1
|
Zwierzchowski G, Zhang G, Tobolski D, Wójcik R, Wishart DS, Ametaj BN. Metabolomic fingerprinting of milk fever cows: Pre- and postpartum metabolite alterations. J Vet Intern Med 2024. [PMID: 39466655 DOI: 10.1111/jvim.17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Milk fever (MF), a metabolic disorder in dairy cows characterized by low blood calcium concentrations postpartum, is well-recognized clinically. However, comprehensive data on the alteration of metabolites associated with this condition remains sparse. HYPOTHESIS Delineate serum metabolite profiles and metabolic pathways preceding, coinciding with, and after the onset of MF. ANIMALS Twenty-six cows, including 20 healthy cows and 6 cows initially affected by MF. Because of culling, the number of MF-affected cows decreased to 4 at MF week, +4 weeks, and +8 weeks postpartum. METHODS A nested case-control longitudinal study was conducted, with blood samples collected at -8 and -4 weeks prepartum, MF week, and +4 and +8 weeks postpartum. Serum analysis utilized direct injection/liquid chromatography/tandem mass spectrometry (DI/LC/MS/MS) techniques. RESULTS Key findings included the identification of diverse metabolites such as hexose, amino acids, phosphatidylcholines, lysophosphatidylcholines, and sphingomyelin, which varied between studied groups (P < .05). The most marked metabolic alterations were observed 4 weeks prepartum. In total, 42, 56, 38, 29, and 24 metabolites distinguished the MF group at the respective time points (P < .05). Additionally, 33 metabolic pathways, including amino acid, antioxidant metabolism, fatty acid degradation, and carbohydrate processing, were impacted (P < .05). CONCLUSIONS AND CLINICAL IMPORTANCE Metabolic disruptions in dairy cows begin several weeks before the clinical manifestation of MF and persist up to 8 weeks postpartum. These findings emphasize the complexity of MF, extending beyond only hypocalcemia and indicate the necessity for preemptive monitoring in dairy herd management.
Collapse
Affiliation(s)
- Grzegorz Zwierzchowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Guanshi Zhang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Dawid Tobolski
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Roman Wójcik
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - David S Wishart
- Department of Biological and Computer Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Burim N Ametaj
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Vieira-Neto A, Lean IJ, Santos JEP. Periparturient Mineral Metabolism: Implications to Health and Productivity. Animals (Basel) 2024; 14:1232. [PMID: 38672379 PMCID: PMC11047658 DOI: 10.3390/ani14081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mineral metabolism, in particular Ca, and to a lesser extent phosphorus (P) and magnesium (Mg), is altered with the onset of lactation because of extensive irreversible loss to synthesize colostrum and milk. The transient reduction in the concentration of Ca in blood, particularly when it lasts days, increases the risk of mineral-related disorders such as hypocalcemia and, to a lesser extent, hypophosphatemia. Although the incidence of clinical hypocalcemia can be reduced by prepartum dietary interventions, subclinical hypocalcemia remains prevalent, affecting up to 60% of the dairy cows in the first 3 d postpartum. More importantly, strong associations exist between hypocalcemia and increased susceptibility to other peripartum diseases and impaired reproductive performance. Mechanistic experiments have demonstrated the role of Ca on innate immune response in dairy cows, which presumably predisposes them to other diseases. Hypocalcemia is not related to inadequate Ca intake as prepartum diets marginal to deficient in Ca reduce the risk of the disease. Therefore, the understanding of how Ca homeostasis is regulated, in particular how calciotropic hormones such as parathyroid hormone and 1,25-dihydroxyvitamin D3, affect blood Ca concentrations, gastrointestinal Ca absorption, bone remodeling, and renal excretion of Ca become critical to develop novel strategies to prevent mineral imbalances either by nutritional or pharmacological interventions. A common method to reduce the risk of hypocalcemia is the manipulation of the prepartum dietary cation-anion difference. Feeding acidogenic diets not only improves Ca homeostasis and reduces hypocalcemia, but also reduces the risk of uterine diseases and improves productive performance. Feeding diets that induce a negative Ca balance in the last weeks of gestation also reduce the risk of clinical hypocalcemia, and recent work shows that the incorporation of mineral sequestering agents, presumably by reducing the absorption of P and Ca prepartum, increases blood Ca at calving, although benefits to production and health remain to be shown. Alternative strategies to minimize subclinical hypocalcemia with the use of vitamin D metabolites either fed prepartum or as a pharmacological agent administered immediately after calving have shown promising results in reducing hypocalcemia and altering immune cell function, which might prove efficacious to prevent diseases in early lactation. This review summarizes the current understanding of Ca homeostasis around parturition, the limited knowledge of the exact mechanisms for gastrointestinal Ca absorption in bovine, the implications of hypocalcemia on the health of dairy cows, and discusses the methods to minimize the risk of hypocalcemia and their impacts on productive performance and health in dairy cows.
