1
|
Olasege BS, van den Berg I, Haile-Mariam M, Ho PN, Yin Oh Z, Porto-Neto LR, Hayes BJ, Pryce JE, Fortes MRS. Dissecting loci that underpin the genetic correlations between production, fertility, and urea traits in Australian Holstein cattle. Anim Genet 2024; 55:540-558. [PMID: 38885945 DOI: 10.1111/age.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Unfavorable genetic correlations between milk production, fertility, and urea traits have been reported. However, knowledge of the genomic regions associated with these unfavorable correlations is limited. Here, we used the correlation scan method to identify and investigate the regions driving or antagonizing the genetic correlations between production vs. fertility, urea vs. fertility, and urea vs. production traits. Driving regions produce an estimate of correlation that is in the same direction as the global correlation. Antagonizing regions produce an estimate in the opposite direction of the global estimates. Our dataset comprised 6567, 4700, and 12,658 Holstein cattle with records of production traits (milk yield, fat yield, and protein yield), fertility (calving interval) and urea traits (milk urea nitrogen and blood urea nitrogen predicted using milk-mid-infrared spectroscopy), respectively. Several regions across the genome drive the correlations between production, fertility, and urea traits. Antagonizing regions were confined to certain parts of the genome and the genes within these regions were mostly involved in preventing metabolic dysregulation, liver reprogramming, metabolism remodeling, and lipid homeostasis. The driving regions were enriched for QTL related to puberty, milk, and health-related traits. Antagonizing regions were mostly related to muscle development, metabolic body weight, and milk traits. In conclusion, we have identified genomic regions of potential importance for dairy cattle breeding. Future studies could investigate the antagonizing regions as potential genomic regions to break the unfavorable correlations and improve milk production as well as fertility and urea traits.
Collapse
Affiliation(s)
- Babatunde S Olasege
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- CSIRO Agriculture and Food, Saint Lucia, Queensland, Australia
| | - Irene van den Berg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Mekonnen Haile-Mariam
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Phuong N Ho
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Zhen Yin Oh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland, Australia
| | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Nan L, Du C, Fan Y, Liu W, Luo X, Wang H, Ding L, Zhang Y, Chu C, Li C, Ren X, Yu H, Lu S, Zhang S. Association between Days Open and Parity, Calving Season or Milk Spectral Data. Animals (Basel) 2023; 13:ani13030509. [PMID: 36766398 PMCID: PMC9913365 DOI: 10.3390/ani13030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Milk spectral data on 2118 cows from nine herds located in northern China were used to access the association of days open (DO). Meanwhile, the parity and calving season of dairy cows were also studied to characterize the difference in DO between groups of these two cow-level factors. The result of the linear mixed-effects model revealed that no significant differences were observed between the parity groups. However, a significant difference in DO exists between calving season groups. The interaction between parity and calving season presented that primiparous cows always exhibit lower DO among all calving season groups, and the variation in DO among parity groups was especially clearer in winter. Survival analysis revealed that the difference in DO between calving season groups might be caused by the different P/AI at the first TAI. In addition, the summer group had a higher chance of conception in the subsequent services than other groups, implying that the micro-environment featured by season played a critical role in P/AI. A weak linkage between DO and wavenumbers ranging in the mid-infrared region was detected. In summary, our study revealed that the calving season of dairy cows can be used to optimize the reproduction management. The potential application of mid-infrared spectroscopy in dairy cows needs to be further developed.
