1
|
Zhao M, Chen Z, Ye D, Yu R, Yang Q. Comprehensive lipidomic profiling of human milk from lactating women across varying lactation stages and gestational ages. Food Chem 2024; 463:141242. [PMID: 39278081 DOI: 10.1016/j.foodchem.2024.141242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
An untargeted lipidomic analysis was conducted to investigate the lipid composition of human milk across different lactation stages and gestational ages systematically. A total of 25 lipid subclasses and 934 lipid species as well as 90 free fatty acids were identified. Dynamic changes of the lipids throughout lactation and gestational phases were highlighted. In general, lactation stages introduced more variations in the lipid composition of human milk than gestational ages. Most lipids decreased as the milk progressed from the colostral stage to the mature stage, with some reaching a peak at the transitional stage. Significant variations in lipid composition across gestational ages were predominantly evident during early lactation period. In mature milks, most of the lipids exhibited no discernible statistical differences among gestational ages. This elucidation offers valuable insights and guidance for tailoring precise nutritional strategies for infants with diverse health needs.
Collapse
Affiliation(s)
- Min Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhenying Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Danni Ye
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China
| | - Renqiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi 214002, China.
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Wuxi Translational Medicine Research Center and School of Translational Medicine, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Wang N, Ma M, Mu G, Qian F, Xuemei Z. Lipid analysis of breast milk and formula for preterm infants and the application and prospects of novel structural lipids - a comprehensive review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39066633 DOI: 10.1080/10408398.2024.2383964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Preterm infants, often characterized by lower birth weights and underdeveloped physiologies, necessitate specialized nutritional care. While breast milk stands as the ideal nutritional source, offering substantial energy through its fatty acid content to support the infants' growth and developmental needs, its usage might not always be feasible. Fatty acids in breast milk are critical for the development of these infants. In scenarios where breast milk is not an option, formula feeding becomes a necessary alternative. Thus, a comprehensive understanding of the fatty acid profiles in both breast milk and formulas is crucial for addressing the distinct nutritional requirements of preterm infants. This paper aims to summarize the effects of lipid composition, structure, and positioning in breast milk and formula on the growth and development of preterm infants. Furthermore, it explores recent advancements in the use of novel structural lipids in formulas, laying the groundwork for future innovations in formula design specifically catered to the needs of preterm infants.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Mingyang Ma
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Guangqing Mu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Fang Qian
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Zhu Xuemei
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
3
|
Purkiewicz A, Pietrzak-Fiećko R. Changes in the Fatty Acid Profile of Lactating Women Living in Poland-A Comparison with the Fatty Acid Profile of Selected Infant Formulas. Nutrients 2024; 16:2411. [PMID: 39125292 PMCID: PMC11314165 DOI: 10.3390/nu16152411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The present study examined the fatty acid content of human milk from Polish women living in the Warmia and Mazury region with regard to different lactation periods and compared it with the fatty acid content of selected infant formulas. The analysis included samples of breast milk-colostrum (n = 21), transitional milk (n = 26), and mature milk (n = 22). Fat was extracted using the Rose-Gottlieb method, and the fatty acid profile was determined by gas chromatography with a flame ionization detector (FID). The proportion of SFAs (saturated fatty acids) > MUFAs (monounsaturated fatty acids) > PUFAs (polyunsaturated fatty acids) was determined in each fraction of breast milk and infant formula. Palmitic, oleic, and linoleic acids predominated in breast milk and infant formulas. Colostrum contained lower contents of selected SFAs (caprylic, capric, lauric) and higher contents of selected MUFAs (ercucic) and PUFAs (arachidonic and docosahexaenoic) (p < 0.05) relative to transitional and mature milk. Infant formulas were distinguished from human milk in terms of their SFA (caproic, caprylic, lauric, arachidic), MUFA (oleic), and PUFA (linoleic, α-linoleic) content. It should be noted that infant formulas contained significantly lower trans fatty acid (TFA) content-more than thirty-six and more than nineteen times lower than in human milk. Furthermore, human milk contained branched-chain fatty acids (BCFAs) at 0.23-0.28%, while infant formulas contained only trace amounts of these acids. The average ratio of n-6 to n-3 fatty acids for human milk was 6.59:1 and was close to the worldwide ratio of 6.53 ± 1.72:1. Both principal component analysis (PCA) and cluster analysis (CA) indicated significant differences in the fatty acid profile relative to lactation and a different profile of infant formulas relative to breast milk.