Collapse
Affiliation(s)
- Achilles Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Ian J. Lean
- Scibus, Camden, NSW 2570, Australia;
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - José Eduardo P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
- DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Matthaei M, Kononov S, Rehage J, Szura G, Leiter I, Hansen K, Daenicke S, von Soosten D, Kersten S, Meyer U, Wilkens M. Does bone mobilization interfere with energy metabolism in transition cows? JDS COMMUNICATIONS 2022; 3:451-455. [PMID: 36465511 PMCID: PMC9709610 DOI: 10.3168/jdsc.2022-0239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/26/2022] [Indexed: 06/01/2023]
Abstract
The onset of lactation represents a challenge for both mineral homeostasis and energy metabolism in high-performing dairy cows. It has been shown that subclinical and clinical hypocalcemia increases the risk of ketosis and recent studies suggest that bone-derived endocrine factors could play a role in intermediary metabolism. Therefore, we analyzed serum samples from calculated d -7, calculated d -3, d +1, d +3, and d +7 relative to calving from 15 multiparous cows for total Ca, the bone resorption marker CrossLaps, the bone formation marker intact osteocalcin, undercarboxylated osteocalcin (ucOC), insulin, glucose, nonesterified fatty acids, β-hydroxybutyrate, and insulin-like growth factor 1. Serum concentrations of Ca on d -3 and d +1 were associated with parameters of energy metabolism on d +3 and d +7. As we found large variations for serum concentrations of ucOC already on d -7, we allocated the cows retrospectively to 3 groups: low ucOC, medium ucOC, and high ucOC. These groups differed not only in their ucOC dynamics, but also in insulin sensitivity estimated using the revised quantitative insulin sensitivity index (RQUICKI). High ucOC cows presented with the highest RQUICKI throughout the entire observation period. Our data further support the hypothesis that low serum Ca precedes disturbances of energy metabolism. Furthermore, from our preliminary results it can be assumed that the potential link between mineral homeostasis, bone turnover, and intermediary metabolism should be further investigated.
