1
|
da Silva Oliveira W, Teixeira CRV, Mantovani HC, Dolabella SS, Jain S, Barbosa AAT. Nisin variants: What makes them different and unique? Peptides 2024; 177:171220. [PMID: 38636811 DOI: 10.1016/j.peptides.2024.171220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Nisin A is a lantibiotic bacteriocin typically produced by strains of Lactococcus lactis. This bacteriocin has been approved as a natural food preservative since the late 1980 s and shows antimicrobial activity against a range of food-borne spoilage and pathogenic microorganisms. The therapeutic potential of nisin A has also been explored increasingly both in human and veterinary medicine. Nisin has been shown to be effective in treating bovine mastitis, dental caries, cancer, and skin infections. Recently, it was demonstrated that nisin has an affinity for the same receptor used by SARS-CoV-2 to enter human cells and was proposed as a blocker of the viral infection. Several nisin variants produced by distinct bacterial strains or modified by bioengineering have been described since the discovery of nisin A. These variants present modifications in the peptide structure, biosynthesis, mode of action, and spectrum of activity. Given the importance of nisin for industrial and therapeutic applications, the objective of this study was to describe the characteristics of the nisin variants, highlighting the main differences between these molecules and their potential applications. This review will be useful to researchers interested in studying the specifics of nisin A and its variants.
Collapse
Affiliation(s)
| | | | | | - Silvio Santana Dolabella
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Sona Jain
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Ana Andréa Teixeira Barbosa
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
2
|
Khan F, Singh P, Joshi AS, Tabassum N, Jeong GJ, Bamunuarachchi NI, Mijakovic I, Kim YM. Multiple potential strategies for the application of nisin and derivatives. Crit Rev Microbiol 2023; 49:628-657. [PMID: 35997756 DOI: 10.1080/1040841x.2022.2112650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 12/22/2022]
Abstract
Nisin is a naturally occurring bioactive small peptide produced by Lactococcus lactis subsp. lactis and belongs to the Type A (I) lantibiotics. Due to its potent antimicrobial activity, it has been broadly employed to preserve various food materials as well as to combat a variety of microbial pathogens. The present review discusses the antimicrobial properties of nisin and different types of their derivatives employed to treat microbial pathogens with a detailed underlying mechanism of action. Several alternative strategies such as combination, conjugation, and nanoformulations have been discussed in order to address several issues such as rapid degradation, instability, and reduced activity due to the various environmental factors that arise in the applications of nisin. Furthermore, the evolutionary relationship of many nisin genes from different nisin-producing bacterial species has been investigated. A detailed description of the natural and bioengineered nisin variants, as well as the underlying action mechanisms, has also been provided. The chemistry used to apply nisin in conjugation with natural or synthetic compounds as a synergetic mode of antimicrobial action has also been thoroughly discussed. The current review will be useful in learning about recent and past research that has been performed on nisin and its derivatives as antimicrobial agents.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Abhayraj S Joshi
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Ivan Mijakovic
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
3
|
O'Reilly C, Grimaud GM, Coakley M, O'Connor PM, Mathur H, Peterson VL, O'Donovan CM, Lawlor PG, Cotter PD, Stanton C, Rea MC, Hill C, Ross RP. Modulation of the gut microbiome with nisin. Sci Rep 2023; 13:7899. [PMID: 37193715 DOI: 10.1038/s41598-023-34586-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023] Open
Abstract
Nisin is a broad spectrum bacteriocin used extensively as a food preservative that was identified in Lactococcus lactis nearly a century ago. We show that orally-ingested nisin survives transit through the porcine gastrointestinal tract intact (as evidenced by activity and molecular weight determination) where it impacts both the composition and functioning of the microbiota. Specifically, nisin treatment caused a reversible decrease in Gram positive bacteria, resulting in a reshaping of the Firmicutes and a corresponding relative increase in Gram negative Proteobacteria. These changes were mirrored by the modification in relative abundance of pathways involved in acetate, butyrate (decreased) and propionate (increased) synthesis which correlated with overall reductions in short chain fatty acid levels in stool. These reversible changes that occur as a result of nisin ingestion demonstrate the potential of bacteriocins like nisin to shape mammalian microbiomes and impact on the functionality of the community.