Collapse
Affiliation(s)
- Aleksandra Purkiewicz
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718 Olsztyn, Poland;
| | | |
Collapse
|
4
|
Ni X, Zhang Z, Deng Z, Li J. Optimizing ARA and DHA in infant formula: A systematic review of global trends, regional disparities, and considerations for precision nutrition. Food Res Int 2024; 182:114049. [PMID: 38519198 DOI: 10.1016/j.foodres.2024.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/24/2024]
Abstract
In the context of precision nutrition, the addition of ARA and DHA in infant formula needs to consider more factors. This study conducted a comprehensive literature review, including 112 relevant Chinese and English articles, to summarize and analyze the global levels of ARA, DHA, and the ARA/DHA ratio in breast milk. The data were correlated with local aquatic products intake and children's IQ. The results indicated that the average level of DHA in breast milk across regions is lower than that of ARA. Variations in DHA content were identified as a primary factor influencing ARA/DHA ratio fluctuations. Breast milk ARA and DHA levels decrease with prolonged lactation periods but increase over the past 22 years. Correlation analysis revealed a significant positive relationship between aquatic products intake and breast milk DHA levels (r = 0.64, p < 0.05). Breast milk DHA levels also showed a significant positive correlation with children's IQ (r = 0.67, p < 0.01). Stable breast milk ARA content did not exhibit significant correlations with aquatic products intake or children's IQ (r = 0, p > 0.05). Among 22 infant formula products available in China, only 5 had ARA levels within the range of breast milk. Most formula products had higher ARA levels than DHA, resulting in ARA/DHA ratios generally exceeding 1. The temporal and spatial variability in breast milk ARA and DHA levels may lead to diverse health outcomes in infants. Therefore, the addition of ARA and DHA in infant formula should consider this variability, including the molecular forms and positional isomerism of the added ARA and DHA. Additionally, considering the impact of different cognitive development tests and infant's gene expression on formula assessment results, there is a need to establish a more comprehensive infant health assessment system to guide the addition of ARA and DHA in formula.
Collapse
Affiliation(s)
- Xinggang Ni
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zhiyi Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi, 330047, China.
| |
Collapse
|
5
|
Hatem O, Kaçar ÖF, Kaçar HK, Szentpéteri JL, Marosvölgyi T, Szabó É. Trans isomeric fatty acids in human milk and their role in infant health and development. Front Nutr 2024; 11:1379772. [PMID: 38515522 PMCID: PMC10954868 DOI: 10.3389/fnut.2024.1379772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
It is well known that long chain polyunsaturated fatty acids (LCPUFAs) play an important role in neurodevelopment in the perinatal life. The most important source of these fatty acids is the diet, however, they can also be formed in the human body from their shorter chain precursors, the essential fatty acids. Since the WHO recommends exclusive breastfeeding for the first six months after birth, the exclusive source of these fatty acids for breastfed infants is human milk, which can be influenced by the mother's diet. Unsaturated fatty acids can have either cis or trans configuration double bond in their chain with distinct physiological effects. Cis isomeric unsaturated fatty acids have several beneficial effects, while trans isomers are mostly detrimental, because of their similar structure to saturated fatty acids. Trans fatty acids (TFAs) can be further subdivided into industrial (iTFA) and ruminant-derived trans fatty acids (rTFA). However, the physiological effects of these two TFA subgroups may differ. In adults, dietary intake of iTFA has been linked to atherosclerosis, insulin resistance, obesity, chronic inflammation, and increased development of certain cancers, among other diseases. However, iTFAs can have a negative impact on health not only in adulthood but in childhood too. Results from previous studies have shown that iTFAs have a significant negative effect on LCPUFA levels in the blood of newborns and infants. In addition, iTFAs can affect the growth and development of infants, and animal studies suggest that they might even have lasting negative effects later in life. Since the only source of TFAs in the human body is the diet, the TFA content of breast milk may determine the TFA supply of breastfed infants and thus affect the levels of LCPUFAs important for neurodevelopment and the health of infants. In this review, we aim to provide an overview of the TFA content in human milk available in the literature and their potential effects on infant health and development.