Collapse
Affiliation(s)
- M.O. Matthaei
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, 01403 Leipzig, Saxony, Germany
| | - S.U. Kononov
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, 01403 Leipzig, Saxony, Germany
| | - J. Rehage
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Lower Saxony, Germany
| | - G. Szura
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Lower Saxony, Germany
| | - I. Leiter
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Lower Saxony, Germany
| | - K. Hansen
- Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Lower Saxony, Germany
| | - S. Daenicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Lower Saxony, Germany
| | - D. von Soosten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Lower Saxony, Germany
| | - S. Kersten
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Lower Saxony, Germany
| | - Ulrich Meyer
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, 38116 Braunschweig, Lower Saxony, Germany
| | - M.R. Wilkens
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, 01403 Leipzig, Saxony, Germany
| |
Collapse
|
4
|
Meyer-Binzegger M, Ollagnier C, Eggerschwiler L, Bühler K, Schlegel P, Meylan M. Pharmacokinetics of 1,25-dihydroxyvitamin D 3 glycosides from Solanum glaucophyllum extract given in a rumen bolus on blood mineral profiles in dry pregnant dairy cows. Res Vet Sci 2021; 142:70-77. [PMID: 34864460 DOI: 10.1016/j.rvsc.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Providing tablets of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the biologically active metabolite of vitamin D3, in a rumen bolus may be used as prevention for periparturient hypocalcemia in dairy cows. This study investigated the pharmacokinetics of 1,25(OH)2D3 glycosides extracted from Solanum glaucophyllum (SGE) on blood serum 1,25(OH)2D3, Ca, P and Mg response in dry pregnant dairy cows. Boluses contained tablets of SGE which differed in their release properties (rapid release, slow release and combination) and galenics (200 μg uncoated, 300 μg and 500 μg uncoated or coated, 2 × 500 μg uncoated). Nineteen blood samples were collected from 29 cows between 96 h before and 336 h after bolus administration. Blood serum 1,25(OH)2D3, Ca and P increased between 12 h and 120 h, 12 h and 264 h and 24 h and 264 h, respectively. Highest values were reached at 30 h, 72 h and 120 h for 1,25(OH)2D3, Ca and P, respectively. Baseline values were then reached at 216 h for 1,25(OH)2D3 and 336 h for Ca and P. Concentration of Mg decreased between 24 h and 216 h, before reaching values comparable to baseline at 264 h. Highest Ca values were obtained with the combined rapid and slow release properties (500 μg) and there was no effect from coating on pharmacokinetics. In conclusion, the antepartum oral SGE bolus administration may be suitable for the prevention of periparturient hypocalcemia.
Collapse
Affiliation(s)
- M Meyer-Binzegger
- Agroscope, Ruminant Research Unit, 1725 Posieux, Switzerland; Clinic for Ruminants, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - C Ollagnier
- Agroscope, Ruminant Research Unit, 1725 Posieux, Switzerland
| | - L Eggerschwiler
- Agroscope, Ruminant Research Unit, 1725 Posieux, Switzerland
| | - K Bühler
- Herbonis Animal Health GmbH, 4302 Augst, Switzerland
| | - P Schlegel
- Agroscope, Ruminant Research Unit, 1725 Posieux, Switzerland.
| | - M Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Venjakob PL, Bauerfeind L, Staufenbiel R, Wilkens MR, Weber C, Heuwieser W, Borchardt S. Randomized clinical trial to evaluate the effects of a prepartum cholecalciferol injection on postpartum serum calcium dynamics and health and performance in early-lactation multiparous dairy cows. J Dairy Sci 2021; 105:1573-1588. [PMID: 34802735 DOI: 10.3168/jds.2021-20584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/16/2021] [Indexed: 11/19/2022]
Abstract