Collapse
Affiliation(s)
- Liangkang Nan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Du
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China
| | - Yikai Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenju Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuelu Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitong Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chu Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoli Ren
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Yu
- Hebei Livestock Breeding Station, Shijiazhuang 050000, China
| | - Shiyu Lu
- Hebei Livestock Breeding Station, Shijiazhuang 050000, China
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
3
|
Cheruiyot EK, Haile-Mariam M, Cocks BG, Pryce JE. Improving Genomic Selection for Heat Tolerance in Dairy Cattle: Current Opportunities and Future Directions. Front Genet 2022; 13:894067. [PMID: 35769985 PMCID: PMC9234448 DOI: 10.3389/fgene.2022.894067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Heat tolerance is the ability of an animal to maintain production and reproduction levels under hot and humid conditions and is now a trait of economic relevance in dairy systems worldwide because of an escalating warming climate. The Australian dairy population is one of the excellent study models for enhancing our understanding of the biology of heat tolerance because they are predominantly kept outdoors on pastures where they experience direct effects of weather elements (e.g., solar radiation). In this article, we focus on evidence from recent studies in Australia that leveraged large a dataset [∼40,000 animals with phenotypes and 15 million whole-genome sequence variants] to elucidate the genetic basis of thermal stress as a critical part of the strategy to breed cattle adapted to warmer environments. Genotype-by-environment interaction (i.e., G × E) due to temperature and humidity variation is increasing, meaning animals are becoming less adapted (i.e., more sensitive) to changing environments. There are opportunities to reverse this trend and accelerate adaptation to warming climate by 1) selecting robust or heat-resilient animals and 2) including resilience indicators in breeding goals. Candidate causal variants related to the nervous system and metabolic functions are relevant for heat tolerance and, therefore, key for improving this trait. This could include adding these variants in the custom SNP panels used for routine genomic evaluations or as the basis to design specific agonist or antagonist compounds for lowering core body temperature under heat stress conditions. Indeed, it was encouraging to see that adding prioritized functionally relevant variants into the 50k SNP panel (i.e., the industry panel used for genomic evaluation in Australia) increased the prediction accuracy of heat tolerance by up to 10% units. This gain in accuracy is critical because genetic improvement has a linear relationship with prediction accuracy. Overall, while this article used data mainly from Australia, this could benefit other countries that aim to develop breeding values for heat tolerance, considering that the warming climate is becoming a topical issue worldwide.
Collapse
Affiliation(s)
- Evans K. Cheruiyot
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Centre for AgriBiosciences, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Mekonnen Haile-Mariam
- Centre for AgriBiosciences, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
- *Correspondence: Mekonnen Haile-Mariam,
| | - Benjamin G. Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Centre for AgriBiosciences, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| | - Jennie E. Pryce
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Centre for AgriBiosciences, Agriculture Victoria Research, AgriBio, Bundoora, VIC, Australia
| |
Collapse
|
4
|
Tiezzi F, Fleming A, Malchiodi F. Use of Milk Infrared Spectral Data as Environmental Covariates in Genomic Prediction Models for Production Traits in Canadian Holstein. Animals (Basel) 2022; 12:1189. [PMID: 35565615 PMCID: PMC9099576 DOI: 10.3390/ani12091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
The purpose of this study was to provide a procedure for the inclusion of milk spectral information into genomic prediction models. Spectral data were considered a set of covariates, in addition to genomic covariates. Milk yield and somatic cell score were used as traits to investigate. A cross-validation was employed, making a distinction for predicting new individuals' performance under known environments, known individuals' performance under new environments, and new individuals' performance under new environments. We found an advantage of including spectral data as environmental covariates when the genomic predictions had to be extrapolated to new environments. This was valid for both observed and, even more, unobserved families (genotypes). Overall, prediction accuracy was larger for milk yield than somatic cell score. Fourier-transformed infrared spectral data can be used as a source of information for the calculation of the 'environmental coordinates' of a given farm in a given time, extrapolating predictions to new environments. This procedure could serve as an example of integration of genomic and phenomic data. This could help using spectral data for traits that present poor predictability at the phenotypic level, such as disease incidence and behavior traits. The strength of the model is the ability to couple genomic with high-throughput phenomic information.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
5
|
van den Berg I, Ho PN, Nguyen TV, Haile-Mariam M, Luke TDW, Pryce JE. Using mid-infrared spectroscopy to increase GWAS power to detect QTL associated with blood urea nitrogen. Genet Sel Evol 2022; 54:27. [PMID: 35436852 PMCID: PMC9014603 DOI: 10.1186/s12711-022-00719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Blood urea nitrogen (BUN) is an indicator trait for urinary nitrogen excretion. Measuring BUN level requires a blood sample, which limits the number of records that can be obtained. Alternatively, BUN can be predicted using mid-infrared (MIR) spectroscopy of a milk sample and thus records become available on many more cows through routine milk recording processes. The genetic correlation between MIR predicted BUN (MBUN) and BUN is 0.90. Hence, genetically, BUN and MBUN can be considered as the same trait. The objective of our study was to perform genome-wide association studies (GWAS) for BUN and MBUN, compare these two GWAS and detect quantitative trait loci (QTL) for both traits, and compare the detected QTL with previously reported QTL for milk urea nitrogen (MUN). The dataset used for our analyses included 2098 and 18,120 phenotypes for BUN and MBUN, respectively, and imputed whole-genome sequence data. The GWAS for MBUN was carried out using either the full dataset, the 2098 cows with records for BUN, or 2000 randomly selected cows, so that the dataset size is comparable to that for BUN. The GWAS results for BUN and MBUN were very different, in spite of the strong genetic correlation between the two traits. We detected 12 QTL for MBUN, on bovine chromosomes 2, 3, 9, 11, 12, 14 and X, and one QTL for BUN on chromosome 13. The QTL detected on chromosomes 11, 14 and X overlapped with QTL detected for MUN. The GWAS results were highly sensitive to the subset of records used. Hence, caution is warranted when interpreting GWAS based on small datasets, such as for BUN. MBUN may provide an attractive alternative to perform a more powerful GWAS to detect QTL for BUN.