Collapse
Affiliation(s)
- Okba Hatem
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Ömer Furkan Kaçar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Hüsna Kaya Kaçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya, Türkiye
| | - József L. Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
Einerhand AWC, Mi W, Haandrikman A, Sheng XY, Calder PC. The Impact of Linoleic Acid on Infant Health in the Absence or Presence of DHA in Infant Formulas. Nutrients 2023; 15:2187. [PMID: 37432333 DOI: 10.3390/nu15092187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Both linoleic acid (LA) and α-linolenic acid (ALA) are essential dietary fatty acids, and a balanced dietary supply of these is of the utmost importance for health. In many countries across the globe, the LA level and LA/ALA ratio in breast milk (BM) are high. For infant formula (IF), the maximum LA level set by authorities (e.g., Codex or China) is 1400 mg LA/100 kcal ≈ 28% of total fatty acid (FA) ≈ 12.6% of energy. The aims of this study are: (1) to provide an overview of polyunsaturated fatty acid (PUFA) levels in BM across the world, and (2) to determine the health impact of different LA levels and LA/ALA ratios in IF by reviewing the published literature in the context of the current regulatory framework. The lipid composition of BM from mothers living in 31 different countries was determined based on a literature review. This review also includes data from infant studies (intervention/cohort) on nutritional needs regarding LA and ALA, safety, and biological effects. The impact of various LA/ALA ratios in IF on DHA status was assessed within the context of the current worldwide regulatory framework including China and the EU. Country averages of LA and ALA in BM range from 8.5-26.9% FA and 0.3-2.65% FA, respectively. The average BM LA level across the world, including mainland China, is below the maximum 28% FA, and no toxicological or long-term safety data are available on LA levels > 28% FA. Although recommended IF LA/ALA ratios range from 5:1 to 15:1, ratios closer to 5:1 seem to promote a higher endogenous synthesis of DHA. However, even those infants fed IF with more optimal LA/ALA ratios do not reach the DHA levels observed in breastfed infants, and the levels of DHA present are not sufficient to have positive effects on vision. Current evidence suggests that there is no benefit to going beyond the maximum LA level of 28% FA in IF. To achieve the DHA levels found in BM, the addition of DHA to IF is necessary, which is in line with regulations in China and the EU. Virtually all intervention studies investigating LA levels and safety were conducted in Western countries in the absence of added DHA. Therefore, well-designed intervention trials in infants across the globe are required to obtain clarity about optimal and safe levels of LA and LA/ALA ratios in IF.
Collapse
Affiliation(s)
| | - Wiola Mi
- Bunge Loders Croklaan Nutrition, Shanghai 200051, China
| | | | - Xiao-Yang Sheng
- Department of Developmental Behavioral Pediatric & Children Healthcare, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200051, China
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
Ding D, He X, Agarry IE, Wang Y, Zhou F, Li Y, Kan J, Cai T, Chen K. Profile of Human Milk Phospholipids at Different Lactation Stages with UPLC/Q-TOF-MS: Characterization, Distribution, and Differences. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6326-6337. [PMID: 37040528 DOI: 10.1021/acs.jafc.2c07512] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Human milk phospholipids are important for the regular growth and development of infants. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) was employed to qualitatively and quantitatively analyze 277 phospholipid molecular species in 112 human milk samples to obtain a detailed profile of human milk phospholipids along the lactation stage. MS/MS fragmentation patterns of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine were characterized in detail. Phosphatidylcholine is the most dominant group, followed by sphingomyelin. PC(18:0/18:2), SM(d18:1/24:1), PE(18:0/18:0), PS(18:0/20:4), and PI(18:0/18:2) showed the highest average concentration among all of the phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol molecular species, respectively. The fatty acids attached to the phospholipid molecules were mainly palmitic, stearic, oleic, and linoleic acids, and the plasmalogens decreased along the lactation stage. The increase of sphingomyelins and phosphatidylethanolamines and the decrease of phosphatidylcholines are the key changes from colostrum to transitional milk; the increase of lysophosphatidylcholines and lysophosphatidylethanolamines and the continuous decrease of phosphatidylcholines are the vital changes from transitional milk to mature milk.