The objectives of the present study were (1) to evaluate the effect of prepartum cholecalciferol treatment on serum Ca concentration during the first 10 d after calving and (2) to evaluate the effect of treatment on subsequent health and performance. Multiparous Holstein cows (n = 377) from one dairy farm were fed a negative dietary cation-anion difference diet (-31 mEq/kg of DM) for the last 21 d of gestation. On d 275, the animals were randomly assigned to a control or a treatment group. Cows in the control group were left untreated, and cows in the treatment group received an injection of 12 × 106 IU of cholecalciferol intramuscularly on the day of enrollment. If treated cows did not deliver the calf within 6 d, they were reinjected with 10 × 106 IU of cholecalciferol. Blood samples were drawn on 1, 2, 3, 5, 7, and 10 days in milk (DIM) and analyzed for serum Ca, P, and Mg concentrations. In a subsample of cows (50 control cows, 35 cows treated once with cholecalciferol, and 15 cows treated twice) serum haptoglobin, nonesterified fatty acids, β-hydroxybutyrate, and 25-hydroxycholecalciferol concentrations were analyzed on 1, 5, and 10 DIM. Binary data [retained placenta (RP), metritis] were analyzed using logistic regression models. Repeated measures ANOVA with first-order autoregressive covariance was performed to evaluate the treatment effect on milk yield over the first 10 test days after parturition, 25-hydroxycholecalciferol, serum Ca, P, Mg, β-hydroxybutyrate, nonesterified fatty acids, and haptoglobin concentrations. Cox proportional hazards were used to model the time to event outcomes (time to pregnancy within 200 d, culling until 300 DIM). After enrollment of 31.4% of cows and a preliminary analysis, adverse reactions became apparent, and the study was stopped. Cows treated with cholecalciferol had a greater risk of incurring RP and metritis. The adjusted mean incidences were 2.0%, 7.7%, and 4.0% for RP, and 21.6%, 39.3%, and 33.3% for metritis for control cows, cows treated once, and cows treated twice with cholecalciferol, respectively. Compared with control cows, cows injected once with 12 × 106 IU of cholecalciferol produced less energy-corrected milk on the first (-3.76 kg) and second (-2.75 kg) test days, respectively. Cows injected twice with cholecalciferol (12 × 106 IU of cholecalciferol and 10 × 106 IU 1 wk later) had a reduced milk yield only at first test day (-3.80 kg). Treatment with cholecalciferol led to a significant increase in 25-hydroxycholecalciferol on d 1, 5, and 10 after calving. Serum Ca and P concentrations were significantly increased in cows treated with cholecalciferol, but serum Mg concentrations were significantly reduced. Haptoglobin concentrations were significantly increased on 5 DIM in cows injected once with 12 × 106 IU of cholecalciferol. Although we observed no effect of treatment on culling until 300 DIM, time to pregnancy was delayed by 34 d in cows injected once with 12 × 106 IU of cholecalciferol. In the present study, injection with 12 × 106 IU of cholecalciferol had detrimental effects on health and milk production despite the beneficial effects on Ca homeostasis.
Collapse
Affiliation(s)
- P L Venjakob
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - L Bauerfeind
- Ruminant Clinic, Faculty of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - R Staufenbiel
- Ruminant Clinic, Faculty of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - M R Wilkens
- Department of Animal Sciences, Animal Nutrition Physiology, University of Goettingen, 37077 Goettingen, Germany
| | - C Weber
- Laboklin GmbH & Co. KG, Laboratory for Clinical Diagnostics, Steubenstraße 4, 97688 Bad Kissingen, Germany
| | - W Heuwieser
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany.
| | - S Borchardt
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
6
|
Connelly MK, Cheng AA, Hernandez LL. Graduate Student Literature Review: Serotonin and calcium metabolism: A story unfolding. J Dairy Sci 2021; 104:13008-13019. [PMID: 34531048 DOI: 10.3168/jds.2021-20610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
The peripartum period is characterized by dynamic shifts in metabolic, mineral, and immune metabolism as the dairy cow adapts to the demands of lactation. Emphasis over the past decade has been placed on understanding the biology of the large shift in calcium metabolism in particular. Moreover, research has also focused on exploring the role of serotonin during the transition period and lactation and further unraveling its relationship with calcium. This review aimed to demonstrate the integration of calcium physiology during the peripartal period and throughout lactation. More specifically, we sought to discuss the knowledge gained in recent years on calcium metabolism, mammary calcium transport, serotonin metabolism, and the serotonin-calcium axis. Herein we also discuss the challenges and limitations of current research and where that leaves the present understanding of the serotonin-calcium axis as we seek to move forward and continue exploring this interesting relationship.
