1
|
Yu L, An Z, Xie D, Yin D, Xie G, Gao X, Xiao Y, Liu J, Fang Z. From waste to protein: a new strategy of converting composted distilled grain wastes into animal feed. Front Microbiol 2024; 15:1405564. [PMID: 38881654 PMCID: PMC11176434 DOI: 10.3389/fmicb.2024.1405564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Distilled grain waste (DGW) is rich in nutrients and can be a potential resource as animal feed. However, DGW contains as much as 14% lignin, dramatically reducing the feeding value. White-rot fungi such as Pleurotus ostreatus could preferentially degrade lignin with high efficiency. However, lignin derivatives generated during alcohol distillation inhibit P. ostreatus growth. Thus, finding a new strategy to adjust the DGW properties to facilitate P. ostreatus growth is critical for animal feed preparation and DGW recycling. In this study, three dominant indigenous bacteria, including Sphingobacterium thermophilum X1, Pseudoxanthomonas byssovorax X3, and Bacillus velezensis 15F were chosen to generate single and compound microbial inoculums for DGW composting to prepare substrates for P. ostreatus growth. Compared with non-inoculated control or single microbial inoculation, all composite inoculations, especially the three-microbial compound, led to faster organic metabolism, shorter composting process, and improved physicochemical properties of DGW. P. ostreatus growth assays showed the fastest mycelial colonization (20.43 μg·g-1 ergosterol) and extension (9 mm/d), the highest ligninolytic enzyme activities (Lac, 152.68 U·g-1; Lip, 15.56 U·g-1; MnP, 0.34 U·g-1; Xylanase, 10.98 U·g-1; FPase, 0.71 U·g-1), and the highest lignin degradation ratio (30.77%) in the DGW sample after 12 h of composting with the three-microbial compound inoculation when compared to other groups. This sample was relatively abundant in bacteria playing critical roles in amino acid, carbohydrate, energy metabolism, and xenobiotic biodegradation, as suggested by metagenomic analysis. The feed value analysis revealed that P. ostreatus mycelia full colonization in composted DGW led to high fiber content retention and decreased lignin content (final ratio of 5% lignin) but elevated protein concentrations (about 130 g·kg-1 DM). An additional daily weight gain of 0.4 kg/d was shown in cattle feeding experiments by replacing 60% of regular feed with it. These findings demonstrate that compound inoculant consisting of three indigenous microorganisms is efficient to compost DGW and facilitate P. ostreatus growth. P. ostreatus decreased the lignin content of composted DGW during its mycelial growth, improving the quality of DGW for feeding cattle.
Collapse
Affiliation(s)
- Lei Yu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Zichao An
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Dengdeng Xie
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Diao Yin
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Guopai Xie
- Anhui Golden Seed Winery Co., Ltd., Fuyang, China
| | - Xuezhi Gao
- Anhui Golden Seed Winery Co., Ltd., Fuyang, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Juanjuan Liu
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
2
|
Zhang J, Shang J, Hao Y, Wang Y, Cao Z, Yang H, Wang W, Li S. Growth performance, blood metabolites, ruminal fermentation, and bacterial community in preweaning dairy calves fed corn silage-included starter and total mixed ration. J Dairy Sci 2023:S0022-0302(23)00208-4. [PMID: 37164844 DOI: 10.3168/jds.2022-22476] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
The objective of this study was to evaluate the effects of the inclusion of whole-plant corn silage (WPCS) in a starter or total mixed ration (TMR) on growth, blood metabolites, ruminal fermentation, and microbial community in preweaning dairy calves. A total of 45 healthy dairy calves were blocked by date of birth and randomly assigned to 1 of 3 treatments: 100% calf starter (CONS), a mix of 85% calf starter and 15% WPCS [dry matter (DM) basis; CSCS], or 100% WPCS-based lactation TMR (CTMR). Pasteurized normal milk was fed to all the animals under the same regimen. The experiment ran from when the calves were 2 d old to weaning at 63 d. Milk and feed intakes were recorded daily. Growth performance data and blood samples were collected on wk 3, 5, 7, and 9 of the experiment. Rumen fluid was sampled at 40 and 60 d. The 3 treatments had different particle size fractions. The CSCS group had greater medium fraction (<19 mm, >8 mm) and particles retained on 8-mm sieves than the other 2 groups, whereas the CTMR group had the greatest long (>19 mm) and fine (<4 mm) fractions and physically effective neutral detergent fiber (NDF) on 8- and 4-mm sieves, but had the