Collapse
Affiliation(s)
- Catherine O'Reilly
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- Microbiology Department, University College Cork, Co. Cork, Ireland
| | - Ghjuvan M Grimaud
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Mairéad Coakley
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paula M O'Connor
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- Microbiology Department, University College Cork, Co. Cork, Ireland
| | - Harsh Mathur
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Veronica L Peterson
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Ciara M O'Donovan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Peadar G Lawlor
- Pig Development Department, Teagasc Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Mary C Rea
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Microbiology Department, University College Cork, Co. Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland.
- Microbiology Department, University College Cork, Co. Cork, Ireland.
| |
Collapse
|
4
|
Sevillano E, Peña N, Lafuente I, Cintas LM, Muñoz-Atienza E, Hernández PE, Borrero J. Nisin S, a Novel Nisin Variant Produced by Ligilactobacillus salivarius P1CEA3. Int J Mol Sci 2023; 24:ijms24076813. [PMID: 37047785 PMCID: PMC10095417 DOI: 10.3390/ijms24076813] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Recently, the food industry and the animal farming field have been working on different strategies to reduce the use of antibiotics in animal production. The use of probiotic producers of antimicrobial peptides (bacteriocins) is considered to be a potential solution to control bacterial infections and to reduce the use of antibiotics in animal production. In this study, Ligilactobacillus salivarius P1CEA3, isolated from the gastrointestinal tract (GIT) of pigs, was selected for its antagonistic activity against Gram-positive pathogens of relevance in swine production. Whole genome sequencing (WGS) of L. salivarius P1ACE3 revealed the existence of two gene clusters involved in bacteriocin production, one with genes encoding the class II bacteriocins salivaricin B (SalB) and Abp118, and a second cluster encoding a putative nisin variant. Colony MALDI-TOF MS determinations and a targeted proteomics combined with massive peptide analysis (LC-MS/MS) of the antimicrobial peptides encoded by L. salivarius P1CEA3 confirmed the production of a 3347 Da novel nisin variant, termed nisin S, but not the production of the bacteriocins SalB and Abp118, in the supernatants of the producer strain. This is the first report of a nisin variant encoded and produced by L. salivarius, a bacterial species specially recognized for its safety and probiotic potential.
Collapse
Affiliation(s)
- Ester Sevillano
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Nuria Peña
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Irene Lafuente
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Luis M Cintas
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Estefanía Muñoz-Atienza
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo E Hernández
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain
| |
Collapse
|
5
|
Quichaba MB, Moreira TFM, de Oliveira A, de Carvalho AS, de Menezes JL, Gonçalves OH, de Abreu Filho BA, Leimann FV. Biopreservatives against foodborne bacteria: combined effect of nisin and nanoncapsulated curcumin and co-encapsulation of nisin and curcumin. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:581-589. [PMID: 36712216 PMCID: PMC9873856 DOI: 10.1007/s13197-022-05641-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Nisin, a bacteriocin widely used in the food industry, and curcumin, the yellow pigment extracted from turmeric (Curcuma longa L.) stand out among the numerous natural preservatives that have antimicrobial activity. The conversion of these compounds into nanoparticles could be interesting as an alternative to improve technological aspects (such as the low water solubility of curcumin) and to evaluate how synergism could take place in the case of co-encapsulation. The main objective of the present work was to evaluate the combination of nisin (Nis) with nanoencapsulated curcumin (NCur, nanoencapsulated to promote water solubility), as well as the co-encapsulated curcumin and nisin (NCurNis), against the foodborne bacteria Staphylococcus aureus, Escherichia coli and Salmonella Typhimurium. Minimum inhibitory concentration and the minimum bactericidal concentration were evaluated for NCur and Nis, as well as their combination with the fractional inhibitory concentration assay. High effectiveness was found against S. aureus and the combination of both compounds resulted in Nis- nisin; synergism against the same microorganism. The co-encapsulation of curcumin and nisin was carried out based on the synergism tests and the characterization analyses demonstrated that a solid dispersion of the components in the PVP matrix was formed. The inhibitory effect of the curcumin and nisin co-encapsulate was improved when compared to the curcumin nanoparticles or nisin alone. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05641-8.