Collapse
|
6
|
Pryce JE, Nguyen TTT, Cheruiyot EK, Marett L, Garner JB, Haile-Mariam M. Impact of hot weather on animal performance and genetic strategies to minimise the effect. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
van den Berg I, Ho P, Haile-Mariam M, Pryce J. Genetic parameters for mid-infrared spectroscopy-predicted fertility. JDS COMMUNICATIONS 2021; 2:361-365. [PMID: 36337105 PMCID: PMC9623646 DOI: 10.3168/jdsc.2021-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/09/2021] [Indexed: 06/16/2023]
Abstract
Female fertility is a challenging trait to improve genetically because of its low heritability, its unfavorable genetic correlation with milk yield, and its relatively small number of records. The MFERT trait is the probability of conception to first insemination predicted using mid-infrared (MIR) spectroscopy of a milk sample collected during lactation as part of routine milk recording, age at calving, days in milk, and milk production. As such, MFERT could become available on many more cows than traditional fertility traits. Our objectives were (1) to estimate the heritability of MFERT; (2) to estimate genetic correlations between MFERT, traditional fertility traits, and milk production traits; and (3) to assess the potential of MFERT to be used as an indicator trait for fertility in a selection index. The MFERT trait had a heritability of 0.16, which was higher than that (0.05) obtained for traditional fertility traits. Genetic correlations between MFERT and traditional fertility traits were low to moderate. The weakest and strongest correlations (mean ± standard error) were with pregnancy at the end of the mating season (0.13 ± 0.05) and calving to first service (-0.61 ± 0.03), respectively. Based on our estimates, including MFERT in a fertility index will only substantially increase the accuracy of the index when there are many more records available for MFERT than for the traditional fertility traits. This is likely to be the case because the number of milk samples from commercial machines belonging to milk recording companies in Australia that are capable of generating MIR spectra is growing. Hence, the number of records for MFERT is expected to increase substantially in the near future.
Collapse
Affiliation(s)
- I. van den Berg
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - P.N. Ho
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - M. Haile-Mariam
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - J.E. Pryce
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
8
|
Cheruiyot EK, Haile-Mariam M, Cocks BG, MacLeod IM, Xiang R, Pryce JE. New loci and neuronal pathways for resilience to heat stress in cattle. Sci Rep 2021; 11:16619. [PMID: 34404823 PMCID: PMC8371109 DOI: 10.1038/s41598-021-95816-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
While understanding the genetic basis of heat tolerance is crucial in the context of global warming's effect on humans, livestock, and wildlife, the specific genetic variants and biological features that confer thermotolerance in animals are still not well characterized. We used dairy cows as a model to study heat tolerance because they are lactating, and therefore often prone to thermal stress. The data comprised almost 0.5 million milk records (milk, fat, and proteins) of 29,107 Australian Holsteins, each having around 15 million imputed sequence variants. Dairy animals often reduce their milk production when temperature and humidity rise; thus, the phenotypes used to measure an individual's heat tolerance were defined as the rate of milk production decline (slope traits) with a rising temperature-humidity index. With these slope traits, we performed a genome-wide association study (GWAS) using different approaches, including conditional analyses, to correct for the relationship between heat tolerance and level of milk production. The results revealed multiple novel loci for heat tolerance, including 61 potential functional variants at sites highly conserved across 100 vertebrate species. Moreover, it was interesting that specific candidate variants and genes are related to the neuronal system (ITPR1, ITPR2, and GRIA4) and neuroactive ligand-receptor interaction functions for heat tolerance (NPFFR2, CALCR, and GHR), providing a novel insight that can help to develop genetic and management approaches to combat heat stress.
