal diet (the concentrate: 7.6 kg/head·d-1, the rice straw: ad libitum) supplemented with 0 g/d MetaSmart® (H0), a basal diet supplemented with 15 g/d of MetaSmart® (H15), and a basal diet supplemented with 30 g/d of MetaSmart® (H30). Results showed that the average daily gain (ADG) increased linearly (P = 0.004) and the feed conversion ratio (FCR) decreased linearly (P < 0.01) with the increasing HMBi supplementation. Blood urea nitrogen (BUN) concentration significantly decreased in the H30 group (P < 0.05) compared with H0 or H15. The ruminal pH value tended to increase linearly (P = 0.086) on day 56 with the increased HMBi supplementation. The concentrations of ammonia-nitrogen (NH3-N), propionate, isobutyrate, butyrate, isovalerate, valerate, and total volatile fatty acid (VFA) were linearly decreased in the cecum (P < 0.05). The results of Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that the abundance of most pathways with a significant difference was higher in the rumen and lower in the cecum in the H30 group compared to the H0 group, and those pathways were mainly related to the metabolism of amino acids, carbohydrates, and lipids. Correlation analysis showed that ADG was positively associated with the ratio of firmicutes/bacteroidetes both in the rumen and cecum. Additionally, the abundance of Lachnospiraceae, Saccharofermentans, Lachnospiraceae_XPB1014_group, and Ruminococcus_1 was positively correlated with ADG and negatively correlated with FCR and BUN in the rumen. In the cecum, ADG was positively correlated with the abundances of Peptostreptococcaceae, Romboutsia, Ruminococcaceae_UCG-013, and Paeniclostridium, and negatively correlated with the abundances of Bacteroidaceae and Bacteroides. Overall, these results indicated that dietary supplementation of HMBi can improve the growth performance and the feed efficiency of finishing beef cattle by potentially changing bacterial community and fermentation patterns of rumen and cecum.
Collapse
Affiliation(s)
- Xiaoli Qin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Depeng Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinjun Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Zhao
- Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| | - Siyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunlan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lianqiang Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yafang Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changxiao Shi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiming Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Rikang Hao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yingqi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shunran Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lina Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huili Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huawei Su
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Harnessing the Value of Rumen Protected Amino Acids to Enhance Animal Performance – A Review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
In general, higher mammals need nine amino acids (AA) in their diets as building blocks to synthesize proteins while ruminants can produce some of them through the synthesis of microbial proteins. Diet is utilized by ruminal microorganisms to synthesize microbial protein (MCP) which is digested in the small intestine (SI). Although protein and amino acid requirements in ruminants are subject to microbial protein synthesis, it is not enough for optimal daily production. Therefore, there is a current trend towards supplementing amino acids in ruminant diets. In the rumen, free amino acids can be degraded by rumen bacteria, therefore, the AAs need to be supplemented in a protected form to be stable in the rumen and absorbable post-ruminal for metabolic purposes. The main site of amino acid absorption is the small intestine (SI), and there is a need to keep AA from ruminal degradation and direct them to absorption sites. Several approaches have been suggested by feed scientists to decrease this problem such as defaunation and debacterization of the rumen against amino acid-fermenting fungi and bacteria, inhibitors or antagonists of vitamin B6 enzymes, diet composition and also protecting AA from rumen degradation. A number of studies have evaluated the roles of amino acids concerning their effects on milk yield, growth, digestibility, feed intake and efficiency of nitrogen utilization of ruminants. The focus of this review was on experimental and research studies about AAs in feedstuff, metabolism, supplementing amino acids for ruminants and the current trends of using rumen protected amino acids.