smallest short fraction (<8 mm, >4 mm) and particles retained on 4-mm sieves. The 24-h in vitro digestibility of DM, crude protein (CP), NDF, and acid detergent fiber (ADF) were decreased in order by the CONS, CSCS, and CTMR groups. Compared with the CONS group, the digestibility of ether extract (EE) was lower in the CSCS and CTMR groups, whereas the digestibility of starch was similar among treatments. During the experimental period, the DM, CP, and metabolizable energy intakes from milk, solid feed, and total feed were not affected by treatments. The NDF, ADF, and EE intakes and potentially digestible intakes were greater in the CTMR group than in the other 2 groups. With the exception that body barrel was greater for calves fed CSCS, growth parameters and blood metabolites were similar among treatments. Compared with the CSCS group, the CTMR group had greater rumen pH and total volatile fatty acids, propionate, and isovalerate concentrations, but a lower acetate:propionate ratio. The CTMR group had greater relative abundances of some cellulolytic bacteria (Rikenellaceae RC9 gut group, Christensenellaceae R7, Ruminococcaceae NK4A214, Ruminococcaceae UCG, Ruminococcus, and Erysipelotrichaceae UCG) in the rumen, which may be beneficial for the early acquisition of specific adult-associated microorganisms. In summary, a WPCS-based lactation TMR, but not the WPCS-included starter, had the potential to be an alternative starter in preweaning calves without having significant adverse effects. These findings provide theoretical and practical implications for the rational application of TMR in the early life of dairy calves.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiaqi Shang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yangyi Hao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Tropical grass silages with spineless cactus in diets of Holstein × Zebu heifers in the semiarid region of Brazil. Trop Anim Health Prod 2023; 55:89. [PMID: 36805351 DOI: 10.1007/s11250-023-03506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
One of the factors that limit ruminant production in the semiarid region is the lack of roughage in the dry season. The management of forage plants adapted to edaphoclimatic conditions is a strategy to improve animal production. This study was conducted to examine the effects of biomass sorghum silage (BSS; Sorghum bicolor (L.) Moench) and BRS capiaçu grass silage (CGS; Pennisetum purpureum Schum) with or without spineless cactus (Opuntia spp.) in crossbred Holstein × Zebu heifers' diets on the intake, apparent digestibility of the nutrients and animal performance (e.g., final weight, daily weight gain) (experiment 1). Also, to evaluate the ruminal kinetics of dry matter (DM) and neutral detergent fiber (NDF) of roughages used in diets using two animals cannulated in the rumen (experiment 2). In experiment 1, ten heifers with an initial body weight of 200 ± 2.74 kg (mean ± standard deviation) and a mean age of 10 months were used. The animals were distributed in an experimental design in two simultaneous 5 × 5 Latin squares. Five experimental diets were used: diet 1, Volumax sorghum silage (VSS); diet 2, biomass sorghum silage (BSS); diet 3, BRS capiaçu silage (CGS); diet 4, biomass sorghum silage (60%) with spineless cactus (40%) (BSS + SC); and diet 5, BRS capiaçu grass silage (60%) with spineless cactus (40%) (CGS + SC). The diets were formulated with sorghum silage or BRS capiaçu grass silage with or without spineless cactus (roughage) and a maize- and soybean-based concentrate (75:25 roughage-to-concentrate ratio) on DM basis. The experiment lasted 105 days, divided into five periods of 21 days (17 days for the adaptation of the animals to the diets and management and 4 for data collection and samples). The diets containing CGS and CGS + SC resulted in lower dry matter intake (DMI; 5.61 kg day-1; P < 0.01), which was 19.4% lower than the diets with VSS, BSS, and BSS + SC (7.00 kg day-1). The BSS + SC and CGS + SC diets showed higher crude protein digestibility (P < 0.01) at 21.9% than the other treatments (Volumax, BSS, CGS). The different diets did not change the final weight or the daily weight gain of the heifers. The BRS 716 biomass sorghum silage and BRS capiaçu grass combined with spineless cactus increased (P < 0.05) the intake of nonfibrous carbohydrates and did not interfere (P > 0.05) with the final weight or average daily gain of the crossbred Holstein × Zebu heifers. The standardized potentially degradable fraction (Bp) of the NDF was 13.91% higher (P < 0.01) for BSS and BSS + SC (61.6%) compared to the others (53.0%). A diet based on BSS + SC is recommended for feeding crossbred heifers in the growing phase.