Collapse
Affiliation(s)
- Evans K. Cheruiyot
- grid.1018.80000 0001 2342 0938School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia ,grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia
| | - Mekonnen Haile-Mariam
- grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia
| | - Benjamin G. Cocks
- grid.1018.80000 0001 2342 0938School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia ,grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia
| | - Iona M. MacLeod
- grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia
| | - Ruidong Xiang
- grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia ,grid.1008.90000 0001 2179 088XFaculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3052 Australia
| | - Jennie E. Pryce
- grid.1018.80000 0001 2342 0938School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia ,grid.452283.a0000 0004 0407 2669Agriculture Victoria Research, Centre for AgriBiosciences, AgriBio, Bundoora, VIC 3083 Australia
| |
Collapse
|
9
|
Ho PN, Luke TDW, Pryce JE. Validation of milk mid-infrared spectroscopy for predicting the metabolic status of lactating dairy cows in Australia. J Dairy Sci 2021; 104:4467-4477. [PMID: 33551158 DOI: 10.3168/jds.2020-19603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
Increased concentrations of some serum biomarkers are known to be associated with impaired health of dairy cows. Therefore, being able to predict these biomarkers, especially in the early stage of lactation, would enable preventive management decision. Some health biomarkers may also be used as phenotypes for genetic improvement for improved animal health. In this study, we validated the accuracy and robustness of models for predicting serum concentrations of β-hydroxybutyrate (BHB), fatty acids, and urea nitrogen, using milk mid-infrared (MIR) spectroscopy. The data included 3,262 blood samples of 3,027 lactating Holstein-Friesian cows from 19 dairy herds in Southeastern Australia, collected in the period from July 2017 to April 2020. The models were developed using partial least squares regression and were validated using 10-fold random cross-validation, herd-year by herd-year external validation, and year by year validation. The coefficients of determination (R2) for prediction of serum BHB, fatty acids, and urea obtained through random cross-validation were 0.60, 0.42, and 0.87, respectively. For the herd-year by herd-year external validation, the prediction accuracies held up comparatively well, with R2 values of 0.49, 0.33, and 0.67 for of serum BHB, fatty acids, and urea, respectively. When the models were developed using data from a single year to predict data collected in future years, the R2 remained comparable, however, the root mean squared errors increased substantially (4-10 times larger than compared with that of herd-year by herd-year external validation) which could be due to machine differences in spectral response, the change in spectral response of individual machines over time, or other differences associated with farm management between seasons. In conclusion, the mid-infrared equations for predicting serum BHB, fatty acids, and urea have been validated. The prediction equations could be used to help farmers detect cows with metabolic disorders in early lactation in addition to generating novel phenotypes for genetic improvement purposes.
Collapse
Affiliation(s)
- P N Ho
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.
| | - T D W Luke
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - J E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
10
|
van den Berg I, Ho PN, Haile-Mariam M, Beatson PR, O'Connor E, Pryce JE. Genetic parameters of blood urea nitrogen and milk urea nitrogen concentration in dairy cattle managed in pasture-based production systems of New Zealand and Australia. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Urinary nitrogen excretion by grazing cattle causes environmental pollution. Selecting for cows with a lower concentration of urinary nitrogen excretion may reduce the environmental impact. While urinary nitrogen excretion is difficult to measure, blood urea nitrogen (BUN), mid-infrared spectroscopy (MIR)-predicted BUN (MBUN), which is predicted from MIR spectra measured on milk samples, and milk urea nitrogen (MUN) are potential indicator traits. Australia and New Zealand have increasing datasets of cows with urea records, with 18 120 and 15 754 cows with urea records in Australia and New Zealand respectively. A collaboration between Australia and New Zealand could further increase the size of the dataset by sharing data.
Aims
Our aims were to estimate genetic parameters for urea traits within country, and genetic correlations between countries to gauge the benefit of having a joint reference population for genomic prediction of an indicator trait that is potentially suitable for selection to reduce urinary nitrogen excretion for both countries.
Methods
Genetic parameters were estimated within country (Australia and New Zealand) in Holstein, Jersey and a multibreed population, for BUN, MBUN and MUN in Australia and MUN in New Zealand, using high-density genotypes. Genetic correlations were also estimated between the urea traits recorded in Australia and MUN in New Zealand. Analyses used the first record available for each cow or within days-in-milk (DIM) intervals.
Key results
Heritabilities ranged from 0.08 to 0.32 for the various urea traits. Higher heritabilities were obtained for Jersey than for Holstein, and for the New Zealand cows than for the Australian cows. While urea traits were highly correlated within Australia (0.71–0.94), genetic correlations between Australia and New Zealand were small to moderate (0.08–0.58).
Conclusions
Our results showed that the heritability for urea traits differs among trait, breed, and country. While urea traits are highly correlated within country, genetic correlations between urea traits in Australia and MUN in New Zealand were only low to moderate.
Implications
Further study is required to identify the underlying causes of the difference in heritabilities observed, to compare the accuracies of different reference populations, and to estimate genetic correlations between urea traits and other traits such as fertility and feed intake. Larger datasets may help estimate genetic correlations more accurately between countries.
Collapse
|