Collapse
|
13
|
Kong F, Liu Y, Wang S, Zhang Y, Wang W, Yang H, Lu N, Li S. Nutrient Digestibility, Microbial Fermentation, and Response in Bacterial Composition to Methionine Dipeptide: An In Vitro Study. BIOLOGY 2022; 11:biology11010093. [PMID: 35053091 PMCID: PMC8772947 DOI: 10.3390/biology11010093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary The rumen microbiota plays an important role in maintaining microbiota homeostasis and promoting milk production synthesis through utilizing amino acids and non-protein nitrogen. Furthermore, various nitrogen sources have shown distinct effects on microbial growth rates. The methionine dipeptide (MD) is a bioactive peptide consisting of two methionine (Met) residues linked by a peptide bond. Although the role of MD in milk protein synthesis is established, little is known about its role in bacterial fermentation. The present study demonstrates that the various nitrogen sources could reshape microbiota differently, and MD could be more efficient than free Met in the rumen to support acetate producer growth. Our study provides some new insights into the relationship between ruminal microbiota of dairy cows and small peptides and points to potential strategies to effectively enhance the health condition and digestion ability of dairy cows. Abstract It is well known that the methionine dipeptide (MD) could enhance the dairy cows milking performance. However, there is still a knowledge gap of the effects of MD on the rumen fermentation characteristics, microbiota composition, and digestibility. This experiment was conducted to determine the effect of different nitrogen sources with a total mixed ration on in vitro nutrient digestibility, fermentation characteristics, and bacterial composition. The treatments included 5 mg urea (UR), 25.08 mg methionine (Met), 23.57 mg MD, and no additive (CON) in fermentation culture medium composed of buffer solution, filtrated Holstein dairy cow rumen fluid, and substrate (1 g total mixed ration). Nutrient digestibility was measured after 24 h and 48 h fermentation, and fermentation parameters and microbial composition were measured after 48 h fermentation. Digestibility of dry matter, crude protein, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in the MD group at 48 h were significantly higher than in the CON and UR groups. The total volatile fatty acid concentration was higher in the MD group than in the other groups. In addition, 16S rRNA microbial sequencing results showed MD significantly improved the relative abundances of Succinivibrio, Anaerotruncus, and Treponema_2, whereas there was no significant difference between Met and UR groups. Spearman’s correlation analysis showed the relative abundance of Succinivibrio and Anaerotruncus were positively correlated with gas production, NDF digestibility, ADF digestibility, and acetate, propionate, butyrate, and total volatile fatty acid concentrations. Overall, our results suggested that the microbiota in the fermentation system could be affected by additional nitrogen supplementation and MD could effectively enhance the nutrient utilization in dairy cows.
Collapse
Affiliation(s)
- Fanlin Kong
- The State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (S.W.); (W.W.); (H.Y.)
| | - Yanfang Liu
- Beijing Jingwa Agricultural Science & Technology Innovation Center, Beijing 100193, China;
| | - Shuo Wang
- The State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (S.W.); (W.W.); (H.Y.)
| | - Yijia Zhang
- Laboratory of Anatomy of Domestic Animals, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Wei Wang
- The State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (S.W.); (W.W.); (H.Y.)
| | - Hongjian Yang
- The State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (S.W.); (W.W.); (H.Y.)
| | - Na Lu
- Beijing Jingwa Agricultural Science & Technology Innovation Center, Beijing 100193, China;
- Correspondence: (N.L.); (S.L.); Tel.: +86-10-62731254 (S.L.)
| | - Shengli Li
- The State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (S.W.); (W.W.); (H.Y.)
- Correspondence: (N.L.); (S.L.); Tel.: +86-10-62731254 (S.L.)
| |
Collapse
|
14
|
Kong Z, Li B, Zhou C, He Q, Zheng Y, Tan Z. Multi-Omics Analysis of Mammary Metabolic Changes in Dairy Cows Exposed to Hypoxia. Front Vet Sci 2021; 8:764135. [PMID: 34722715 PMCID: PMC8553012 DOI: 10.3389/fvets.2021.764135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia exposure can cause a series of physiological and biochemical reactions in the organism and cells. Our previous studies found the milk fat rate increased significantly in hypoxic dairy cows, however, its specific metabolic mechanism is unclear. In this experiment, we explored and verified the mechanism of hypoxia adaptation based on the apparent and omics results of animal experiments and in vitro cell model. The results revealed that hypoxia exposure was associated with the elevation of AGPAT2-mediated glycerophospholipid metabolism. These intracellular metabolic disorders consequently led to the lipid disorders associated with apoptosis. Our findings update the existing understanding of increased adaptability of dairy cows exposure to hypoxia at the metabolic level.