Collapse
|
4
|
Busanello M, de Sousa DG, Mendonça FAC, Daley VL, de Almeida R, Bittar CMM, Lanna DPD. Feed Intake of Growing Dairy Heifers Raised under Tropical Conditions: A Model Evaluation Using Meta-Analysis. Animals (Basel) 2021; 11:ani11113181. [PMID: 34827913 PMCID: PMC8614301 DOI: 10.3390/ani11113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Several models for predicting dry matter intake (DMI) of replacement dairy heifers have been developed; however, only a few have been evaluated using data from heifers of different breeds raised under tropical conditions. Thus, the objective of this study was to evaluate the DMI equations for dairy heifers managed under tropical conditions. A total of 230 treatment means from 61 studies using dairy heifers (n = 1513 heifers, average body weight = 246 kg) were used. The animals were grouped into two groups based on their genetics: (1) Bos taurus (Holstein, Jersey, Brown Swiss, and Holstein × Jersey) and (2) crossbred (Bos taurus × Bos indicus). Seven previously published DMI equations (HH, HHJ, QUI, STA, 2001 NRC, OFLin, and OFNLin) for heifers were evaluated using mean bias, slope bias, mean squared prediction errors (MSPE) and its decomposition, and other model evaluation statistics. For Bos taurus heifers, our results indicated that OFNLin and HHJ had lower mean bias (0.13 and 0.16 kg/d, respectively) than other models. There was no significant slope or mean bias for HHJ and OFNLin (p > 0.05), indicating agreement between the observed and predicted DMI values. All other models had a significant mean bias (p < 0.05), whereas the QUI model also presented a significant slope bias (p < 0.02). For crossbred heifers, the STA equation was the only one that did not present mean and slope bias significance (p > 0.05). All other DMI models had significant mean bias when evaluated using crossbred data (p < 0.04), and QUI, OFLin, and OFNLin also presented significant slope bias (p < 0.01). Based on our results, predictions from OFNLin and HHJ best represented the observed DMI of Bos taurus heifers (MSPE ≤ 1.25 kg2/d2, mean bias ≤ 0.16 kg/d), whereas STA was the best model for crossbred heifers (MSPE = 1.25 kg2/d2, mean bias = 0.09 kg/d). These findings indicate that not all available models are adequate for estimating the DMI of dairy heifers managed under a tropical climate, with HHJ and OFNLin for Bos taurus and STA for crossbreds being the most suitable models for DMI prediction. There is evidence that models from Bos taurus heifers could be used to estimate the DMI of heifers under tropical conditions. For heifer ration formulation is necessary to consider that DMI is influenced by breed, diet, management, and climate. Future work should also include animal genetic and environmental variables for the prediction of DMI in dairy heifers.
Collapse
Affiliation(s)
- Marcos Busanello
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”/University of São Paulo—ESALQ/USP, Piracicaba 13418-900, SP, Brazil; (D.G.d.S.); (F.A.C.M.); (C.M.M.B.); (D.P.D.L.)