Collapse
Affiliation(s)
- Desheng Ding
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Xiaoling He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Israel Emiezi Agarry
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Yuankai Wang
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Fenglan Zhou
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Yunchang Li
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jianquan Kan
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, P. R. China
- Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| |
Collapse
|
8
|
Zhou J, Yang M, Li F, Wang M, Zhang Y, Wei M, Li X, Qi X, Bai X, Chai Y. Development of matrix certified reference material for accurate determination of docosahexaenoic acid in milk powder. Food Chem 2023; 406:135012. [PMID: 36462352 DOI: 10.1016/j.foodchem.2022.135012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
A novel matrix certified reference material (CRM) of docosahexaenoic acid in milk powder [GBW (E) 100641] was first developed. The CRM candidates was prepared by adding appropriate levels of docosahexaenoic acid to cow's milk, then powder sprayed, lyophilized, mixed, dispensed and sterilized. An optimized acetylchloride-methanol method was proposed and used for the characterization. The CRM characterization was carried out in six laboratories in accordance with ISO Guide 35 requirements. The certified value of CRM was 0.69 mg/g with an uncertainty of 0.08 mg/g (k = 2). The CRM was sufficiently homogeneous between and within bottles and stable up to 6 month at -20℃ and 7 days below 50 ℃. The uncertainty was evaluated by combing the contributions from characterization, homogeneity and stability. Thus, the CRM can be used for quality control and method validation to ensure the accurate and reliable measurements of docosahexaenoic acid in milk for quality monitoring.
Collapse
Affiliation(s)
- Jian Zhou
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - MengRui Yang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Fukai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Yaoguang Zhang
- Junlebao Group Co., Ltd. Shijiazhuang Key Laboratory of Dairy Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China
| | - Min Wei
- Junlebao Group Co., Ltd. Shijiazhuang Key Laboratory of Dairy Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China
| | - Xingjia Li
- Junlebao Group Co., Ltd. Shijiazhuang Key Laboratory of Dairy Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China
| | - Xiaoru Qi
- Junlebao Group Co., Ltd. Shijiazhuang Key Laboratory of Dairy Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China
| | - Xiaoyun Bai
- Junlebao Group Co., Ltd. Shijiazhuang Key Laboratory of Dairy Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China
| | - Yanbing Chai
- Junlebao Group Co., Ltd. Shijiazhuang Key Laboratory of Dairy Quality and Safety Control, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
9
|
Sodium and Potassium Concentrations and Somatic Cell Count of Human Milk Produced in the First Six Weeks Postpartum and Their Suitability as Biomarkers of Clinical and Subclinical Mastitis. Nutrients 2022; 14:nu14224708. [PMID: 36432395 PMCID: PMC9694808 DOI: 10.3390/nu14224708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
The sodium (Na) concentration and the ratio of Na to potassium (K; Na/K) in human milk are used commonly as biomarkers of subclinical mastitis, but limited data exist on their relationship to and ability to predict clinical mastitis. Here, we assessed concentrations of Na, K, Na/K, and somatic cell count (SCC), a mammary health biomarker used in the dairy industry, in milk prospectively collected from both breasts of 41 women over the first 6 weeks postpartum. Although values differed over time postpartum, there were no differences in mean values between breasts. Nearly one-quarter (24%) of participants experienced clinical mastitis. Somatic cell counts >4.76 × 105 cells/mL were most strongly related to development of clinical mastitis in the following week (odds ratio, 7.81; 95% CI, 2.15−28.30; p = 0.002), although relationships were also observed for SCC > 4.00 × 105 cells/mL and Na concentration >12 mmol/L. Estimates of the prevalence of subclinical mastitis in women who never progressed to clinical mastitis differed by biomarker but ranged from 20 to 75%. Despite these findings, positive predictive values (PPV) of the biomarkers for identifying clinical mastitis were low (≤0.34), indicating additional research is needed to identify single biomarkers or composite measures that are highly specific, sensitive, and predictive of clinical mastitis in women.