Collapse
Affiliation(s)
- Zhiwei Kong
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,School of Food Engineering and Biotechnology, Hanshan Nornal University, Chaozhou, China
| | - Bin Li
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Yuzhong Zheng
- School of Food Engineering and Biotechnology, Hanshan Nornal University, Chaozhou, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
15
|
Räisänen SE, Zhu X, Zhou C, Lage CFA, Fetter M, Silvestre T, Stefenoni H, Wasson DE, Cueva SF, Eun JS, Moon JO, Park JS, Hristov AN. Production effects and bioavailability of N-acetyl-l-methionine in lactating dairy cows. J Dairy Sci 2021; 105:313-328. [PMID: 34756433 DOI: 10.3168/jds.2021-20540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022]
Abstract
Two experiments were conducted to investigate the production effects of N-acetyl-l-methionine (NALM; experiment 1) and to estimate its bioavailability (BA) and rumen escape (RE; experiment 2), respectively, in lactating dairy cows. In experiment 1, 18 multiparous Holstein cows were used in a replicated, 3 × 3 Latin square design experiment with three 28-d periods. Treatments were (1) basal diet estimated to supply 45 g/d digestible Met (dMet) or 1.47% of metabolizable protein (MP; control), (2) basal diet top-dressed with 32 g/d of NALM to achieve dMet supply of 2.2% of MP, and (3) basal diet top-dressed with 56 g/d of NALM to achieve dMet supply of 2.6% of MP. The NALM treatments supplied estimated 17 and 29 g/d dMet from NALM, respectively, based on manufacturer's specifications. In experiment 2, 4 rumen-cannulated lactating Holstein cows were used in a 4 × 4 Latin square design experiment with four 12-d periods. A 12-d period for baseline data collection and 4 d for determination of RE of NALM preceded the Latin square experiment. For determination of RE, 30 g of NALM were dosed into the rumen simultaneously with Cr-EDTA (used as a rumen fluid kinetics marker) and samples of ruminal contents were collected at 0 (before dosing), 1, 2, 4, 6, 8, 10, 14, 18, and 24 h after dosing. Rumen escape of NALM was calculated using the estimated passage rate based on the measured Cr rate of disappearance. Bioavailability of abomasally dosed NALM was determined using the area under the curve of plasma Met concentration technique. Two doses of l-Met (providing 7.5 and 15 g of dMet) and 2 doses of NALM (11.2 and 14.4 g dMet) were separately pulse-dosed into the abomasum of the cows and blood was collected from the jugular vein for Met concentration analysis at 0 (before dosing), 1, 2, 4, 6, 8, 10, 12, 14, 18, and 24 h after dosing. Supplementation of NALM did not affect DMI, milk yield, feed efficiency, or milk protein and lactose concentrations and yields in experiment 1. Milk fat concentration and energy-corrected milk yield decreased linearly with NALM dose. Plasma Met concentration was not affected by NALM dose. The estimated relative BA of abomasally dosed NALM (experiment 2) was 50% when dosed at 14.4 g/cow (11.2 g/d dMet from NALM) and 24% when dosed at 28.8 g/cow (14.4 g/d dMet from NALM). The estimated RE of NALM was 19% based on the measured kp of Cr at 11%/h. The total availability of ingested NALM was estimated at 9.5% for the lower NALM dose when taking into account RE (19%) and bioavailability in the small intestine (50%). Overall, NALM supplementation to mid-lactation dairy cows fed a MP-adequate basal diet below NRC (2001) recommendations (45 g/d or 1.47% Met of MP) decreased milk fat and energy-corrected milk yields but did not affect milk or milk true protein yields. Further evaluation of BA of NALM at different doses is warranted. In addition, intestinal conversion of NALM to Met needs additional investigation to establish a possible saturation of the enzyme aminoacylase I at higher NALM doses.
Collapse
Affiliation(s)
- S E Räisänen
- The Pennsylvania State University, University Park 16802
| | - X Zhu
- The Pennsylvania State University, University Park 16802; Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 0731, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - C Zhou
- The Pennsylvania State University, University Park 16802; University of Chinese Academy of Sciences, Beijing 100049, China
| | - C F A Lage
- The Pennsylvania State University, University Park 16802; School of Veterinary Medicine, University of California, Tulare 93274
| | - M Fetter
- The Pennsylvania State University, University Park 16802
| | - T Silvestre
- The Pennsylvania State University, University Park 16802
| | - H Stefenoni
- The Pennsylvania State University, University Park 16802
| | - D E Wasson
- The Pennsylvania State University, University Park 16802
| | - S F Cueva
- The Pennsylvania State University, University Park 16802
| | - J-S Eun
- Institute of Biotechnology, CJ Blossom Park, Suwon 16495, Korea
| | - J O Moon
- Institute of Biotechnology, CJ Blossom Park, Suwon 16495, Korea
| | - J S Park
- Institute of Biotechnology, CJ Blossom Park, Suwon 16495, Korea
| | - A N Hristov
- The Pennsylvania State University, University Park 16802.