- Correspondence: ; Tel.: +55-559-9709-0792
| | - Debora Gomes de Sousa
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”/University of São Paulo—ESALQ/USP, Piracicaba 13418-900, SP, Brazil; (D.G.d.S.); (F.A.C.M.); (C.M.M.B.); (D.P.D.L.)
| | - Filipe Araújo Canedo Mendonça
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”/University of São Paulo—ESALQ/USP, Piracicaba 13418-900, SP, Brazil; (D.G.d.S.); (F.A.C.M.); (C.M.M.B.); (D.P.D.L.)
| | | | - Rodrigo de Almeida
- Department of Animal Science, Federal University of Paraná, Curitiba 80035-050, PR, Brazil;
| | - Carla Maris Machado Bittar
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”/University of São Paulo—ESALQ/USP, Piracicaba 13418-900, SP, Brazil; (D.G.d.S.); (F.A.C.M.); (C.M.M.B.); (D.P.D.L.)
| | - Dante Pazzanese Duarte Lanna
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”/University of São Paulo—ESALQ/USP, Piracicaba 13418-900, SP, Brazil; (D.G.d.S.); (F.A.C.M.); (C.M.M.B.); (D.P.D.L.)
| |
Collapse
|
5
|
van Niekerk JK, Fischer-Tlustos AJ, Wilms JN, Hare KS, Welboren AC, Lopez AJ, Yohe TT, Cangiano LR, Leal LN, Steele MA. ADSA Foundation Scholar Award: New frontiers in calf and heifer nutrition-From conception to puberty. J Dairy Sci 2021; 104:8341-8362. [PMID: 34053756 DOI: 10.3168/jds.2020-20004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/16/2021] [Indexed: 12/25/2022]
Abstract
Dairy calf nutrition is traditionally one of the most overlooked aspects of dairy management, despite its large effect on the efficiency and profitability of dairy operations. Unfortunately, among all animals on the dairy farm, calves suffer from the highest rates of morbidity and mortality. These challenges have catalyzed calf nutrition research over the past decade to mitigate high incidences of disease and death, and improve animal health, growth, welfare, and industry sustainability. However, major knowledge gaps remain in several crucial stages of development. The purpose of this review is to summarize the key concepts of nutritional physiology and programming from conception to puberty and their subsequent effects on development of the calf, and ultimately, future performance. During fetal development, developmental plasticity is highest. At this time, maternal energy and protein consumption can influence fetal development, likely playing a critical role in calf and heifer development and, importantly, future production. After birth, the calf's first meal of colostrum is crucial for the transfer of immunoglobulin to support calf health and survival. However, colostrum also contains numerous bioactive proteins, lipids, and carbohydrates that may play key roles in calf growth and health. Extending the delivery of these bioactive compounds to the calf through a gradual transition from colostrum to milk (i.e., extended colostrum or transition milk feeding) may confer benefits in the first days and weeks of life to prepare the calf for the preweaning period. Similarly, optimal nutrition during the preweaning period is vital. Preweaning calves are highly susceptible to health challenges, and improved calf growth and health can positively influence future milk production. Throughout the world, the majority of dairy calves rely on milk replacer to supply adequate nutrition. Recent research has started to re-evaluate traditional formulations of milk replacers, which can differ significantly in composition compared with whole milk. Transitioning from a milk-based diet to solid feed is critical in the development of mature ruminants. Delaying weaning age and providing long and gradual step-down protocols have become common to avoid production and health challenges. Yet, determining how to appropriately balance the amount of energy and protein supplied in both liquid and solid feeds based on preweaning milk allowances, and further acknowledging their interactions, shows great promise in improving growth and health during weaning. After weaning and during the onset of puberty, heifers are traditionally offered high-forage diets. However, recent work suggests that an early switch to a high-forage diet will depress intake and development during the time when solid feed efficiency is greatest. It has become increasingly clear that there are great opportunities to advance our knowledge of calf nutrition; yet, a more concentrated and rigorous approach to research that encompasses the long-term consequences of nutritional regimens at each stage of life is required to ensure the sustainability and efficiency of the global dairy industry.