Collapse
|
10
|
Yu J, Yan Z, Mi L, Wang L, Liu Z, Ye X, Jin Q, Pang J, Wei W, Wang X. Medium- and long-chain triacylglycerols and di-unsaturated fatty acyl-palmitoyl-glycerols in Chinese human milk: Association with region during the lactation. Front Nutr 2022; 9:1040321. [PMID: 36313110 PMCID: PMC9614417 DOI: 10.3389/fnut.2022.1040321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022] Open
Abstract
The triacylglycerols (TAGs) of medium- and long-chain triacylglycerols (MLCT) and di-unsaturated fatty acyl-palmitoyl-glycerols (UPU) in human milk provide better nutritional effects, and should be prioritized as crucial focuses on neonatal nutrition research. However, little has been done on the influences of the lactation stage and regional diversity on MLCT and UPU. In this study, we collected 204 human milk samples during colostrum, 1st and 4th month from the north (Baotou), central (Beijing), east (Jinan), southwest (Kunming), southeast (Shenzhen), and northwest (Xining) regions of China. There were 122 species of TAGs detected with UPLC-Q-TOF-MS, including 60 kinds of MLCT and 15 kinds of UPU. The MLCT and UPU type TAGs in human milk were ~27 and ~38%, respectively. The sum content of MLCT and UPU in human milk was stable. Compared to the regional diversity, lactation stages showed more obvious influences on MLCT and UPU composition. Moreover, a summary of TAG studies indicated that Chinese human milk showed a higher ratio of O-P-L to O-P-O than in western countries.
Collapse
Affiliation(s)
- Jiahui Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhiyuan Yan
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China,Yashili International Group Co., Ltd., Guangzhou, China
| | - Lijuan Mi
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China
| | - Lei Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengdong Liu
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China,Yashili International Group Co., Ltd., Guangzhou, China
| | - Xingwang Ye
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China,Yashili International Group Co., Ltd., Guangzhou, China
| | - QingZhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinzhu Pang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China,Jinzhu Pang
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China,*Correspondence: Wei Wei
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China,Xingguo Wang
| |
Collapse
|
11
|
Bora S, Adole PS, Vinod KV, Pillai AA. A validated and optimized method for separation and quantification of total fatty acids by gas chromatography-ion trap mass spectrometry in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123473. [PMID: 36155260 DOI: 10.1016/j.jchromb.2022.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Fatty acids (FAs) are associated with many physiological functions of tissues, and their alteration has been linked with tissue-specific or systemic diseases. The current situation warrants us to have a sensitive and specific method for analysis of total FAs simultaneously from the biological fluid so that the risk prediction, diagnosis or prognosis of the disease can be made effectively. Because of greater sensitivity and resolution, a method of gas chromatography-ion trap mass spectrometry (GC-IT/MS) has been optimized and validated to quantify simultaneously 19 total FAs levels in plasma and compared with GC-triple quadrupole mass spectrometry. FAs have been transesterified by methanolic acetyl chloride to fatty acid methyl esters (FAMEs). A 65 min GC method separated all 19 FAMEs. The calibration curve had good linearity up to 313-922 μM with a correlation coefficient between 0.9882 and 0.9998. The LODs and LOQs of FAMEs were in the range of 0.63 to 9.55 and 2.12 to 31.8 μM, respectively. The method has recovery up to 144 %, stability at 4 °C for 48 h and one freeze-thaw cycle, and good intra-day and inter-day precision. The optimized method has been used to quantify plasma total FAs in type 2 diabetes mellitus patients with and without acute coronary syndrome. Though a significant difference has been found between IT/MS and triple quadrupole mass spectrometry, the GC-IT/MS can help to quantify total FAs in the clinical setting.