| |
Collapse
|
16
|
Zhang X, Zhang J, Chu Z, Shi L, Geng S, Guo K. Gut Microbiome Alterations and Functional Prediction in Chronic Spontaneous Urticaria Patients. J Microbiol Biotechnol 2021; 31:747-755. [PMID: 33746191 PMCID: PMC9723274 DOI: 10.4014/jmb.2012.12022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
The effects of the gut microbiome on both allergy and autoimmunity in dermatological diseases have been indicated in several recent studies. Chronic spontaneous urticaria (CSU) is a disease involving allergy and autoimmunity, and there is no report detailing the role of microbiota alterations in its development. This study was performed to identify the fecal microbial composition of CSU patients and investigate the different compositions and potential genetic functions on the fecal microbiota between CSU patients and normal controls. The gut microbiota of CSU patients and healthy individuals were obtained by 16s rRNA massive sequencing. Gut microbiota diversity and composition were compared, and bioinformatics analysis of the differences was performed. The gut microbiota composition results showed that Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia were dominant microbiota in CSU patients. The differential analysis showed that relative abundance of the Proteobacteria (p = 0.03), Bacilli (p = 0.04), Enterobacterales (p = 0.03), Enterobacteriaceae (p = 0.03) was significantly increased in CSU patients. In contrast, the relative abundance of Megamonas, Megasphaera, and Dialister (all p < 0.05) in these patients significantly decreased compared with healthy controls. The different microbiological compositions impacted normal gastrointestinal functions based on function prediction, resulting in abnormal pathways, including transport and metabolism. We found CSU patients exhibited gut microbiota dysbiosis compared with healthy controls. Our results indicated CSU is associated with gut microbiota dysbiosis and pointed out that the bacterial taxa increased in CSU patients, which might be involved in the pathogenesis of CSU. These results provided clues for future microbial-based therapies on CSU.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, P.R. China
| | - Jun Zhang
- College of Science, Northwest University, Xi’an 710069, P.R. China
| | - Zhaowei Chu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, P.R. China
| | - Linjing Shi
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, P.R. China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, P.R. China
| | - Kun Guo
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, P.R. China,Corresponding author Phone: +86-185-0920-1702 E-mail:
| |
Collapse
|
17
|
Lee C, Copelin JE, Park T, Mitchell KE, Firkins JL, Socha MT, Luchini D. Effects of diet fermentability and supplementation of 2-hydroxy-4-(methylthio)-butanoic acid and isoacids on milk fat depression: 2. Ruminal fermentation, fatty acid, and bacterial community structure. J Dairy Sci 2020; 104:1604-1619. [PMID: 33358812 DOI: 10.3168/jds.2020-18950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
The experiment was conducted to understand ruminal effects of diet modification during moderate milk fat depression (MFD) and ruminal effects of 2-hydroxy-4-(methylthio)-butanoic acid (HMTBa) and isoacids on alleviating MFD. Five ruminally cannulated cows were used in a 5 × 5 Latin square design with the following 5 dietary treatments (dry matter basis): a high-forage and low-starch control diet with 1.5% safflower oil (HF-C); a low-forage and high-starch control diet with 1.5% safflower oil (LF-C); the LF-C diet supplemented with HMTBa (0.11%; 28 g/d; LF-HMTBa); the LF-C diet supplemented with isoacids [(IA) 0.24%; 60 g/d; LF-IA]; and the LF-C diet supplemented with HMTBa and IA (LF-COMB). The experiment consisted of 5 periods with 21 d per period (14-d diet adaptation and 7-d sampling). Ruminal samples were collected to determine fermentation characteristics (0, 1, 3, and 6 h after feeding), long-chain fatty acid (FA) profile (6 h after feeding), and bacterial community structure by analyzing 16S gene amplicon sequences (3 h after feeding). Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc., Cary, NC) in a Latin square design. Preplanned comparisons between HF-C and LF-C were conducted, and the main effects of HMTBa and IA and their interaction within the LF diets were examined. The LF-C diet decreased ruminal pH and the ratio of acetate to propionate, with no major changes detected in ruminal FA profile compared with HF-C. The α-diversity for LF-C was lower compared with HF-C, and β-diversity also differed between LF-C and HF-C. The relative abundance of bacterial phyla and genera associated indirectly with fiber degradation was influenced by LF-C versus HF-C. As the main effect of HMTBa within the LF diets, HMTBa increased the ratio of acetate to propionate and butyrate molar proportion. Ruminal saturated FA were increased and unsaturated FA concentration were decreased by HMTBa, with minimal changes detected in ruminal bacterial diversity and community. As the main effect of IA, IA supplementation increased ruminal concentration of all branched-chain volatile FA and valerate and increased the percentage of trans-10 C18 isomers in total FA. In addition, α-diversity and the number of functional features were increased for IA. Changes in the abundances of bacterial phyla and genera were minimal for IA. Interactions between HMTBa and IA were observed for ruminal variables and some bacterial taxa abundances. In conclusion, increasing diet fermentability (LF-C vs. HF-C) influenced rumen fermentation and bacterial community structure without major changes in FA profile. Supplementation of HMTBa increased biohydrogenation capacity, and supplemental IA increased bacterial diversity, possibly alleviating MFD. The combination of HMTBa and IA had no associative effects in the rumen and need further studies to understand the interactive mechanism.