Collapse
Affiliation(s)
- M K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706.
| | - A A Cheng
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| | - L L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| |
Collapse
|
7
|
Vieira-Neto A, Zimpel R, Lopes FR, Scheffler TL, Block E, Thatcher WW, Santos JEP. Duration and degree of diet-induced metabolic acidosis prepartum alter tissue responses to insulin in dairy cows. J Dairy Sci 2020; 104:1660-1679. [PMID: 33309345 DOI: 10.3168/jds.2020-18787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022]
Abstract
The objective of this experiment was to determine the effects of altering the dietary cation-anion difference (DCAD) fed for the last 21 or 42 d of gestation on glucose metabolism and tissue insulin responsiveness. Ninety parous Holstein cows at 232 d of gestation were assigned randomly to dietary treatments with 2 levels of DCAD (-70 or -180 mEq/kg) fed for 2 durations (short: the last 21 d of gestation; long: the last 42 d of gestation). For the short treatments, a diet with +110 mEq/kg was fed from 232 to 254 d of gestation. Intravenous glucose tolerance tests (IVGTT) were performed at either 250 or 270 d of gestation by infusing 0.25 g of dextrose/kg of body weight within 1 min. The following day, cows underwent an insulin challenge (IC) and received 0.1 IU of insulin/kg of body weight intravenously. Blood was sampled at min -15, -5, and 0 to establish a baseline and from 5 to 180 min relative to infusions; plasma concentrations of glucose, insulin, and fatty acids were determined, and the respective areas under the curves (AUC) were calculated. Liver was sampled after the IVGTT, and adipose tissue was sampled after the IVGTT and IC for quantification of mRNA expression and protein abundance. Reducing the DCAD altered acid-base balance compatible with a compensated metabolic acidosis. At 250 d, reducing the DCAD increased the AUC for glucose and reduced that of insulin following the IVGTT, whereas during the IC, clearance rate decreased and time to half-life of insulin increased with reducing DCAD, resulting in a tendency to a larger AUC for fatty acids. At 270 d, quantitative insulin sensitivity check index and the revised quantitative insulin sensitivity check index were smaller in cows fed the acidogenic diets for the last 42 d of gestation compared with the last 21 d of gestation, thereby suggesting reduced insulin sensitivity. In addition, cows fed for the long duration tended to have greater AUC for glucose but smaller AUC for insulin following an IVGTT than those fed for the short duration, thereby suggesting reduced insulin release and glucose disposal. Treatments did not affect hepatic mRNA expression of G6PC, PCK1, PCK2, and PC or adipose tissue mRNA expression of ATGL, ACC, B2AR, HSL, and PLIN1. On the other hand, for proteins, reducing the DCAD linearly reduced abundance of rabbit anti-mouse protein kinase B (AKT) and tended to reduce rabbit anti-human phosphorylated (Ser-9) glycogen synthase kinase-3 β (pGSK) and the pGSK:rabbit anti-human glycogen synthase kinase-3 β (GSK) ratio in hepatic tissue, whereas a linear increase in rabbit anti-human hormone-sensitive lipase (HSL) and rabbit anti-mouse phosphorylated (Ser-660) hormone-sensitive lipase (pHSL) in adipose tissue was observed after the IVGTT at 250 d. Moreover, reducing the DCAD resulted in a linear reduction of AKT and tended to reduce rabbit anti-human acetyl-CoA carboxylase (ACC) but increased pHSL linearly in adipose tissue after an IC at 250 d. Cows fed acidogenic diets for a short duration tended to have less pHSL in adipose tissue than those fed for a long duration after an IVGTT at 270 d. Associations were observed between blood pH and mRNA and protein abundance in hepatic and adipose tissues. Diet-induced metabolic acidosis altered insulin release and insulin signaling, resulting in a shift in adipose tissue metabolism that would favor lipolysis over lipogenesis.