Collapse
Affiliation(s)
- J K van Niekerk
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - A J Fischer-Tlustos
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - J N Wilms
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2; Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - K S Hare
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - A C Welboren
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - A J Lopez
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - T T Yohe
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - L R Cangiano
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2
| | - L N Leal
- Trouw Nutrition Research and Development, PO Box 299, 3800 AG, Amersfoort, the Netherlands
| | - M A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, Canada N1G 1Y2.
| |
Collapse
|
6
|
Stefańska B, Gąsiorek M, Nowak W. Short- and long-term effects of initial serum total protein, average starter feed intake during the last week of the preweaning period, and rearing body gain on primiparous dairy heifers' performance. J Dairy Sci 2020; 104:1645-1659. [PMID: 33309369 DOI: 10.3168/jds.2020-18833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022]
Abstract
The aim of this study was to evaluate the short- and long-term effects of initial serum total protein (STP) concentration, average starter feed intake (SI) during the last week of the preweaning period, and average daily gain (ADG) on the growth, fertility, and performance of Holstein heifers during their first lactation. Eighty-four female Holstein dairy calves were weaned at d 56 of age and then the study continued until the end of the first lactation. Growth performance, including body weight, ADG, withers height, and its change were analyzed monthly from 3 to 450 d of life, and reproduction data and performance in the first lactation of primiparous dairy heifers over a 4-yr period (2015 to 2019) were recorded. In the first 24 h of life, calves received 4 L of colostrum (<2 h and <12 h after birth); on d 2 and 3: 2 feedings/d of 2 L of transition milk; from d 4 to 49: 6 L/d of milk replacer (150 g of powder/L as-fed) in 3 feedings; and from d 50 to 56: 2 L/d of milk replacer in 1 feeding. The calves were fed pelleted starter feed from d 4 to 56, and after that from 8 wk until 3 mo of age, a dry total mixed ration with an 85:15 ratio of weaning pelleted starter to straw. From 3 to 7 mo and from 8 mo of age to calving, the total mixed ration contained 16.9% and ~14.0% crude protein, respectively, on a dry matter basis and ~2.40 Mcal of metabolizable energy/kg on a dry matter basis. The results of the current study showed that the initial STP concentration of primiparous dairy heifers was associated with improved growth performance, especially greater body weight and withers height. In addition, with increasing levels of initial STP concentration, age at first estrus, artificial insemination (AI) service, pregnancy, and calving was decreased by 16, 18, 25, and 25 d, respectively. Initial STP concentration was positively correlated with milk production and increased total milk yield and yield of energy-corrected milk by about 1,558 kg and 1,149 kg during first lactation. Calves with higher average starter feed intake during the last week of the preweaning period had better growth performance, which in turn was positively associated with fertility parameters, accelerated first estrus (by 17 d), and reduced age at AI service (by 13 d). Preweaning ADG was favorably associated with fertility performance of heifers, with faster occurrence of first estrus and a reduction in age at AI service, pregnancy, and calving. Also, increasing preweaning ADG increased milk yield, energy-corrected milk, and 4% fat-corrected milk at 305 DIM by about 829, 754, and 763 kg at first lactation of primiparous heifers. These results indicate that in the rearing period, particular attention should be paid to the initial STP concentration, average SI during the last week of this period, and rearing ADG to increase growth, fertility, and performance in the first lactation of primiparous dairy heifers.
Collapse
Affiliation(s)
- B Stefańska
- Department of Animal Nutrition, Poznań University of Life Sciences, 33 Wołyńska Street, 60-637 Poznań, Poland; Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 11 Dojazd Street, 60-632 Poznań, Poland.
| | - M Gąsiorek
- Department of Animal Nutrition, Poznań University of Life Sciences, 33 Wołyńska Street, 60-637 Poznań, Poland
| | - W Nowak
- Department of Animal Nutrition, Poznań University of Life Sciences, 33 Wołyńska Street, 60-637 Poznań, Poland
| |
Collapse
|