Collapse
Affiliation(s)
- Michely Bião Quichaba
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
| | - Thaysa Fernandes Moya Moreira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
- Post-Graduation Program of Food Science (PPC), Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, PR CEP 87030-121 Brazil
| | - Anielle de Oliveira
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
- Post-Graduation Program of Food Science (PPC), Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, PR CEP 87030-121 Brazil
| | - Amarilis Santos de Carvalho
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
| | - Jéssica Lima de Menezes
- Post-Graduation Program of Food Science (PPC), Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, PR CEP 87030-121 Brazil
| | - Odinei Hess Gonçalves
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Benício Alves de Abreu Filho
- Post-Graduation Program of Food Science (PPC), Department of Animal Science, State University of Maringá, Av. Colombo, 5790, Maringá, PR CEP 87030-121 Brazil
| | - Fernanda Vitória Leimann
- Post-Graduation Program of Food Technology (PPGTA), Federal University of Technology–Paraná–UTFPR, Campus Campo Mourão, via Rosalina Maria dos Santos, 1233, Campo Mourão, PR CEP 87301-899 Brazil
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
6
|
Olmo R, Wetzels SU, Armanhi JSL, Arruda P, Berg G, Cernava T, Cotter PD, Araujo SC, de Souza RSC, Ferrocino I, Frisvad JC, Georgalaki M, Hansen HH, Kazou M, Kiran GS, Kostic T, Krauss-Etschmann S, Kriaa A, Lange L, Maguin E, Mitter B, Nielsen MO, Olivares M, Quijada NM, Romaní-Pérez M, Sanz Y, Schloter M, Schmitt-Kopplin P, Seaton SC, Selvin J, Sessitsch A, Wang M, Zwirzitz B, Selberherr E, Wagner M. Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Front Microbiol 2022; 13:834622. [PMID: 35903477 PMCID: PMC9315449 DOI: 10.3389/fmicb.2022.834622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing knowledge of the microbiome has led to significant advancements in the agrifood system. Case studies based on microbiome applications have been reported worldwide and, in this review, we have selected 14 success stories that showcase the importance of microbiome research in advancing the agrifood system. The selected case studies describe products, methodologies, applications, tools, and processes that created an economic and societal impact. Additionally, they cover a broad range of fields within the agrifood chain: the management of diseases and putative pathogens; the use of microorganism as soil fertilizers and plant strengtheners; the investigation of the microbial dynamics occurring during food fermentation; the presence of microorganisms and/or genes associated with hazards for animal and human health (e.g., mycotoxins, spoilage agents, or pathogens) in feeds, foods, and their processing environments; applications to improve HACCP systems; and the identification of novel probiotics and prebiotics to improve the animal gut microbiome or to prevent chronic non-communicable diseases in humans (e.g., obesity complications). The microbiomes of soil, plants, and animals are pivotal for ensuring human and environmental health and this review highlights the impact that microbiome applications have with this regard.
Collapse
Affiliation(s)
- Rocío Olmo
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Rocío Olmo,
| | - Stefanie Urimare Wetzels
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jaderson Silveira Leite Armanhi
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Paul D. Cotter
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | - Solon Cordeiro Araujo
- SCA, Consultoria em Microbiologia Agrícola, Campinas, Brazil
- Brazil National Association of Inoculant Producers and Importers (ANPII), Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Torino, Torino, Italy
| | - Jens C. Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Tanja Kostic
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Aicha Kriaa
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, Denmark
| | - Emmanuelle Maguin
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mette Olaf Nielsen
- Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Narciso Martín Quijada
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Joseph Selvin
- School of Life Sciences, Pondicherry University, Puducherry, India
| | - Angela Sessitsch
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Benjamin Zwirzitz
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
7
|
Zheng Y, Du Y, Qiu Z, Liu Z, Qiao J, Li Y, Caiyin Q. Nisin Variants Generated by Protein Engineering and Their Properties. Bioengineering (Basel) 2022; 9:bioengineering9060251. [PMID: 35735494 PMCID: PMC9219921 DOI: 10.3390/bioengineering9060251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Nisin, a typical lantibiotic, has robust antimicrobial activity combined with limited cytotoxicity, and the development of resistance to it is slow. These properties make nisin a promising antimicrobial agent to control pathogenic microorganisms in dairy foods. However, its low solubility, poor stability and short half-life at neutral pH limit its application within the dairy industry. Protein engineering technology has revealed the potential of modifying nisin to improve its properties, and many valuable variants have emerged. This review summarizes progress in the generation of nisin variants for the dairy industry and for other purposes. These nisin variants with additional modification have improved properties and can even expand the inhibition spectrum range of nisin. Nisin, as the most thoroughly studied lantibiotic, and its variants can also guide the modification of other lantibiotics.
Collapse
Affiliation(s)
- Yue Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Zekai Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Ziming Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
- Correspondence:
| |
Collapse
|