Collapse
Affiliation(s)
- Sushmita Bora
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Prashant S Adole
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India.
| | - Kolar V Vinod
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Ajith A Pillai
- Department of Cardiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
12
|
Lan QY, Huang SY, Jiang CY, Yang MT, Wu T, Chen XY, Liu ZY, Wei W, Wang XG, Zhu HL. Profiling of triacylglycerol composition in the breast milk of Chinese mothers at different lactation stages. Food Funct 2022; 13:9674-9686. [PMID: 36040052 DOI: 10.1039/d2fo01877b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triacylglycerol (TAG) is the primary constituent of human milk fat and plays a vital role in the healthy development of infants. But few studies reported the sophisticated profile of TAG molecular species in human breast milk and its temporal changes during a prolonged lactation period. An efficient ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method was adopted to examine TAGs. A total of 128 TAGs in 296 human breast milk samples collected during postnatal 0 to 400 days were identified. The changes in the human milk TAG profile mainly took place in the early stages of lactation (postnatal 0-45 days), and the TAG profile became stable in mature milk after 200 days of lactation. Odd chain fatty acids (OC-FAs) may be important markers for identifying human breast milk of different lactation stages. This study could provide evidence for developing safe and efficacious human-milk substitutes for children without access to human breast milk.
Collapse
Affiliation(s)
- Qiu-Ye Lan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Chen-Yu Jiang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Meng-Tao Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Tong Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Xiao-Yan Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Zhao-Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Xing-Guo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
13
|
Wang F, Chen M, Luo R, Huang G, Wu X, Zheng N, Zhang Y, Wang J. Fatty acid profiles of milk from Holstein cows, Jersey cows, buffalos, yaks, humans, goats, camels, and donkeys based on gas chromatography-mass spectrometry. J Dairy Sci 2021; 105:1687-1700. [PMID: 34802741 DOI: 10.3168/jds.2021-20750] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023]
Abstract
Due to the diversity and limitation of determination methods, published data on the fatty acid (FA) compositions of different milk samples have contributed to inaccurate comparisons. In this study, we developed a high-throughput gas chromatography-mass spectrometry method to determinate milk FA, and the proposed method had satisfactory linearity, sensitivity, accuracy, and precision. We also analyzed the FA compositions of 237 milk samples from Holstein cows, Jersey cows, buffalos, yaks, humans, goats, donkeys, and camels. Holstein, Jersey, goat, and buffalo milks contained high content of even-chain saturated FA, whereas goat milk had higher content of medium- and short-chain FA (MSCFA). Yak and camel milk are potential functional foods due to their high levels of odd- and branched-chain FA and low ratios of n-6 to n-3 polyunsaturated FA (PUFA). Human milk contained lower levels of saturated FA, MSCFA, and conjugated linoleic acid, and higher levels of monounsaturated FA and PUFA. As a special nonruminant milk, donkey milk contained low levels of monounsaturated FA and high levels of PUFA and MSCFA. Based on the FA profiles of 8 types of milk, nonruminant milk was distinct from ruminant milk, whereas camel and yak milk were different from other ruminant milks and considered as potential functional foods for balanced human diet.
Collapse
Affiliation(s)
- Fengen Wang
- College of Animal Science, Xinjiang Agriculture University, Urumchi 830,091, P. R. China; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250,100, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Meiqing Chen
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Runbo Luo
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Guoxin Huang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Xufang Wu
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Nan Zheng
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China
| | - Yangdong Zhang
- Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China.
| | - Jiaqi Wang
- College of Animal Science, Xinjiang Agriculture University, Urumchi 830,091, P. R. China; Key Laboratory of Quality and Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100,193, P. R. China.
| |
Collapse
|