1
|
Wang G, Zhang Q, Chen Z, Huang Y, Wang W, Zhang X, Jia J, Gao Q, Xu H, Li C. Transcriptome Analysis to Elucidate the Effects of Milk Replacer Feeding Level on Intestinal Function and Development of Early Lambs. Animals (Basel) 2023; 13:1733. [PMID: 37889672 PMCID: PMC10251907 DOI: 10.3390/ani13111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 10/29/2023] Open
Abstract
Although early feeding strategies influence intestinal development, the effects of milk replacer (MR) feeding level on intestinal structure and functional development and underlying regulatory mechanisms remain unclear. In this study, 14 male Hu lambs were fed MR at 2% or 4% of their average body weight and weaned at 35 days of age. The MR was produced by the Institute of Feed Research of the Chinese Academy of Agricultural Sciences, and it contains 96.91% dry matter, 23.22% protein, and 13.20% fat. Jejunal tissues were assessed by RNA-seq for differences in the gene expression of lambs at 49 days of age; regulatory pathways and mechanisms of the effects of early nutrition on intestinal function and development were analyzed, along with growth performance, feed intake, jejunal histomorphology, and digestive enzyme activities. Increasing MR- feeding levels increased dry matter intake and daily gain before weaning, as well as lactase, amylase, lipase, trypsin, and chymotrypsin activities and intestinal villus length and muscular thickness. Overall, 1179 differentially expressed genes were identified, which were enriched in nutrient metabolism, coagulation cascades, and other pathways. Further, intensive MR feeding affected insulin sensitivity to reduce excessive glucose interception by intestinal tissues to ensure adequate absorbed glucose release into the portal circulation and promoted lipid and protein degradation in intestinal tissues to meet the energy demand of intestinal cells by regulating AHSG, IGFBP1, MGAT2, ITIH, and CYP2E1 expression.
Collapse
Affiliation(s)
- Guoxiu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.W.); (Z.C.); (Y.H.); (X.Z.); (J.J.); (Q.G.); (H.X.)
| | - Qian Zhang
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot 010000, China;
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Zhanyu Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.W.); (Z.C.); (Y.H.); (X.Z.); (J.J.); (Q.G.); (H.X.)
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.W.); (Z.C.); (Y.H.); (X.Z.); (J.J.); (Q.G.); (H.X.)
| | - Weimin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China;
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.W.); (Z.C.); (Y.H.); (X.Z.); (J.J.); (Q.G.); (H.X.)
| | - Jiale Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.W.); (Z.C.); (Y.H.); (X.Z.); (J.J.); (Q.G.); (H.X.)
| | - Qihao Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.W.); (Z.C.); (Y.H.); (X.Z.); (J.J.); (Q.G.); (H.X.)
| | - Haoyu Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.W.); (Z.C.); (Y.H.); (X.Z.); (J.J.); (Q.G.); (H.X.)
| | - Chong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (G.W.); (Z.C.); (Y.H.); (X.Z.); (J.J.); (Q.G.); (H.X.)
| |
Collapse
|
2
|
Delayed First Milking in Unassisted Overnight Calving Did Not Affect the Quality of Colostrum but Influenced Serum Brix Refractometry in Holstein Calves at Two Days of Life. Animals (Basel) 2022; 12:ani12131665. [PMID: 35804564 PMCID: PMC9265070 DOI: 10.3390/ani12131665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Timely administration of good-quality colostrum represents the first farm strategy to avoid the failure of passive transfer (FPT). However, calves born during the night are likely to be fed later than recommended. Our aim was to evaluate whether night-occurring calving and delayed first milking affected colostrum quality and immune passive transfer. The dataset included 463 calvings. Four liters of colostrum were administered by an esophageal tube feeder. The mean Brix% of colostrum was 27.43%, while serum Brix% at two days of life in calves was 10.19%. According to the Generalized Linear Model, parity ≥ 4, calving months of March, April, and from September to November positively influenced the quality of colostrum. Dams carrying a male calf produced lower quality colostrum compared with those carrying a female calf (−2.78 ± 1.04 Brix%, p = 0.008); heavier female calves were associated with greater colostrum quality (0.29 ± 0.05 for each kg increase, p < 0.001). Night- or day-calving had no effect on the quality of colostrum. The only factor influencing the serum Brix% of female Holstein calves at two days of life was the day- or night-occurring birth (−0.386 ± 0.188 Brix% in calves born during the night, p = 0.04). Our results showed that calves born overnight and fed the day after had decreased serum Total Protein concentrations as indicated by reduced Brix refractometer readings, compared with calves born during the day and fed quickly after birth. However, the administration of 4 L of high-quality colostrum likely improved their serum Brix% at two days of life. Alternatively, where the prevalence of good-quality colostrum is lower, improving calving supervision and ensuring timely feeding are important to reduce the risk of FPT.
Collapse
|