Collapse
Affiliation(s)
- C Lee
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691.
| | - J E Copelin
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - T Park
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - K E Mitchell
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | | |
Collapse
|
18
|
Copelin JE, Firkins JL, Socha MT, Lee C. Effects of diet fermentability and supplementation of 2-hydroxy-4-(methylthio)-butanoic acid and isoacids on milk fat depression: 1. Production, milk fatty acid profile, and nutrient digestibility. J Dairy Sci 2020; 104:1591-1603. [PMID: 33309372 DOI: 10.3168/jds.2020-18949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/21/2020] [Indexed: 01/26/2023]
Abstract
The objectives of this experiment were to determine the effects of increased diet fermentability and polyunsaturated fatty acids (FA) with or without supplemental 2-hydroxy-4-(methylthio)-butanoic acid (HMTBa), isoacids (IA; isobutyrate, 2-methylbutyrate, isovalerate, and valerate) or the combination of these on milk fat depression (MFD). Ten Holstein cows (194 ± 58 DIM, 691 ± 69 kg BW, 28 ± 5 kg milk yield) were used in a replicated 5 × 5 Latin square design. Treatments included a high-forage control diet (HF-C), a low-forage control diet (LF-C) causing MFD by increasing starch and decreasing neutral detergent fiber (NDF), the LF-C diet supplemented with HMTBa at 0.11% (28 g/d), the LF-C diet supplemented with IA at 0.24% of dietary dry matter (60 g/d), and the LF-C diet supplemented with HMTBa and IA. Preplanned contrasts were used to compare HF-C versus LF-C and to examine the main effects of HMTBa or IA and their interactions within the LF diets. Dry matter intake was greater for LF-C versus HF-C, but milk yield remained unchanged. The LF-C diet decreased milk fat yield (0.87 vs. 0.98 kg/d) but increased protein yield compared with HF-C. As a result, energy-corrected milk was lower (28.5 vs. 29.6 kg/d) for LF-C versus HF-C. Although the concentration of total de novo synthesized FA in milk fat was not affected, some short- and medium-chain FA were lower for LF-C versus HF-C, but the concentrations of C18 trans-10 isomers were not different. Total-tract NDF apparent digestibility was numerically lower (42.4 vs. 45.6%) for LF-C versus HF-C. As the main effects, the decrease in milk fat yield observed in LF-C was alleviated by supplementation of HMTBa through increasing milk yield without altering milk fat content and by IA through increasing milk fat content without altering milk yield so that HMTBa or IA, as the main effects, increased milk fat yield within the LF diets. However, interactions for milk fat yield and ECM were observed between HMTBa and IA, suggesting no additive effect when used in combination. Minimal changes were found on milk FA profile when HMTBa was provided. However, de novo synthesized FA increased for IA supplementation. We detected no main effect of HMTBa, IA, and interaction between those on total-tract NDF digestibility. In conclusion, the addition of HMTBa and IA to a low-forage and high-starch diet alleviated moderate MFD. Although the mechanism by which MFD was alleviated was different between HMTBa and IA, no additive effects of the combination were observed on milk fat yield and ECM.
Collapse
Affiliation(s)
- J E Copelin
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691
| | - J L Firkins
- Department of Animal Sciences, The Ohio State University, Columbus 43210
| | - M T Socha
- Zinpro Corporation, Eden Prairie, MN 55344
| | - C Lee
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691.
| |
Collapse
|