Collapse
Affiliation(s)
- A Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - R Zimpel
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - F R Lopes
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - T L Scheffler
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - E Block
- Arm & Hammer Animal Nutrition, Princeton, NJ 08543
| | - W W Thatcher
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611.
| |
Collapse
|
8
|
Vieira-Neto A, Leão IMR, Prim JG, Silva ACM, Nehme Marinho M, Zimpel R, Etheve S, Nelson CD, Santos JEP. Effect of duration of exposure to diets differing in dietary cation-anion difference on Ca metabolism after a parathyroid hormone challenge in dairy cows. J Dairy Sci 2020; 104:1018-1038. [PMID: 33162070 DOI: 10.3168/jds.2020-19127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/29/2020] [Indexed: 11/19/2022]
Abstract
Objectives of the experiment were to determine the length of exposure to an acidogenic diet that would elicit changes in acid-base balance, mineral digestion, and response to parathyroid hormone (PTH)-induced changes in blood Ca and vitamin D3 in prepartum dairy cows. Nonlactating parous Holstein cows (n = 20) at 242 d of gestation were blocked by lactation (1 or >1) and pretreatment dry matter (DM) intake and, within block, they were randomly assigned to a diet with a dietary cation-anion difference (DCAD) of +200 mEq/kg of DM (DCAD +200) or an acidogenic diet with -150 mEq/kg of DM (DCAD -150). Water and DM intake were measured and blood was sampled daily. Urine was sampled every 3 h for 36 h, and then daily. During PTH challenges on d 3, 8, and 13, cows received i.v. PTH 1-34 fragment at 0.05 µg/kg of body weight every 20 min for 9 h to mimic the pulsatile release of endogenous PTH. Blood was sampled at 0 h, and hourly thereafter until 10 h, and at 12, 18, 24, 36, and 48 h relative to each challenge. Acid-base measures and concentrations of ionized Ca (iCa) in whole blood, and total Ca, Mg, P, and vitamin D metabolites in plasma were evaluated. On d 2 and 7, Ca, Mg, and P balances were evaluated. Cows fed DCAD -150 had smaller blood pH (7.431 vs. 7.389) and HCO3- (27.4 vs. 22.8 mM) compared with DCAD +200, and metabolic acidosis in DCAD -150 was observed 24 h after dietary treatments started. Concentrations of iCa begin to increase 24 h after feeding the acidogenic diet, and it was greater in DCAD -150 compared with DCAD +200 by 3 d in the experiment (1.23 vs. 1.26 mM). During the PTH challenges, cows fed DCAD -150 had greater concentration of iCa and area under the curve for iCa than those fed DCAD +200 (48.2 vs. 50.7 mmol/L × hour), and there was no interaction between treatment and challenge day. Concentration of 1,25-dihydroxyvitamin D3 in plasma did not differ during the PTH challenge, but change in 1,25-dihydroxyvitamin D3 relative to h 0 of the challenge was smaller in cows fed DCAD -150 than cows fed DCAD +200 (44.1 vs. 32.9 pg/mL). Urinary loss of Ca was greater in cows fed DCAD -150 compared with DCAD +200 (1.8 vs. 10.8 g/d); however, because digestibility of Ca increased in cows fed DCAD -150 (19.7 vs. 36.6%), the amount of Ca retained did not differ between treatments. Diet-induced metabolic acidosis was observed by 24 h after dietary treatment started, resulting in increases in concentration of iCa in blood observed between 1 and 3 d. Collectively, present results indicate that tissue responsiveness to PTH and changes in blood concentrations of iCa and digestibility of Ca are elicited within 3 d of exposure to an acidogenic diet. The increased apparent digestibility of Ca compensated for the increased urinary loss of Ca resulting in similar Ca retention.
Collapse
Affiliation(s)
- A Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - I M R Leão
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - J G Prim
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A C M Silva
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - M Nehme Marinho
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - R Zimpel
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - S Etheve
- DSM Nutritional Products Ltd., Basel, 4002 Switzerland
| | - C D Nelson
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611.
| |
Collapse
|